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Abstract

Current deep learning models for image-based classification tasks are trained using
mini-batches. In the present article, we show that exploiting similarity between samples
in each mini-batch can significantly boost robustness to input perturbations, an often
neglected consideration in the computer vision community. To accomplish this, we dy-
namically construct a similarity graph from the mini-batch samples and aggregate infor-
mation using an attention module. Our experiments demonstrate an increase in robust-
ness to local noise and black-box adversarial perturbations, when compared against a
baseline model. Our approach also improves performance in diverse image-based object
and scene classification tasks, when compared against baseline models and competitive
recent methods.

1 Introduction

Supervised deep learning has had wide success in computer vision problems, including in
object and scene classification [15, 29] and image segmentation [1, 12]. Models such as
residual networks [8] have become standard and are now used as encoders to learn image
based representations. In these settings, the training data is divided into mini-batches to
accommodate limitations in computational and memory resources. Within a particular mini-
batch, the input images may have varying degrees of similarity between them. Exploiting this
variability during the feature encoding stage has the potential to improve the performance of
downstream computer vision tasks.

A variety of different methods have been proposed to take advantage of the relationships
between samples in a mini-batch for computer vision tasks, and in particular for image-based
classification. These approaches all explicitly encourage the embeddings in the feature space
to be close to one another when the underlying images are similar, by using an additional
similarity-based loss term. As an example, [3] uses contrastive learning to encourage pair-
wise similarity between different augmentations of the same image. In [13]. this approach
is extended to a supervised setting, such that the embeddings for instances within the same
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class are nearby in the feature space. In a similar vein, in [24] the learning of representations
is supervised by increasing the affinity between mini-batch samples that belong to the same
class.

In the present article, we propose a more direct and flexible approach to information
aggregation across each mini-batch of images. We construct a graph from each mini-batch
of samples to aggregate information across those with similar features, using graph based
aggregation and attention. As such, the requirement that similar images have similar embed-
dings is implicit, in that no additional loss term has to be optimized. Features are aggregated
in training in a manner that adjusts dynamically to each particular mini-batch ensemble of
images. A perturbation analysis explains how this, in turn, affords a degree of robustness to
input image alterations and adversarial attacks.

Our experiments demonstrate the robustness of the proposed model against input per-
turbations and challenging black-box adversarial attacks. They also show a consistent im-
provement over the baseline and other related approaches across multiple architectures and
datasets for the task of image classification. Our proposed mini-batch graph similarity
method imposes little computational overhead, since it introduces only a small number of
additional parameters for feature aggregation. Since the method is implemented as a modu-
lar layer (Figure 1) and training in mini-batches is not specific to image classification, with
minor modifications, it can be used for other vision tasks including segmentation [1, 12],
region proposal generation [18] and relationship modeling [28]. We include additional sec-
tions in the supplementary material exploring the connections of this approach to mini-batch
discrimination used to train Generative Adversarial Networks (GANs). We provide our im-
plementation in the supplementary material.

2 Related work

The modeling of relationships between samples in a mini-batch has already shown promise
in computer vision tasks. In [24], the learning of affinity between samples is supervised
by optimizing an affinity mass loss. Here the pairwise affinity between all samples in the
mini-batch is considered, and the loss function encourages the model to increase the affinity
between samples belonging to the same class. A different approach to exploit relationships
between samples while training in mini-batches is to use supervised contrastive learning [13].
Here, the normalized embeddings from samples in the same class are encouraged to be closer
to one another than to the embeddings of samples from different classes. This approach is
related to another self-supervised contrastive method [3], where a model is trained to identify
samples in a mini-batch that are different augmentations of the same image. These methods
demonstrate improvement in image classification performance over standard networks.
Distinct from affinity graphs [24] and contrastive learning [3, 13], the use of graph based
information aggregation in the present article encourages similar images to have similar
embeddings in an implicit manner, while removing the need to optimize an additional loss
term. Our method develops an extension of Graph Neural Networks (GNN) to mini-batch
processing. GNNs were first proposed as deep learning architectures on graph-structured
data in [6, 22] and have since been extended to include convolution operation on graphs
in [2, 4, 9] or to combined locally connected regions in graphs[17]. The use of GNNs
for semi-supervised classification was proposed in [14], following which several different
variants of GNN models have been developed: Graph Attention Networks (GATs) [23],
models to process graphs with edge information [5, 25] and GNNs that work under low
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Figure 1: An illustration of the proposed MBSG model for mini-batch learning for image classifica-
tion. Encoder representations are used to create an adjacency matrix based on k-nearest neighbours.
The adjacency matrix defines a similarity graph on a mini-batch of representations, which are then
combined based on this graph, as detailed in Section 3.

homophily [30]. GNNs have also been successfully applied to several other computer vision
problems, including few-shot learning [19, 21] and semi-supervised learning [31]. In [21], a
GNN is used to propagate label information from labeled samples in the support towards the
unlabeled query image. In contrast, in [19, 31], a fixed graph is used to propagate embedding
and label information, respectively.

