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Abstract

Self-attention learns pairwise interactions to model long-range dependencies, yield-
ing great improvements for video action recognition. In this paper, we seek a deeper
understanding of self-attention for temporal modeling in videos. We first demonstrate
that the entangled modeling of spatio-temporal information by flattening all pixels is
sub-optimal, failing to capture temporal relationships among frames explicitly. To this
end, we introduce Global Temporal Attention (GTA), which performs global temporal at-
tention on top of spatial attention in a decoupled manner. We apply GTA on both pixels
and semantically similar regions to capture temporal relationships at different levels of
spatial granularity. Unlike conventional self-attention that computes an instance-specific
attention matrix, GTA directly learns a global attention matrix that is intended to encode
temporal structures that generalize across different samples. We further augment GTA
with a cross-channel multi-head fashion to exploit channel interactions for better tem-
poral modeling. Extensive experiments on 2D and 3D networks demonstrate that our
approach consistently enhances temporal modeling and provides state-of-the-art perfor-
mance on three video action recognition datasets.

1 Introduction

Attention mechanisms have demonstrated impressive achievements in a wide range of tasks
such as language modeling [2, 39], speech recognition [7] and image classification [20, 21].
One of the most effective attention methods is self-attention, which learns self-alignment
via dot product operations, computing pairwise similarities between a pixel (i.e., query) and
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Figure 1: Top: input frames (action: removing something to reveal something). The green
cross-mark indicates the query position. Center: spatio-temporal attention generated by
NL blocks. The attention is biased towards the appearance similarity, which fades overtime
ignoring temporal clues; thus, the model generates incorrect prediction: putting something in
front of something. Bottom: the decoupled NL blocks generate spatial attention maps within
the query frame and temporal attention weights across different time steps. The temporal
attention has larger values at the key frames that are critical for recognizing the action (i.e.,
revealing something), and the model gives the correct prediction. GTA is built upon the
decoupled framework and advances the temporal attention to a more effective design.

other pixels (i.e., key) to modulate the transformed inputs (i.e., value). For action recog-
nition [43], this requires: (i) flattening all pixels in a video, regardless of their spatial and
temporal locations, into a huge vector; (ii) sharing the same set of parameters for all pixels
to derive the query/key/value; and (iii) generating a joint attention map for both spatial and
temporal context.

In this paper, we seek a better understanding of self-attention for temporal modeling in
videos. In particular, we wish to answer the following questions: (i) Is treating all pixels in
space and time as a flattened vector to perform dot-product sufficient for temporal modeling?
(ii) Is dot product based self-attention really necessary for capturing temporal relationships
across different frames?

In contrast to the conventional use of self-attention for video recognition, we posit that
temporal attention should be disentangled from spatial attention, since they focus on differ-
ent aspects. As shown in Figure 1, the spatial attention tends to capture appearance similarity
(i.e., the orange), while the temporal attention is more focused on frames that are important
for recognizing the action (i.e., revealing something). When these two types of attention are
modeled together (Figure 1 Center), the attention is biased towards the appearance similarity,
dominating any temporal context.

In addition, we argue that dot product based self-attention is not even suitable for tem-
poral modeling. Standard self-attention produces instance-specific attention weights, con-
ditioned on pairwise interactions. In the spatial domain, it can attend to salient regions for
improved performance. When used for temporal modeling, it ignores the ordering of frames
as self-attention is known to be permutation invariant [8]. For instance, if we shuffle two
pixels temporally, their relationship will be the same, producing the same output. This is
not sufficient for differentiating actions like “reveal something” and “cover something”. We
hypothesize that temporal modeling requires learning a global temporal structure that gener-
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alizes across different samples rather than relying on pairwise interactions across time steps.
In light of this, we introduce Global Temporal Attention (GTA), for video action recog-

