
KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH 1

Learning Query Expansion over the Nearest
Neighbor Graph

Benjamin Klein
beni.klein@gmail.com

Lior Wolf
wolf@cs.tau.ac.il

The Blavatnik School of Computer
Science,
Tel Aviv University, Israel

Abstract

Query Expansion (QE) is a well established method for improving retrieval metrics
in image search applications. When using QE, the search is conducted on a new query
vector, constructed using an aggregation function over the query and images from the
database. Recent works gave rise to QE techniques in which the aggregation function is
learned, whereas previous techniques were based on hand-crafted aggregation functions,
e.g., taking the mean of the query’s nearest neighbors. However, most QE methods have
focused on aggregation functions that work directly over the query and its immediate
nearest neighbors. In this work, a hierarchical model, Graph Query Expansion (GQE),
is presented, which is learned in a supervised manner and performs aggregation over
an extended neighborhood of the query, thus increasing the information used from the
database when computing the query expansion, and using the structure of the nearest
neighbors graph. The technique achieves state-of-the-art results over known benchmarks.

1 Introduction
Most modern image search engines are based on the premise that an image can be effectively
represented as a high dimensional feature vector (i.e. an embedding), such that the similarity
between two images can be captured as the Euclidean distance between their corresponding
embeddings. The embedding is usually obtained by a Convolutional Neural Network (CNN),
trained to capture the semantic meaning of the image. A standard approach for finding sim-
ilar images in a database of image embeddings, D = {d1,d2, . . . ,dN}, for a given query
embedding, q, is, therefore, to compute the Euclidean distance between the query embed-
ding and the embedding of each image in the database, and rank the images in the database
according to that distance. Given a fixed CNN used by an image search engine, further al-
gorithmic improvements can be added to enhance the quality of the retrieval results, without
changing the underlying CNN. A known group of such algorithmic improvements is called
Query Expansion (QE). In QE, one enriches the query embedding, q, using the embeddings
in the database, resulting in a new embedding for the query, qe. The new embedding, qe, is
then compared to the embeddings in the database as before, resulting with a different rank-
ing. It is important to note that when doing QE, the embeddings of the database images are
not changed. A known and useful QE algorithm is Average Query Expansion [4], in which

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{{Chum}, {Philbin}, {Sivic}, {Isard}, and {Zisserman}} 2007

2 KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH

the K nearest neighbors of the query in the database, {d j1 ,d j2 , . . . ,d jK}, are first found, and a
simple average of their embeddings and the query is then computed, 1

K+1 ·(q+∑
K
i=1 d ji). The

embedding is then normalized (e.g. using the L2 norm), resulting in a new embedding for the
query, qe. A further natural improvement to QE, is Database-Side Augmentation (DBA). In
DBA, in addition to performing the expansion to the query embedding, the expansion is also
performed (offline) to the the database images. Thus, as a pre-processing step, each image
in the database is expanded using the same expansion technique, and the new embedding for
each image in the database is stored instead of the original one. The image search is then
performed between the expanded query embedding, and the expanded database embeddings.

QE algorithms can be divided into two groups. The first group are hand-crafted aggrega-
tion techniques [4, 7, 24], in which the aggregation function that combines the information of
the query and the database images is pre-defined. Such functions usually have a few scalars
as hyper-parameters. For example, the AQE can use different number of nearest neighbors
K when computing the mean. The second group are learned aggregation techniques [1, 8],
which employ machine learning methods to define how to aggregate the information from
the query embedding and the embeddings in the database. The recent Learnable Attention-
based Query Expansion [8] (LAttQE) uses a deep learning aggregation model trained on a
dataset with a ranking loss, that receives the query embedding and the embeddings of its
nearest neighbors in the database, and returns a new embedding for the query.

The Graph Query Expansion (GQE) method, proposed here, extends the aggregation to
be performed on an expanded neighborhood of the query, instead of limiting the aggregation
to only its nearest neighbors. The method is a hierarchical one, where information is passed
at L stages. Each stage has a different learned aggregation function, and at each stage, a new
embedding is computed for each image in the expanded neighborhood of the query. The
aggregator creates a new embedding for an image by aggregating the information from the
embeddings of the node, and its nearest neighbors from the previous stage. Thus, A GQE
model with two stages (L = 2), aggregates the information hierarchically, such that the fi-
nal embedding for the query, used for the QE, is composed from information aggregated
from the nearest neighbors of the nearest neighbors of the query, as well as its immediate
neighbors. A GQE model with L stages, is aggregating the information hierarchically from L
neighbor hops from the query. Many known QE techniques can be seen as a special case of
GQE with only one stage. As a natural further improvement, the GQE method can be applied
to the database images as a DBA technique. Since the number of times that an aggregation
function is applied for a single query grows exponentially with L, an improvement to the
inference stage is suggested, reducing the computation cost to grow linearly in L, instead of
exponentially. The proposed GQE method achieves state of the art results on several widely
used retrieval benchmarks for both QE and DBA while having a good trade-off between the
quality of the results and the time and memory resources required, and therefore, demon-
strating the benefit of hierarchically aggregating information from extended neighbors of the
query.