3 Mini-batch Similarity Graphs
3.1 Proposed Method

Our network has two components: a feature encoder and a mini-batch similarity graph mod-
ule (MBSG), as illustrated in Fig. 1. We obtain the encoder fy(-) by removing the final layer
of a standard vision network, such as Resnet-50. Consider a typical training setup which
takes a mini-batch of samples as input for classification. We denote the input samples in a
mini-batch as X = {xj,x2,...,xg }, where B is the batch size. The encoder provides represen-

tations for each sample, hgo) = fo(x;),Vi € B. The MBSG module induces a similarity graph

on the set of encoded representations and combines them based on this graph.

We denote the representations in the /™ layer by the set HO = {h(ll),hg), ...,hg)}. To
dynamically induce a graph on H", we obtain the adjacency matrix AD by computing pair-
wise cosine similarity between representations and consider the top k similar representations
for each sample as its neighbours, removing self connections. The extent of the neighbour-
hood for each node can be controlled with the parameter k. The layer-wise propagation rule
of the MBSG in vector form, is given by,

AO = gOw @ L p0

_ _ (1)
H"D = o (combine(AY, (1/k)AVAD)).
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where h;

is stacked row-wise to form H (1), WO is the weight matrix, b1 is the bias, and
o (+) is a non-linear function, usually ReLU. In equation (), ffél)f = H® contains the ‘self’

information for each node, and f e gh = (1/k)ADAY contains the ‘neighbour’ information,
since it is based on the average of the encoded representatlons of the neighbors of each node,
as reflected by the adjacency matrix A().

There are several methods to combine the self and neighbour information in the combine(-

function, which are explained below. We explore each of these in our experiments

Concatenation: Here the self features, fSelf and neighbour features fnel ,, are concatenated
in the representation dimension. This allows the network the flexibility to learn separate
weights for both.

Weighted Addition: This is a convex combination of self and neighbour features, which
forces the network to use neighbour information. For 8 € [0, 1], we have,

combine(f, s(ell)f7 nelgh) ﬁf it T (1 =B, rgezgh @)

This reduces to a standard graph convolution formulation if we set § = 1/(k+1). We found
that B = 0.5 provides best results, so all our experiments use this value unless otherwise
stated.

Drop Features: We propose a different method to mitigate the effect of co-adaptation and to
make the neighbours contribute meaningful information. During training, we drop the self
features with probability p and the neighbour features with probability 1 — p. We then make
the testing phase deterministic by taking the expected output feature, which leads to a similar
expression as the sum combination,

combine( £y, fitly) = P+ (1= ) filg- 3)

We determined empirically that a value of p = 0.5 gave good results, so all our experiments
use this value unless otherwise stated. This expression is used during inference to account
for the probability-based selection of self or neighbour information, similar to how param-
eters are scaled when using dropout in neural networks. Whereas this may look similar to
weighted addition in appearance, it is in fact completely different.

Attention MBSG The model can be made more expressive by using an attention mech-
anism while aggregating from neighbours, which we refer to as an Attn-MBSG (see Fig.
1). This is done by changing the calculation of the adjacency matrix A") to incorporate an
attention coefficient between nodes. Let Ocinj(l) denote the attention coefficient of node j to i
for the n-th attention head, which can be computed as,

ooty )
ij ZmeN(i)eXp((i)(l[/(Wn l( 7Wn hni))))

Here ¢(-) is a neural network, W,fl) is a trainable matrix and y represents absolute differ-

ence. This is similar to the attention coefficient used in [23]. To form the weighted adjacency
matrix, we first follow the same process as for MBSG by considering top k similar features
based on cosine similarity to get the neighbourhood A/ (i) for each node i. To get the weighted

adjacency matrix for the n-th head we set A;'j(l) = Oc;;-(l),Vj € N(i) and .A:-lj(l) =0,Vj ¢ N(i).

“
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We also remove self-connections by setting AZ-(]) =0,Vi. The vectorized layer-wise propa-
gation rule of the Attn-MBSG with N attention heads then becomes

A = gOw ) L p0
1 ¥ _ (5)
HED = C)'(combine(H(l)7 N Z .A”(I)H(l))).

n=1

We found that the number of attention heads, N = 3 provides best performance, so all our
experiments use this value unless otherwise stated.