nition. In particular, we first decouple the traditional spatio-temporal self-attention into two
successive steps—a standard self-attention in the spatial domain within each frame followed
by the proposed GTA module to capture temporal relationships across different frames.
Moreover, we not only apply GTA to each pixel location along the temporal dimension
but also “superpixels”—pixels in a region share similar semantic meanings. This enables
our model to capture temporal relationships at different levels of spatial granularity. Un-
like computing pairwise frame interactions with dot product, GTA directly learns a global
attention matrix that is randomly initialized to be instance-independent. The intuition of
the global attention matrix is to not rely on pairwise frame relations without specific order-
ing information or individual sample information, but to learn a global task-specific weight
matrix considering temporal structures that generalize across different samples. To exploit
information across different channels, we split feature maps into multiple groups along the
channel-dimension, and for each group we apply GTA in a multi-head fashion such that each
head focuses on different aspects of the inputs. Then, outputs from different channel groups
are further aggregated to produce a unified representation.

We conduct extensive experiments on Something-Something [15] and Kinetics-400 [28].
Our proposed GTA outperforms the traditional spatio-temporal self-attention by clear mar-
gins, and achieves state-of-the-art results on these three datasets. We also provide a side-by-
side comparison with recent NL variants [4, 6, 45] to show the superior performance of GTA
in temporal modeling. We summarize our main contributions as follows. First, we provide
an in-depth analysis of the sub-optimal design of the spatio-temporal self-attention and pro-
pose to decouple attention across the two dimensions. Second, we introduce GTA, which
improves the conventional temporal attention by introducing: (i) temporal modeling at both
pixel and region levels; (ii) a global attention matrix for all samples; (iii) a cross-channel
multi-head design for incorporating channel interactions.

2 Related Work
Temporal Modeling in Action Recognition. A large family of research in action recogni-
tion focuses on the effective modeling of temporal information in videos. Early work simply
aggregates the frame/clip-level features across time via average pooling [27, 41] or feature
encoding like ActionVLAD [14], without considering the temporal relationships of video
frames. Later on, two-stream networks [34], 3D convolution networks (CNNs) [25, 37] and
recurrent neural networks (RNNs) [9, 46] are used to model the spatial and temporal context
in videos. Recently, various temporal modules are proposed to capture temporal relations,
such as TRN [49] based on relation networks, Timeception [23] based on multi-scale tem-
poral convolutions, and SlowFast [12] based on slow and fast branches capturing spatial and
motion information, respectively. TSM [31] adopts a channel shifting operation along the
time dimension to enable temporal modeling on 2D CNN networks. STM [26], TEA [30]
and MSNet [29] encode the motion information into the network by extracting motion fea-
tures between adjacent frames.

Non-Local and Self-Attention. Modeling long-range relations in feature representations
has a long history [3, 10, 16, 18, 32, 36] and has proven to be effective in various tasks, such
as machine translation [39], generative modeling [47], image recognition[4, 20, 43], object
detection[4, 19, 43], semantic segmentation[4, 43, 48] and visual question answering[33]. In
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computer vision, Non-local Network (NL) [43] is proposed to model the pixel-level pairwise
similarities to encode long-range dependencies. SENet [21] uses a Squeeze-and-Excitation
block to model inter-dependencies along the channel dimension. GCNet [4], CGNL [45]
and DANet [13] further improve the vanilla NL by integrating pixel-wise and channel-wise
attention. CCNet [22] improves the efficiency of NL by computing the contextual informa-
tion of the pixels on its crisscross path instead of the global region. GloRe [6] proposes the
relation reasoning via graph convolution on a region-based graph in the interaction space to
capture the global information.

In this work, we present a novel way to model temporal relationships and bring new
perspectives for a better understanding of the attention mechanism utilized in video action
recognition. Our approach learns global temporal attention that generalizes well across dif-
ferent samples as opposed to using pairwise interactions with dot product in self-attention.