2 Related Work
Query Expansion. (QE) has long been a commonly used method in textual search en-
gines [6], in which a textual input query would be reformulated to improve the retrieval
performance, by finding synonyms, stemming words, and other techniques. In the context
of image search engines and information retrieval systems, which are based on deep learn-

Citation
Citation
{{Chum}, {Philbin}, {Sivic}, {Isard}, and {Zisserman}} 2007

Citation
Citation
{Gordo, Almazan, Revaud, and Larlus} 2017

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

Citation
Citation
{Arandjelovic and Zisserman} 2012

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Efthimiadis} 1996

KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH 3

ing representations, the QE method has a different meaning, in which the embedding of the
query, q, and the embeddings of some images in the database are aggregated into a new em-
bedding for the query, qe. It is then usually normalized, e.g., by applying L2 normalization.

Many successful and widely used QE algorithms [4, 7, 24] use hand-crafted aggrega-
tion methods that are defined by a few hyper-parameters. The Average Query Expansion
(AQE) [4] computes a new embedding for the query, by using an aggregation that averages
over the query embedding and its K nearest neighbor image embeddings in the database,
i.e. 1

K+1 · (q + ∑
K
i=1 d ji). The Average Query Expansion with Decay (AQEwD) [7] cre-

ates a new embedding for the query by an aggregation that computes a weighted sum over
the query embedding and its K nearest neighbor image embeddings in the database. The
weights of the sum are a monotonically decreasing function of the nearest neighbors orig-
inal ranking with respect to q, i.e. q+∑

K
i=1

K−i
K · d ji . Therefore, AQEwD is giving more

emphasis to the query and to the nearest neighbors that are ranked first. One can argue that
both AQE and AQEwD do not scale well with the number of nearest neighbors, K. Since
for AQE, as K increases, the more similar the QE embedding is to a simple average over
all the images in the database; While AQEwD has a decay factor such that the contribu-
tion of low ranked nearest neighbors converges to zero, it is still limited since the weight
given to a sample depends only on its ranking, and is not a function of the query embed-
ding and its neighbors. The Alpha Query Expansion (αQE) [24] method has addressed
this issue, by using an aggregation function that computes a weighted sum over the query
embedding and its K nearest neighbor image embeddings in the database, but differently
from AQEwD which used weights that depend only on the ranking of the image, the αQE
method is using weights which are a function of the cosine similarity between the query and
its nearest neighbors, i.e. q+∑

K
i=1 (cosine-sim(q,d ji))

α d ji , where α is an additional hyper-
parameter. Thus, with the αQE method, a query that has many nearest neighbors that have
a small distance to it, will have a QE that depends on more nearest neighbors, than another
query for which most of its nearest neighbors are farther away. A previous work [14] has
suggested a QE method based on diffusion [5] in which information is propagated on the
nearest neighbors graph. The propagation procedure itself does not utilize supervised learn-
ing, and while powerful, the method does not scale well and can require significant amount
of resources for large graphs [15]. More efficient methods based on diffusion and spectral
methods were suggested [15, 16] but with the cost of a slight degradation in performance
or an increase in memory resources. Explore-Exploit Graph Traversal (EGT) [2] is using a
powerful and efficient re-ranking technique that does not involve learning and also utilizes
the nearest neighbor graph. EGT traverses the graph, starting from the query, while making
a trade-off between taking images which are nearby the query (exploit) and between extend-
ing the search farther from the query (explore). A recent work [18] has proposed a method
for learning how to propagate information on the nearest neighbor graph. Similarly to GQE,
this method is employing a graph neural network [17] to propagate information on the graph.
Differently than GQE, this method is using an unsupervised loss and does not utilize supervi-
sion. Additionally, its inference has a dependency that grows as a function of O(KL), where
K is the number of nearest neighbors and L is number of nearest neighbor hops used in the
aggregation. In contrast, as discussed in Subsection 3, GQE can utilize efficient inference
which requires only L calls to the aggregator, where each call to the aggregator utilizes in-
formation from K items in the database. The GQE can complement most of these methods
(e.g., EGT [2]), by first computing new embeddings using GQE and then applying these
methods. The other group of QE methods employ Machine Learning algorithms to define
the aggregation function. The Discriminative Query Expansion (DQE) [1], takes the high