Once the intermediate representations (upto L layers) are obtained either using MBSG or
Attn-MBSG, we get the final logits for the i-th input in the batch as

1 2
AP R, ©)

L = Wrinai (h,(
where || denotes concatenation in the feature dimension. This captures the local and global
information separately, and takes a weighted combination. This design choice has been used
to increase the representation power of graph neural networks [26], by leveraging different
neighbourhood ranges to better enable structure-aware representation. We can now compute

the class probabilities by taking the softmax, p(y; = k|x;) = %, where C is the total
j=1 J

number of classes. We use cross entropy loss to train the encoder and the MBSG model

end-to-end:
B

Z Z =k log p(yi = kl|x;). (7N

Evaluation settings In the transductive setting, we predict the label for a single test image
within a mini-batch graph consisting of one test image and multiple training images. In the
inductive setting, we construct a graph on a full mini-batch consisting of test images and
predict labels for all samples. We include results under both these settings.

3.2 Robustness to Input Perturbations

Many modern classification models have impressive performance on common datasets and
benchmarks, but are brittle in that their performance can degrade severely when the input
images are corrupted or perturbed [10, 16] (see Section 4.4) . We now show how our MBSG
module provides robustness in the face of perturbations in the input, which is a highly desir-
able property for such models.

Proposition 1. Consider a neural network comprised of an encoder and a fully connected
layer, gep(-), and a MBSG neural network consisting of an encoder followed by a graph
convolutional layer where each node has k neighbours, by gupsc(+). For transductive pre-
diction, consider an input sample x, with some perturbation Ax. Let the associated perturba-
tions in logits be Aygp = goup (X + Ax) — gqup(x) and Aympsc = gmpsc (x + Ax) — gupsc(x).
Then, AyMBSG = /(_‘_%Aybmp«

Proof. Let the encoder e(-) output a vector e(x) for a given image x, and denote a given
batch of samples as {x;,x2,...,xg}. For the standard supervised model, denoting the weight
matrix of the final layer as W, we get the perturbation in the final pre-softmax logits, for
perturbation in input xg, as Ayg, = WTe(xg+Axg) —WTe(xp) = W [e(xp + Axg) — e(xp)].
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Now, consider an MBSG model in which each sample is connected to k other samples in the
mini-batch and has the same weight matrix W. For an MBSG with self connections, using
the standard GCN update rule, we have Ayypsc = FllWT[e(xB +Axp) + Xjen) e(xj)] —

W le(xp) + Xjenn) e(x))] = mr W [e(xs + Axp) —e(xp)] = E7AVsup [

The above proposition effectively states that for any perturbation in the input, the corre-
sponding perturbation in the output is inversely proportional to the number of neighbours,
for each node in the mini-batch graph, when using MBSGs as opposed to standard networks.
Similarity based aggregation aids in transductive inference, where a prediction is made for
a single corrupted test image within a mini-batch of randomly sampled uncorrupted training
set images. In Section 4.4 we carry out experiments to verify this property of robustness
to image perturbations. This proposition only holds true for transductive prediction, where
information from the uncorrupted training samples in the neighborhood is aggregated to im-
prove robustness against noisy test samples. In the purely inductive case, the aggregation of
features from noisy samples in the neighborhood might reduce performance.

We also test the robustness of the model against challenging black-box adversarial at-
tacks. These adversaries craft perturbations which cause the model to classify legitimate
looking input images incorrectly. Black-box adversaries do not have access to the model
parameters and the gradients, and must query the model to observe the output class proba-
bilities. They query the model repeatedly with a chosen image, but perturbing it with each
iteration, based on the results of the previous query. These type of attacks are more severe
than white-box attacks, where the adversary has access to the model parameters. A model
which has a lower attack success rate and/or requires a higher number of queries on aver-
age against an adversary before a successful attack, is considered more robust. We test the
MBSG model against two recently proposed and popular black-box adversarial attack meth-
ods, simBA [7] and Bandits-TD [11]. We choose these two methods since they use different
methodologies - simBA uses local search in order to craft adversarial perturbations whereas
Bandits-TD estimates the gradient by repeatedly querying the model to create the adversarial
input. The results of these experiments are also provided in Section 4.4.

4 Experiments

4.1 Datasets

We perform experiments on two standard computer vision object classification datasets,
CIFAR-10 and CIFAR-100. In order to expand the scope of the experiments to include
scene classification, which is more complex, we also test our models on the MIT 67 scene
dataset. For our experiments on robustness and image perturbations we us CIFAR-10, as is
common in the machine learning literature [10, 16].

CIFAR-10 consists of 60,000 colour images in 10 classes, with 6,000 images per class. We
use the standard split with 50,000 training images and 10,000 test images. Each image is 32
x 32.