3 Approach

3.1 Background

Extending the self-attention module [39] for language tasks, the non-local block (NL) [43]
takes as input flattened pixels in spacetime to model pairwise interactions, as shown in
Figure 2(a). More formally, given an input feature map X ∈ RN×C, three linear projec-
tions are applied to obtain key (K), query (Q), and value (V ) representations, where C is
the channel dimension of the feature map. We use N = T HW to denote the total num-
ber of positions in both space and time dimensions, where T , H and W are the number of
time steps, height and width of the feature map, respectively. The three projections can
be written as Q = XWQ, K = XWK , V = XWV , parameterized by three weight matrices
WQ,WK ,WV ∈ RC×C respectively. The output of the self-attention operation is computed as
a weighted sum of the value representations. Here, the weight is defined by the attention
weight matrix M ∈ RN×N , where each element denotes a scaled dot product between the
query pixel and the corresponding key pixel, followed by a softmax normalization:

A = MV, M = softmax

(
QKT
√

C

)
. (1)

The attention output is incorporated into the backbone network via a final linear projection
W O ∈ RC×C and a residual connection [17]:

Y = X +AW O, (2)

An optional normalization layer (e.g., BatchNorm [24] and LayerNorm [1]) can be used
before the residual connection, and we drop it here for clarity.

3.2 Decoupled Spatial and Temporal Self-Attention

Although self-attention has been widely used in action recognition for capturing spatio-
temporal dependencies, we argue in this paper that the coupled modeling of spatial and
temporal self-attention prevents the model from learning effective temporal attention. First,
when sharing the same transformation matrices for key, query and value, it fails to differen-
tiate between spatial and temporal contexts. This is unsatisfactory for temporal modeling as
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Figure 2: (a) Standard self-attention for action recognition, which computes pairwise
similarities between a pixel (query) with other pixels (key) in the spacetime domain. (b)
Decoupled spatial and temporal self-attention, which uses separated key/query/value rep-
resentations for spatial and temporal attention and aggregates spatial and temporal context
in a separate manner. (c) Global temporal attention, which learns two randomly initial-
ized global attention maps at the pixel-level and the region-level, respectively. Regions are
derived automatically with a learned transformation matrix. Inside the rectangular (dashed
line), the spatial dimension of feature maps is omitted. GTA is also applied in a cross-
channel multi-head fashion, where feature maps are split along the channel dimension into
G groups (only 2 groups are shown for simplicity). Residual connections are omitted here
for simplicity. See texts for more details.

we need to consider temporal structures of videos instead of simply computing the salient re-
gions by performing self-attention in the spatial domain. Moreover, when the two attentions
are modeled and aggregated jointly, the combined attention tends to be biased towards the
appearance similarity as the temporal attention is dominated by the spatial one (see Figure 1).
Based on this observation, we propose the decoupled spatial and temporal self-attention in
Figure 2 (b), which breaks down the standard self-attention block into a spatial self-attention
block followed by a temporal self-attention block. We will provide a more in-depth analysis
of the decoupled self-attention design via experiments in Section 4.1.

Formally, given the input feature map X , we first obtain the three projections through:
Qs = XW s

Q,Ks = XW s
K ,Vs = XW s

V , where the subscript/superscript s is used to differentiate
from the functions in temporal attention. We then perform the space-only attention on all
spatial positions within each frame:

As(t) = softmax
(

Qs(t)Ks(t)T
√

C

)
Vs(t), Ys(t) = X(t)+As(t)W s

O, (3)

where t ∈ {1, ...,T} denotes different time steps. The output of the spatial attention block is
then used as input to the temporal attention block, which performs similar attention opera-
tions yet in time only:

At(i, j) = softmax
(

Qt(i, j)Kt(i, j)T
√

C

)
Vt(i, j), Yt(i, j) = Ys(i, j)+At(i, j)W t

O, (4)

where i ∈ {1, ...,H} , j ∈ {1, ...,W} denote different spatial positions, and Qt = YsW t
Q,Kt =

YsW t
K ,Vt =YsW t

V . Note that although the idea of processing spatial and temporal information
separately has been explored before for video understanding [35, 38], the effect of disentan-
gling the two dimensions in self-attention is unknown in prior work.
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3.3 Global Temporal Attention
We now introduce GTA, which is built upon the decoupled self-attention framework and
advances the temporal attention to a more effective design. GTA aims to learn a global
attention map that considers temporal structures and generalizes well for all samples.