Citation
Citation
{{Chum}, {Philbin}, {Sivic}, {Isard}, and {Zisserman}} 2007

Citation
Citation
{Gordo, Almazan, Revaud, and Larlus} 2017

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

Citation
Citation
{{Chum}, {Philbin}, {Sivic}, {Isard}, and {Zisserman}} 2007

Citation
Citation
{Gordo, Almazan, Revaud, and Larlus} 2017

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

Citation
Citation
{Iscen, Tolias, Avrithis, Furon, and Chum} 2017

Citation
Citation
{Donoser and Bischof} 2013

Citation
Citation
{Iscen, Avrithis, Tolias, Furon, and Chum} 2018{}

Citation
Citation
{Iscen, Avrithis, Tolias, Furon, and Chum} 2018{}

Citation
Citation
{Iscen, Avrithis, Tolias, Furon, and Chum} 2018{}

Citation
Citation
{Chang, Yu, Liu, and Volkovs} 2019

Citation
Citation
{Liu, Yu, Volkovs, Chang, Rai, Ma, and Gorti} 2019

Citation
Citation
{Kipf and Welling} 2016

Citation
Citation
{Chang, Yu, Liu, and Volkovs} 2019

Citation
Citation
{Arandjelovic and Zisserman} 2012

4 KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH

ranked images of a given query as positive data points, and low ranked images as negative
data points, and trains a linear SVM. The distance of a sample from the linear separator is
then used by the aggregation function.

A recent QE method, LAttQE [8], has defined an aggregation function that is a fully dif-
ferentiable deep learning model, which receives the embeddings of the query and its nearest
neighbors and returns the expanded query. Following the success of attention models and of
transformers [8], the chosen deep learning model is the encoder part of a transformer.

Graph Neural Networks. For quite a while, deep learning methods have been achieving
state of the art results on visual and textual tasks, but it is only recently that deep learning
methods have been successfully employed and achieved state of the art results on structured
data, such as graphs. Many of the first Graph Neural Network (GNN) techniques have fo-
cused on learning node embeddings [9, 21] given a structure of a graph. DeepWalk [21] has
used random walks over the graph to define a sequence of nodes, which can then be used to
train a Skip-gram model [19], resulting with an embedding for each node in the graph. While
these methods can efficiently learn embeddings for the nodes of a given graph, they are not
inductive, in the sense that the parameters learned by the model, are the node embeddings
themselves, and those are not transferable to another graph or dataset. The parameters of
the GQE model proposed in this paper are trained on one dataset, and are then evaluated on
other datasets. Therefore, it is necessary that the hierarchical aggregation approach used by
the model to be inductive. A few methods [11, 12, 29] have been suggested that are induc-
tive, and can be learned on one graph and applied later to other graphs. In those methods,
one usually starts from an initial embedding for each node in the graph, and learns a local
operator that aggregates information from a local area around the node, resulting in an op-
erator that is transferable to other graphs. While many of these graphs were employed on
natural graphs, such as citation networks [27], the GQE method described in this paper is
learning a hierarchical model on a graph defined by the K nearest neighbors of each item in
a database of images. The hierarchical model learns how to aggregate information from L
hops of nearest neighbors with respect to the query, and is fully transferable from a nearest
neighbor graph defined on one dataset, to another unseen nearest neighbor graph defined on
a dataset unseen at training time.

3 Graph Query Expansion
Let φ be an image feature extractor that transforms an input image, x, into a semantic embed-
ding, φ(x)∈RF (in practice φ is a pre-trained CNN). In the following sections, any reference
to an image will refer to its embedding. Given a database of images, D= {d1,d2, . . .dN}, and
an image, v, we define NNK(v) to be the K nearest neighbors in the database with respect to v
according to the Euclidean distance in the embedding space. The computation is performed
using an hierarchical aggregator, defined by a hyper-parameter, L, that defines the number of
nearest neighbor hops taken from the query. The hierarchical computation is performed on
a local directed graph, G, that is constructed as follows; First the query image q is added to
the graph. Then, for each i = {1,2, . . . ,L}, a directed edge is added from each node v, that is
already in the graph, to each of its K nearest neighbors, defined by NNK(v) = (d j1 , . . . ,d jK).
For example, when L = 1, only a single hop is considered, and the new embedding for the
query is a function of its only K nearest neighbors. In another scenario, when L = 2, two
hops are considered, and the new embedding for the query depends on the nearest neighbors
of the query as well as the nearest neighbors of the nearest neighbors of the query, making

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Grover and Leskovec} 2016

Citation
Citation
{Perozzi, Al-Rfou, and Skiena} 2014

Citation
Citation
{Perozzi, Al-Rfou, and Skiena} 2014

Citation
Citation
{Mikolov, Chen, Corrado, and Dean} 2013

Citation
Citation
{Hamilton, Ying, and Leskovec} 2017{}

Citation
Citation
{Hamilton, Ying, and Leskovec} 2017{}

Citation
Citation
{Ying, He, Chen, Eksombatchai, Hamilton, and Leskovec} 2018

Citation
Citation
{Sen, Namata, Bilgic, Getoor, Galligher, and Eliassi-Rad} 2008

KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH 5

Algorithm 1: Aggregation Function

Input:
(
v,d j1 , . . . ,d jK

)
Output: A new embedding for v, v∗

1 v← v+positional-embedding(0)
2 for i← 1 to K do
3 d ji ←

d ji +positional-embedding(i)
4 end
5 (ṽ, ˜d j1 , . . . ,

˜d jK)←
encoder

(
v,d j1 , . . . ,d jK

)
6 sim0← 1
7 for i← 1 to K do
8 simi← cosine-sim(ṽ, d̃ ji)
9 end

10 v∗← sim0 · v+∑
K
i=1 simi ·d ji

11 v∗← v∗
∥v∗∥

12 return v∗

Algorithm 2: Hierarchical Query Expansion

Input: Query image, q; a function, NNK(v);
Database Images, DB = {d1,d2, . . . ,dN}

Output: qe, The QE Embedding of q,
1 SL←{q}
2 for i← 1 to L do
3 foreach u ∈ SL−i+1 do
4 SL−i← SL−i+1 ∪NNK(u)
5 end
6 end
7 foreach u ∈ S0 do
8 u0← u
9 end

10 for i← 1 to L do
11 foreach u ∈ Si do
12

(
d j1 , . . . ,d jK

)
← NNK(u)

13 ui← aggi

(
ui−1,di−1

j1
, . . . ,di−1

jK

)
14 end
15 end
16 qe← qL

17 return qe

it a function of at most O(K2) different database images. The hierarchical aggregation com-
putation is fully described in Algo 2. The computation is done at L steps, where at each step
a different aggregator, aggi, is applied to a node and its nearest neighbors in the graph, and
returns a new embedding for the node. Each aggregator is a transformer-encoder, similar
to the one used by LAttQE [8]. For completeness, the aggregator function is described in
Algo 1. The computation starts by defining L+1 sets (lines 1−6 in Algo 2), where the SL

set contains only the query, and the SL−i set contains the query, and all the database images
that are within at most i nearest neighbor hops from it. These sets define which images will
be aggregated by the i−th aggregator at each step of the computation. Thus, only the images
in SL−i, which are all the images with distance of at most i neighbor hops from the query will
be aggregated by the i− th aggregator. In lines 7−9 in Algo 2, the initial embedding, u0, of
each image, u, in S0 (that contains all the images within L neighbor hops from the query) is
set to u, i.e. the initial embedding of every image is set to the embedding of the image result-
ing from the feature extractor, φ(x). The hierarchical aggregator then recursively computes
new embeddings for the images (lines 10−15 in Algo 2). At i− th step of the recursion, the
i− th representation, vi of each image, v, in Si is set to: vi = aggi

(
vi−1,di−1

j1
, . . . ,di−1

jK

)
by

applying the i−th aggregator, aggi, where vi−1 is the embedding of image, v, from the previ-
ous step of the computation, and

(
di−1

j1
, . . . ,di−1

jK

)
are the embeddings from the previous step

of the computation for all the K nearest neighbors of v, (d j1 , . . . ,d jK). The QE representation
of the query, q is equal to qL, the representation of q at the L step of the recursion and it is
returned in line 17 in Algo 2.

Training In all the experiments, the state of the art CNN provided by [24] is the feature
extractor, φ(x), used to extract embeddings from the images. The CNN is based on a Resnet-
101 architecture [13] (not including the last layer), followed by generalized-mean pooling
and a whitening layer. The CNN is trained on the Google Landmarks 2018 Dataset [20]
and its output is a 2048 dimensional vector. Each image is passed through the CNN at three

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Noh, Araujo, Sim, Weyand, and Han} 2017

6 KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH

scales
(

1,
√

2,1/
√

2
)