Formally, given the input feature map X ∈ RT×HW×C generated by the spatial self-
attention block, GTA models temporal relationships at two different levels of spatial granu-
larity: pixel-level and region-level. For Pixel GTA, all positions in the spatial domain (i.e.,
HW ) are treated individually as different samples and temporal modeling is performed along
the time axis T . As for Region GTA, we first project the spatial domain to K semantic regions
at each time step t. This is achieved by grouping similar pixels with related semantic mean-
ings into the same region [6]: XG(t) = GR(t)X(t), where the region transformation matrix
GR(t) =WGX(t)T and WG ∈RK×C is a learnable weight matrix. Then, temporal modeling is
performed across frames on each region individually in the same manner as Pixel GTA, fol-
lowed by a transposed region transformation matrix GT

R to reproduce the pixel-level spatial
domain. Similar to Eqn. 2, the output of GTA can be written as:

Y = X + APW O
P︸ ︷︷ ︸

Pixel GTA

+ ARW O
R︸ ︷︷ ︸

Region GTA

. (5)

Unlike conventional self-attention where the attention map is produced by pairwise dot-
product interactions (Eqn. 1), we train attention maps that do not depend on individual pixel
relationships. In particular, we directly learn randomly initialized weight matrices M̂P,M̂R ∈
RT×T to modulate the value representation of Pixel and Region GTA, respectively:

AP = M̂PVP, AR = GT
R(M̂RVR), (6)

The idea of using a learned global attention matrix rather than pairwise dot product is that
pairwise interactions fluctuate across different samples, lacking a global temporal consis-
tency at the dataset level. In addition, the standard self-attention fails to consider the ordering
of sequences [8]—if we shuffle the pixels used to compute the attention map (i.e. Eqn. 1),
the attention value between a pair would still be the same in the matrix, thus the output will
not change, which is not what we desire.

Cross-channel Multi-head GTA. The attention matrix M̂ in Eqn. 6 is used to learn a linear
combination of V ∈ RT×C 1 across different time steps, without considering feature interac-
tions in the channel dimension. We further improve temporal modeling by incorporating
channel interactions. We split C into G groups, and for each group and we apply a multi-
head GTA. In particular, for the g-th group, the outputs of the multi-head attention MHg is:

MHg = ConcatNh
k=1(M̂

k
gVg) ∈ RNh×T×bC

Gc, (7)

where M̂k
g ∈ RT×T represents the k-th head for the g-th group, Vg ∈ RT×bC

Gc denotes the
value for the g-th group and Nh denotes the number of heads used. Each head focuses on
distinct temporal attention patterns. To capture interactions across different groups, we sum
the outputs along the channel dimension between different groups to produce MHG as:

1We omit the subscripts P and R for A, M̂ and V , as the same operations are applied to both Pixel and Region
GTA. HW are considered as different samples and we omit it for brevity.
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Model FLOPs #Params SSv1 SSv2

R2D-50 32.7 G 23.9 M 17.0 26.8
+ NL 61.1 G 31.2 M 31.2 50.7
+ DNL 49.9 G 31.2 M 38.8 55.5
+ GTA 50.2 G 31.2 M 50.6 63.5

SlowFast-R50 131.4 G 34.0 M 50.9 63.4
+ NL 239.9 G 41.4 M 51.7 63.9
+ DNL 169.1 G 41.4 M 52.0 64.1
+ GTA 169.9 G 41.4 M 53.4 64.9

Table 1: Compare GTA with the standard
/ decoupled non-local block (NL / DNL).

Method GFLOPs×views Top-1 Top-5

TSM [31] 86×30 74.7 91.4
bLVNet-TAM [11] 93×9 73.5 91.2
MSNet [29] 87×10 76.4 -
S3D-G [44] 143×N/A 77.2 93.0
I3D+NL [43] 359×30 77.7 93.3
CorrNet-R101 [40] 224×30 79.2 -

R2D-R50 + NL 77×30 74.8 91.5
R2D-R50 + GTA 62×30 75.9 92.2
SlowFast-R101 + NL 137×30 78.9 93.9
SlowFast-R101 + GTA 137×30 79.8 94.1

Table 2: Comparisons with state-of-the-art
methods on Kinetics-400 dataset.

MHG =
G

∑
g=1

MHg ∈ RNh×T×bC
Gc, (8)

which mixes information across channels in different groups. In order for MHG to have the
same size as X ∈ RT×C 1 for residual addition, one can transform MHG with an additional
layer. Instead, we simply set Nh to be G and reshape MHG to be the same size of RT×C.

4 Experiments
We extensively evaluate our approach on three video action benchmarks, including two
temporal-related datasets: Something-Something (v1&v2) [15], and a large-scale dataset that
is less sensitive to temporal relationships: Kinetics-400 (K400) [5]. As we aim to improve
temporal modeling for video action recognition, our experiments focus more on temporal
sensitive datasets (SSv1 and SSv2). GTA is flexible and can be easily inserted into existing
2D and 3D backbones. In our experiments, we adopt the standard R2D-50 network [17] and
the SlowFast-R50 network [12] as our 2D/3D backbones. More dataset-specific training and
testing details are available in the supplementary material.

4.1 Main Results
Effectiveness of GTA in a decoupled framework. We report the results of GTA using
both 2D and 3D backbones and compare with the alternative approaches: (1) standard non-
local block (NL) [43], which is a variant of self-attention that flattens all pixels in space
and time dimension into a huge vector; (2) decoupled non-local block (DNL), which breaks
down NL into spatial self-attention followed by temporal self-attention. For both of our
approaches and the compared baselines, we apply five blocks (2 to res3 and 3 to res4 for
every other residual block) in the backbone networks unless specified, following [43].

Table 1 summarizes the comparison results. We first observe a huge gap between the
performance of 2D and 3D backbones, which shows the importance of utilizing temporal
information for SSv1&SSv2 datasets. Notably, we see that by simply separating temporal
self-attention from spatial self-attention, DNL outperforms NL on both backbones, while re-
quiring 20%-30% less computation cost. Compared to NL, DNL offers a 7.6% / 4.8% gain
on SSv1 / SSv2 in the 2D setting. This suggests that the spatial and temporal self-attentions
should be treated separately to capture more informative temporal contexts. Finally, GTA
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Method Backbone Pretrain Frames×Crops
×Clips

SSv1 SSv2

Top-1 Top-5 Top-1 Top-5

TRN [49] BNInception ImgNet 8×1×1 34.4 - 48.8 -
TSM [31] 2D R50 ImgNet 8×1×1 45.6 74.2 58.8 85.4
TSM [31] 2D R50 ImgNet 16×1×1 47.3 77.1 61.2 86.9
TSMRGB+Flow [31] 2D R50 ImgNet (16+16)×1×1 52.6 81.9 65.0 89.4
MSNet [29] 2D R50+TSM ImgNet 8×1×1 50.9 80.3 63.0 88.4
MSNet [29] 2D R50+TSM ImgNet 16×1×1 52.1 82.3 64.7 89.4
MSNetEn [29] 2D R50+TSM ImgNet (16+8)×1×10 55.1 84.0 67.1 91.0

ECO [50] 3D R18+BNInc K400 16×1×1 41.4 - - -
ECOEnLite [50] BNInc+3D R18 K400 92×1×1 46.4 - - -
I3D+NL [43] 3D R50 K400 32×3×2 44.4 76.0 - -
I3D+NL+GCN [42] 3D R50 K400 32×3×2 46.1 76.8 - -
S3D-G [44] 3D Inception ImgNet 64×1×1 48.2 78.7 - -
CorrNet [40] 3D CorrNet-50 - 32×1×10 48.5 - - -
CorrNet [40] 3D CorrNet-101 - 32×3×10 51.1 - - -
TEA [30] 3D R50 ImgNet 8×1×1 48.9 78.1 - -
TEA [30] 3D R50 ImgNet 16×3×10 52.3 81.9 65.1 89.9

GTA 2D R50 ImgNet 8×1×1 50.6 78.8 63.5 88.6
GTA 2D R50 ImgNet 16×1×1 52.0 80.5 64.7 89.3
GTA 2D R50+TSM ImgNet 8×1×1 51.6 79.8 63.7 88.9
GTA 2D R50+TSM ImgNet 16×1×1 53.7 81.7 65.3 89.6
GTAEn 2D R50+TSM ImgNet (16+8)×3×2 56.5 83.1 68.1 91.1