which are then averaged, followed by L2-normalization. The training
is performed on the training data of rSfM120k. Tuples (q, p,n), are constructed from the
training set images and labels, where q is a query image, p is a positive image which is
semantically related to q, and n is a negative image which is not semantically related to q.
The query, q, is passed to the hierarchical aggregator, Algo 2, which constructs a dynamic
computational graph, where the leaves are the 0-th level of the computational graph, and
contain the original embeddings of images that are L hops away from the query. Then, for
i = 1, . . . ,L, each internal node in the i-th level of computational graph is the result of ap-
plying aggi (a differentiable Neural Network) on the relevant K+1 nodes in level i−1. The
overall network consists of O(KL) many nodes, and is trained end-to-end (with all the aggre-
gators applied at the i-th step sharing parameters). Finally, the expanded query, qe, is passed
together with p, and n, to a Contrastive Loss [10], and the parameters of the hierarchical ag-
gregator model are then updated by applying back-propagation [26]. The training procedure
derives from the PyTorch implementation1 of [24]. For each pair of a query and a positive
sample, five negative samples are selected from a pool of 20000 images which is updated
every 2000 training iterations. The hard mining of negative samples is done with respect to
the expanded query. Since the CNN used to extract the embedding of each image is already
very powerful, many of the negative pairs have 0 contribution to the Contrastive Loss, which
emphasize the importance of hard mining them. Each aggregator at each step of the hierar-
chical computation is a transformer-encoder, as in LAttQE. Specifically, each aggregator is
a transformer-encoder with 64 heads, three layers, and feed forward dimensionality of 2048.
A positional embedding is added to each aggregator, as described in Algo 1. The model is
trained for 40 epochs, with a batch size of 64, using the Adam optimizer with a learning
rate of 5e−5, and weight decay of 1.5e−6. The margin used for the Contrastive Loss func-
tion is 0.71. The hyper-parameters are selected on the validation data of rSfM120k, and the
best model with respect to the mAP on the validation data of rSfM120k is then used for the
evaluation of the tests sets: ROxford, RParis, and the R1M distractors. The chosen GQE
model has L = 2 steps, and K = 44 nearest neighbors are used by each aggregator. There-
fore, the upper bound on the number of database images that participate in the computation
of the expanded query, qe, is K2 +K = 1980. The upper bound on the number of times the
transformer-encoder is applied for a single query, O(KL−1), grows exponentially with L, and
therefore, both the time and memory resources required to train the model become a bottle-
neck for large values of L and K. This limits the experiments from learning GQE for L = 3
for a sufficiently large value of K. By using a GPU with a larger memory, an experiment
with L = 3 and K = 36 was conducted in which similar results to L = 2 were obtained but
without surpassing them (K > 36 was not tested due to reaching the GPU memory limit).
For efficient computation, the K nearest neighbors of each query image and each database
image are pre-computed and cached.

Database-Side Augmentation (DBA) [1] A further intuitive improvement in the retrieval
performance, can be achieved by applying the model on the database images as well, by
running Algo 2 on each database image. The process is done offline, by computing the
expanded version of each image in the database, using the GQE model, and storing the new
expanded embedding, instead of the original one.

Efficient Inference At first glance, it may seem that using GQE dramatically increases the
computational resources for computing the QE for a query, q, since the computation requires

1https://github.com/filipradenovic/cnnimageretrieval-pytorch

Citation
Citation
{Hadsell, Chopra, and LeCun} 2006

Citation
Citation
{Rumelhart, Hinton, and Williams} 1986

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

Citation
Citation
{Arandjelovic and Zisserman} 2012

KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH 7

ROxf ROxf + R1M RPar RPar + R1M

M H M H M H M H Mean

QE

No QE 67.3 44.3 49.5 25.7 80.6 61.5 57.3 29.8 52.0

AQE [4] 72.3 49.0 57.3 30.5 82.7 65.1 62.3 36.5 56.9

AQEwD [7] 72.0 48.7 56.9 30.0 83.3 65.9 63.0 37.1 57.1

DQE [1] 72.7 48.8 54.5 26.3 83.7 66.5 64.2 38.0 56.8

αQE [24] 69.3 44.5 52.5 26.1 86.9 71.7 66.5 41.6 57.4

EGT [2] 66.1 44.5 - - 82.5 68.4 - - -

LAttQE [8] 73.4 49.6 58.3 31.0 86.3 70.6 67.3 42.4 59.8

GQE (ours) 74.1 51.0 59.4 32.7 87.4 72.4 69.5 45.3 61.4

DBA

DBA + AQE [4] 71.9 53.6 55.3 32.8 83.9 68.0 65.0 39.6 58.8

DBA + AQEwD [7] 73.2 53.2 57.9 34.0 84.3 68.7 65.6 40.8 59.7

DBA + DQE [1] 72.0 50.7 56.9 32.9 83.2 66.7 65.4 39.1 58.4

DBA + αQE [24] 71.7 50.7 56.0 31.5 87.5 73.5 70.6 48.5 61.3

DBA + LAttQE [8] 74.0 54.1 60.0 36.3 87.8 74.1 70.5 48.3 63.1

DBA + GQE (ours) 75.3 56.1 60.3 36.4 88.6 75.2 72.9 51.6 64.5

Table 1: Performance evaluation of the mean average precision (mAP) on the QE task (top section) and DBA task
(bottom section). Results are reported on ROxford (ROxf) and RParis (RPar) with and without 1 million dis-
tractors (R1M). Our method, GQE, LAttQE and EGT employ the validation part of rSfM120k for hyper-parameter
selection. All other methods optimized their hyper-parameters directly on the mAP over all M and H queries of the
test sets of ROxford and RParis, which provides them with an advantage. Results for EGT are not provided for
ROxf + R1M and RPar + R1M due to high memory requirements of the code provided for EGT.

running transformer-encoder O(KL−1) times, which grow exponentially with L, in contrast
to LAttQE [8] which requires applying a single transformer-encoder. Upon further review of
the hierarchical expansion (Algo 2), once trained, one can apply GQE to any query, q, using
only L calls to a transformer-encoder aggregator, by storing additional information for each
image in the database. The main observation is that for every image in the database, v, the
value of vi, i = 1 . . .L depends only on the images in the database, and does not depend on
query. Therefore, one can pre-process, vi, i = 1 . . .L−1, for every image, v, in the database,
and store them in addition to the image embedding. Consequentially, increasing the memory
required for storing the database by a factor of O(L).