Table 3: Comparisons with state-of-the-art methods on Something-Something v1 & v2
datasets. Top-1 and Top-5 accuracy on validation set are reported here. Bold and underline
shows the highest and second highest results.

produces the best results on the two datasets with both 2D and 3D backbones with reduced
FLOPs comparing to NL. For example, on the 2D backbone, GTA further outperforms DNL
by 11.8% / 8.0% on SSv1, SSv2, respectively, confirming the effectiveness of GTA for tem-
poral modeling. On a 3D backbone, we observe similar trends with gains. This highlights the
compatibility of GTA for both 2D and 3D networks. It is also noteworthy that 2D networks
can achieve comparable performance with 3D backbones when equipped with GTA.

4.2 Comparison with State-of-the-art

Kinetics-400 Table 2 presents the comparative results with other state-of-the-art methods
on Kinetics-400. The first section of the table shows the methods based on 2D CNN net-
work. The second section contains the models with 3D CNN backbone. The third section
illustrates the comparison of our GTA and NL added to 2D and 3D CNN backbones. We
can see that GTA achieves consistent improvement over the NL counterpart on 2D and 3D
CNN backbones. And adding GTA to SlowFast-R101 can achieve 79.8% top-1 accuracy on
Kinetics-400 dataset, which is the state-of-the-art performance on Kinetics-400.

Something-Something v1&v2 We also compare our approach with the state-of-the-art
methods on SSv1 & SSv2 datasets. As shown in Table 3, given 8 input frames, our approach
based on 2D RestNet-50 with TSM backbone achieves 51.6% and 63.7% on SSv1 and SSv2
at top-1 accuracy, respectively. Specifically, with the same number of input frames, our
approach outperforms TRN [49] which utilizes relation networks, and MSNet [29] which
incorporates the motion features. This demonstrates that our proposed GTA is more effective
in temporal modeling. Our approach also achieves superior results when compared with
the recent work that leverages additional modules to improve 3D CNN backbones, such as
the non-local block (I3D+NL [43]), GCN (I3D+NL+GCN [42]), the correlation operation
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Pixel Region CCMH Top-1 4

X X X 50.6 –

X X 49.6 -1.0
X X 47.9 -2.7

X X 49.4 -1.2
X 49.1 -1.5

X 46.3 -4.3

Table 4: Contribution of dif-
ferent components in GTA.

Model Original Decoupled

GTA – 50.6

NL [43] 31.2 38.8
CGNL [45] 26.7 37.4
GCNet [4] 28.4 39.0
GloRe [6] 33.2 38.6

Table 5: Comparisons with
recent NL variants.

Model FLOPs #Params Top-1 4

R2D-50 32.7 G 23.9 M 17.0 -

+SA 41.7 G 27.5 M 17.9 +0.9
+TA 41.0 G 27.5 M 37.6 +20.6
+SA+TA 49.9 G 31.2 M 38.8 +21.8
+SA+TAPE 49.9 G 31.2 M 48.4 +31.4
+SA+GTA 50.2 G 31.2 M 50.6 +33.6

Table 6: Impact of SA, TA and
temporal order.

(a) (b)

Video Frames Video Frames

Regions Regions

Figure 3: Regions visualization: (a)“Tearing
smth. into two pieces"; (b)“Moving smth.
closer to smth.". The second and third rows
are regions obtained by Region GTA.
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Figure 4: Impact of group count. Top-
1 accuracy on Something-Something v1&v2
datasets are reported here.

(CorrNet [40]), and the multiple temporal aggregation module and the motion excitation
module (TEA [30]). Finally, we evaluate the ensemble model (GTAEn) by averaging output
prediction scores of the 8-frame and 16-frame models, and obtain 56.5% and 68.1% at top-1
accuracy on SSv1 and SSv2, respectively, which achieves the state-of-the-art performance.