4 Experiments
This section describes in detail how the model is trained and evaluated. For a fair evaluation,
the experiments follow the protocols of LAttQE [8].
Datasets The rSfM120k dataset [24] contains the training data used for training GQE, and
the validation data on which the hyper-parameters of GQE are tuned. The training data
includes 91642 images, each belonging to one of 551 classes. The class information is used
for selecting positive and negatives samples for a given query, as described in Section 3.
The validation data includes 6403 images, each belonging to one of 162 classes which are

Citation
Citation
{{Chum}, {Philbin}, {Sivic}, {Isard}, and {Zisserman}} 2007

Citation
Citation
{Gordo, Almazan, Revaud, and Larlus} 2017

Citation
Citation
{Arandjelovic and Zisserman} 2012

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

Citation
Citation
{Chang, Yu, Liu, and Volkovs} 2019

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{{Chum}, {Philbin}, {Sivic}, {Isard}, and {Zisserman}} 2007

Citation
Citation
{Gordo, Almazan, Revaud, and Larlus} 2017

Citation
Citation
{Arandjelovic and Zisserman} 2012

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

8 KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH

Figure 1: The mean over the mAP
of the M and H queries of the
ROxford and RParis datasets in the
QE task, as a function of the number
of neighbors used by each method.
The results for GQE method are ob-
tained for L = 2. Notice that in con-
trast to other methods that are using
K database images in the QE com-
putation of a single query, the meth-
ods GQE, AQE-G and αQE-G are
using O(K2) different database im-
ages. Since the hyper-parameters of
GQE are chosen on the validation
data of rSfM120k, the chosen value
of K = 44 is not the K that maxi-
mizes the mAP value.

disjoint from the classes in the training data. The 1691 query images which are a subset
of the 6403 images, are used for computing the mean average precision [22] (mAP) which
is the chosen validation metric. The Revisited Oxford (ROxford) and the Revisited Paris
(RParis) datasets [25] are the revisited versions of the corresponding well-known datasets
of Oxford [22] and Paris [23]. The ROxford dataset contains 4993 database images and 70
query images, and the RParis dataset contains 6322 database images and 70 query images.
Each query image in both datasets is labeled as either Easy (E), Medium (M) or Hard (H).
Since the results on the Easy query images are known to be saturated, it is a common practice
to report metrics only on the Medium and Hard query images. The RParis and ROxford
datasets are both disjoint from rSfM120k. Since RParis and ROxford are relatively small
datasets, they do not reflect large scale image search applications, where the size of the
database is much larger. A dataset of 1 millions distractors [25] (R1M) can be added to the
database images of RParis and ROxford, increasing the difficulty of the retrieval task. The
distractor images do not match any of the query images inRParis andROxford.

4.1 Results
The performance of the GQE method is compared to LAttQE [8], Average Query Expansion
(AQE) [4], Average Query Expansion with Weight Decay (AQEwD) [7], Discriminative QE
(DQE) [1], and α-weighted QE [24]. The results reported for these methods are taken as
is from [8]. Another comparison is made for EGT [2] by using the source code provided.
Notice that for a fair comparison, the EGT method is applied to the same embeddings used
by all the other methods in the experiment, and therefore the results reported here for EGT
are different than those reported in [2] where the images were represented by different
features. While the parameters and hyper-parameters of LAttQE [7], EGT [2], and GQE are
selected on the validation data of rSfM120k, the hyper-parameters of all the other methods
are selected directly on the mean performance of the test sets, giving them a slight advantage.

QE. In the QE protocol, where the expansion is applied only to the queries and not to the
database, GQE achieves state-of-the-art results, and improves the mAP for both theROxford
and RParis datasets both when not using the R1M distractors and when adding them, as
shown in Table 1. The mean mAP over both the Medium and Hard queries of the ROxford
andRParis datasets as a function of the number of the nearest neighbors, K, when compared
to other methods is shown in Fig 1. To further understand the contribution of the hierarchi-
cal aggregation, additional experiments in which the hierarchical aggregation is paired with

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2007

Citation
Citation
{Radenovi{¢}, Iscen, Tolias, Avrithis, and Chum} 2018

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2007

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2008

Citation
Citation
{Radenovi{¢}, Iscen, Tolias, Avrithis, and Chum} 2018

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{{Chum}, {Philbin}, {Sivic}, {Isard}, and {Zisserman}} 2007

Citation
Citation
{Gordo, Almazan, Revaud, and Larlus} 2017

Citation
Citation
{Arandjelovic and Zisserman} 2012

Citation
Citation
{Radenovic, Tolias, and Chum} 2018

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Chang, Yu, Liu, and Volkovs} 2019

Citation
Citation
{Chang, Yu, Liu, and Volkovs} 2019

Citation
Citation
{Gordo, Almazan, Revaud, and Larlus} 2017

Citation
Citation
{Chang, Yu, Liu, and Volkovs} 2019

KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH 9

Figure 2: Comparison of the proposed metrics, Agreement and Diversity, on the ROxford dataset across different
QE methods.

other QE techniques are presented. Specifically, AQE-G and αQE-G in Fig 1 are obtained
by combining hierarchical aggregation with AQE and αQE. It is worth noting, that while
K different database images are participating in the QE of all the other methods, in GQE,
AQE-G, and αQE-G at most K2+K different database images can participate in the compu-
tation of a single QE. Notice that since GQE hyper-parameters were chosen on the validation
data of rSfM120k, the value of K = 44 is not the K that maximizes the mAP value in Fig 1.
As seen, combining the hierarchical aggregation with other QE techniques (e.g., AQE) is
inferior to learning the aggregation explicitly as done in the proposed GQE approach.

For further evaluating the contribution and benefit of using the information from an ex-
tended neighborhood of the query, the chosen GQE model with L = 2 is modified such that
first aggregator simply returns the node, and ignores its neighbors, i.e., agg1 (v,d j1 , . . . ,d jK)=
v. Therefore, the resulting model from this modification, collapsed GQE, is computationally
equivalent to LAttQE. The results obtained are presented in Table 2, and are very similar to
the results obtained by LAttQE, which further supports our claim that using the information
from an extended neighborhood of the query, beyond its immediate nearest neighbors does
contribute to the improvement in the retrieval performance.

The query expansion for most methods and specifically for AQE, αQE, LAttQE, and
GQE can be seen as a weighted average of embeddings from the database, qe = ∑i wi · vi
where wi ≥ 0. Notice that in the case of AQE, αQE, and LAttQE the sum is defined over the
nearest neighbors of the query, and in the case of GQE the sum is defined over all the nearest
neighbors within two hops from the query. Additionally, the weights in LAttQE and GQE
are the result of applying a non linear function on the query and its neighbors (i.e. the neural
network). We introduce two metrics for QE that provide further insights to the difference
between the QE methods. The first metric, called Agreement, is defined as the ratio between
the sum of the weights of images that share the same label as the query and the total sum
of weights, i.e., Agreement(qe) =

(
∑yq=yi wi

)
/(∑wi), where yq is the label of the query,

and yi is the label of the i-th image. The second metric, called Diversity, is defined as the
entropy of the probability distribution over the weights that belong to the same label as the
query (the probability distribution is obtained by normalizing the weights) . Our hypothesis
is that a powerful QE algorithm needs to have both a high Agreement value (i.e., for many
of the items in the sum to have the same label as the query) and a high Diversity value (i.e.,
that the weight is not concentrated on a small number of samples). We analyze the results on
the ROxford dataset from the perspective of these two metrics in Figure 2. The parameters
of each algorithm in the analysis are the same ones for which the results in Table 1 were
obtained. As shown, while AQE has the highest Agreement value it also has the smallest
value of Diversity which can explain its low performance. While αQE has a high Diversity
value it also has the smallest value of Agreement. The method of LAttQE also suffers from

10KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH

ROxf RPar

M H M H

LAttQE [8] 73.4 49.6 86.3 70.6
Collapsed GQE 72.0 49.3 86.3 70.5
GQE (ours) 74.1 51.0 87.4 72.4

Table 2: A Collapsed GQE is created by modifying GQE with L = 2 after it was trained; The aggregator at the
first level of the model is changed to simply return the input node, ignoring the K nearest neighbors. Thus, the
Collapsed GQE is functionally equivalent to LAttQE. As shown, the results for LAttQE and the Collapsed GQE are
very similar. This further supports the claim that information from expanded neighborhood of the query contribute
to the QE and to the retrieval performance. The mAP results are presented for the QE task for the RParis and
ROxford datasets.

a small value of Diversity. Our conclusion is that GQE provides a good balance between
having a high value of Agreement and a high value of Diversity which enables the method to
surpass the others methods.

DBA. In DBA, one applies the expansion model to both the query and the dataset with
the hope of obtaining further improvement in the retrieval performance, when compared to
preforming the expansion only to the query. Similar to the findings of [8], applying GQE
directly to the database did not result in a significant improvement. The solution proposed
in [8] is for the aggregation function to apply a tempered softmax on the similarity weights,
i.e., dividing the sim vector described in Algorithm 1 by a hyper-parameter, T > 0, and
applying softmax. Thus, making the sim vector either more uniform by using large values
of T , which in the extreme case is equivalent of doing AQE, or making it closer to a one hot
encoding by using small values of T , which in the extreme case is equivalent to not doing
any expansion and returning v. Since GQE is composed of multiple aggregators, a different
value Ti is used for each aggregator. Therefore, the GQE model used in our experiments has
a hyper-parameter T1 which is associated with the aggregator of the first level, and a hyper-
parameter T2 which is associated with the aggregator of the second level. Similarly to the
other methods, a different value of K is used for the database expansion, KDBA, than the one
used for the query. Following LAttQE, the hyper-parameters T1, T2, and KDBA are selected
by freezing the GQE model chosen for the QE task, and optimizing T1, T2, and KDBA. With
those modifications, our GQE method achieves state of the art results for DBA as well, for
both the ROxford and RParis datasets, with and without adding the R1M distractors as
shown in Table 1.