4.3 Ablative Studies
We conduct extensive ablation studies on SSv1 using R2D backbone. More analysis are
available in the supplementary material.

Contribution of Different Components. We first validate the contribution of each com-
ponent in GTA by removing them from the full model. As shown in Table 4, while Pixel
GTA plays a more important role than Region GTA, the combination of these two modules
yields the best result, achieving more than 1% improvement compared to using each of them
alone. It indicates that Pixel GTA and Region GTA are complementary to each other, focus-
ing on learning temporal relationships at different levels of spatial granularity. We further
visualize regions that are automatically discovered by Region GTA in Figure 3. We can see
that Region GTA is capable of discovering regions that share similar semantic meanings. For
example, in the first video, the “hand” and the “paper” are automatically identified as differ-
ent regions, while the “hand" and the “watch" are detected in the second video. Table 4 also
shows the contribution of the cross-channel multi-head (CCMH) design when the group size
is set to 8. Specifically, CCMH has a larger impact on Region GTA than Pixel GTA (1% gain
v.s. 0.5% gain) and we hypothesize that modeling temporal relationships at the region level
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is more challenging and requires channel interactions. With the improved performance of
Region GTA, the fusion of pixel-level and region-level information becomes more beneficial
when CCMH is applied (1.0% gain v.s. 0.3% gain w/o CCMH).

Temporal modeling in NL variants. Recent work has focused on improving the vanilla
non-local block by introducing channel-wise attention [4, 45] or graph-based reasoning [6].
Although these variants have been applied to video action recognition, their capacity to
model temporal relations is relatively underexplored. In Table 5, we provide a side-by-side
comparison with these NL variants and their decoupled version on SSv1. We first observe
that all three variants fail to achieve satisfying improvements over the vanilla NL (31.2%).
In particular, the use of extra channel-wise attention ( CGNL [45], GCNet [4]) leads to even
worse results, indicating that the entangled modeling of spatial, temporal and channel inter-
actions in fact hinders the learning of temporal relationships. Interestingly, by simply de-
coupling the spatial and temporal operations, substantial improvements can be achieved for
all three variants and the results are comparable with DNL (38.8%). Nevertheless, our GTA
outperforms these NL variants by clear margins, which demonstrates its superior capacity to
model temporal information.

Miscellaneous. In Table 6, we compare the contribution of spatial and temporal self-
attention modules, as well as the impact of modeling temporal order in temporal self-attention.
As the SSv1 dataset relies highly on temporal relationships, applying spatial self-attention
(SA) alone in the spatial domain slightly improves the backbone network (0.9% gain). In
contrast, using the temporal self-attention (TA) provides much more significant improve-
ments (20.6% gain). Adding positional encoding to the temporal self-attention module
(TAPE) further improves the performance by 9.6%, which proves the importance of model-
ing temporal order information. Finally, our GTA achieves the best result with a negligible
increase in computation cost. It is worth noting that our Pixel GTA (without applying GTA
to regions) already outperforms TAPE no matter whether CCMH is used or not (49.1% /
49.6% in Table 4). This verifies that our GTA design is more effective in temporal modeling
than temporal self-attention and positional encoding.

We also evaluate different values of group count used in GTA in Figure 4. We can see that
using a group count larger than 1 can largely improve the performance, which demonstrates
the importance of channel interactions in GTA. And a group count of 8 offers the best per-
formance on SSv1 and SSv2. When the group count becomes larger than 8, the performance
drops because the number of channels in each group becomes too small.

5 Conclusion
In this paper, we present Global Temporal Attention (GTA), which is designed for improved
temporal modeling in video tasks. GTA is built upon a decoupled self-attention frame-
work, where temporal attention is disentangled from the spatial attention to prevent being
dominated by the spatial one. We apply GTA to model the temporal relationships at both
pixel-level and region-level. Moreover, GTA directly learns a global, instance-independent
attention matrix that generalizes well across different samples. A cross-channel multi-head
mechanism is also designed to further improve the temporal modeling in GTA. Experimen-
tal results demonstrate that our proposed GTA effectively enhances temporal modeling and
achieves state-of-the-art results on three challenging video action benchmarks.
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