5 Conclusions
The proposed GQE method has demonstrated the benefits of doing QE on an extended neigh-
borhood of the query, instead of limiting the QE to the immediate nearest neighbors of the
query. By formulating the aggregation procedure over the Nearest Neighbors Graph, as a
Graph Neural Network model, and using state of the art aggregation models [8], the tech-
nique achieves state of the art results in both the QE and DBA tasks. Since, the memory
resources required for training GQE are increasing exponentially with L as discussed in Sec-
tion 3, our experiments were limited to either using L = 2 or to using L = 3 with a low
value of K. Further improvements may be achieved by using aggregation models which re-
quire less memory [3, 28], thus enabling experimenting with larger values of L, and using
information from farther neighbors.

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Gordo, Radenovic, and Berg} 2020

Citation
Citation
{Choromanski, Likhosherstov, Dohan, Song, Gane, Sarlos, Hawkins, Davis, Mohiuddin, Kaiser, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

Citation
Citation
{Tay, Dehghani, Abnar, Shen, Bahri, Pham, Rao, Yang, Ruder, and Metzler} 2020

KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH11

6 Acknowledgments
This project has received funding from the European Research Council (ERC) under the Eu-
ropean Unions Horizon 2020 research and innovation programme (grant ERC CoG 725974).
The contribution of the first author is part of a Ph.D. thesis research conducted at Tel Aviv
University.

References
[1] Relja Arandjelovic and Andrew Zisserman. Three things everyone should know to

improve object retrieval. In CVPR, 2012.

[2] Cheng Chang, Guangwei Yu, Chundi Liu, and Maksims Volkovs. Explore-exploit
graph traversal for image retrieval. In CVPR, 2019.

[3] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[4] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic
query expansion with a generative feature model for object retrieval. In CVPR, 2007.

[5] Michael Donoser and Horst Bischof. Diffusion processes for retrieval revisited. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1320–1327, 2013.

[6] Efthimis N Efthimiadis. Query expansion. Annual review of information science and
technology (ARIST), 31:121–87, 1996.

[7] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. End-to-end learning of
deep visual representations for image retrieval. IJCV, 2017.

[8] Albert Gordo, Filip Radenovic, and Tamara Berg. Attention-based query expansion
learning. arXiv preprint arXiv:2007.08019, 2020.

[9] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864, 2016.

[10] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning
an invariant mapping. In CVPR, 2006.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in neural information processing systems, pages 1024–1034,
2017.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

12KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH

[14] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Teddy Furon, and Ondrej Chum. Effi-
cient diffusion on region manifolds: Recovering small objects with compact cnn rep-
resentations. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2077–2086, 2017.

[15] Ahmet Iscen, Yannis Avrithis, Giorgos Tolias, Teddy Furon, and Ondřej Chum. Fast
spectral ranking for similarity search. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 7632–7641, 2018.

[16] Ahmet Iscen, Yannis Avrithis, Giorgos Tolias, Teddy Furon, and Ondřej Chum. Hybrid
diffusion: Spectral-temporal graph filtering for manifold ranking. In Asian Conference
on Computer Vision, pages 301–316. Springer, 2018.

[17] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[18] Chundi Liu, Guangwei Yu, Maksims Volkovs, Cheng Chang, Himanshu Rai, Junwei
Ma, and Satya Krishna Gorti. Guided similarity separation for image retrieval. In NIPS,
2019.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[20] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. Large-
scale image retrieval with attentive deep local features. In ICCV, 2017.

[21] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710, 2014.

[22] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Ob-
ject retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.

[23] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Lost
in quantization: Improving particular object retrieval in large scale image databases. In
CVPR, 2008.

[24] F. Radenovic, G. Tolias, and O. Chum. Fine-tuning cnn image retrieval with no human
annotation. TPAMI, 2018.

[25] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej Chum.
Revisiting oxford and paris: Large-scale image retrieval benchmarking. In CVPR,
2018.

[26] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[28] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A
benchmark for efficient transformers. arXiv preprint arXiv:2011.04006, 2020.

KLEIN,WOLF: LEARNING QUERY EXPANSION OVER THE NEAREST NEIGHBOR GRAPH13

[29] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and
Jure Leskovec. Graph convolutional neural networks for web-scale recommender sys-
tems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 974–983, 2018.