CIFAR-100 is similar to CIFAR-10, except that it has 100 classes, which significantly in-
creases the difficulty of the classification task. Each class contains 600 images with 500
training images and 100 testing images per class. Each image is 32 x 32.

MIT 67 contains indoor scene images belonging to 67 categories, with a total of 15620 im-
ages. The number of images varies across categories, but there are at least 100 images per
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CIFAR 10 CIFAR 100 MIT 67

Model Inductive \ Transductive | Inductive \ Transductive | Inductive \ Transductive
Supervised vanilla 94.69 +0.17 74.48 £0.25 64.48 +£0.27
Supervised contrastive [13] 94.85 +0.13 74.80 +0.22 65.10 +0.16
Affinity supervision [24] 94.45 +0.35 74.50 +0.59 64.60 +0.30
Data-Distortion Guided Self-Distillation [27] 94.80 +0.16 74.61 +0.30 65.00 +0.21
MBSG (concat) 95.19 +0.23 95.21 +0.21 75.22 +0.17 75.15 +0.20 65.80 +0.21 65.81 +0.19
MBSG (sum) 95.02 +0.19 95.02 +0.13 75.18 +0.21 75.20 +0.15 65.68 +0.17 65.70 +0.18
MBSG (dropfeat) 95.24 +0.19 95.22 +0.25 75.21 +0.17 75.25 +0.19 65.82 +0.18 65.84 +0.20
Attn-MBSG (concat) 95.14 +0.14 95.12 +0.21 75.16 +0.22 75.19 +0.25 65.86 +0.15 65.87 +0.18
Attn-MBSG (sum) 94.95 +0.18 94.98 +0.15 75.23 +0.15 75.25 +0.17 65.72 +0.19 65.73 +0.17
Attn-MBSG (dropfeat) 95.05 +0.25 95.06 +0.22 75.29 +o0.11 75.26 +0.18 65.86 +0.22 65.85 +0.20

Table 1: Image classification results using a Resnet-50 encoder. The results are shown with 95%
confidence intervals over 5 runs. The architectures are trained using a single MBSG layer (L=1),
batch size of 256 and with k = 16 for CIFAR-10, and k = 4 for CIFAR-100 and MIT67. We
provide results for different combine modes of our single layered mini-batch graph based
models (rows 4-9). Additional results using a Wide Resnet-28-10 encoder are in the supple-
mentary material.

category. For our experiments we reduce the image size by approximately a factor of 10 in
each dimension to 64 x 64, to ease the computational resources. As a consequence the scene
classification task becomes harder.

Test Accuracy vs Corruption Severity

Test Accuracy vs Corruption Severity
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Figure 2: We encourage the reader to zoom-in on the PDF. Average test accuracy at different cor-
ruption severities for pixel-wise Gaussian noise (top) and Gaussian blurring (bottom) on CIFARI10,
using a ResNet-50 encoder. Models using MBSGs (purple) maintain higher accuracy over the range
of corruption severities when compared to the baseline model (blue) and have a lower reduction in
accuracy for higher corruption levels. (a) Sample images with increasing level of Gaussian noise (left
to right), (b) and (c) test accuracy plots for MBSG (sum) and Attn-MBSG (sum), (d) Sample images
with increasing level of Gaussian blurring (left to right), (e) and (f) test accuracy plots for MBSG (sum)
and Attn-MBSG (sum). The plots for other models are provided in the supplementary material.
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4.2 TImage classification results

Baselines. We use a ResNet-50 model trained using cross-entropy loss as the first baseline.
We also reproduce the results of [13] with a batch size of 256 and reproduce results of
[24] and [27] with our ResNet-50 baseline. We focus on relative improvement between our
proposed model and these baselines.

For our proposed model, we use a ResNet-50 network without the final layer as an en-
coder and add a single layer (L=1) MBSG with different combine methods. The entire model
is trained end-to-end using cross-entropy loss. We provide the results for both MBSG and
Attn-MBSG (with 95% confidence intervals over 5 runs) with all the combine options in
Table 1, under both the inductive and the transductive settings. Our models perform better
than all three baselines across the datasets considered. We observe that there is no signifi-
cant difference in test accuracy between the inductive and transductive settings. Among the
different combine methods, the drop feature seems to perform best in general; however, the
difference in performance between these variations is small. Also, Attn-MBSG is slightly
better, owing to the model’s higher expressivity due to learnable attention weights. We take
the best value for k to be close to the batch size divided by the number of classes, since this
is the expected number of samples in a mini-batch having the same class label.

4.3 Ablation studies

Here we present several ablation studies on various hyperparameters, to understand how they
influence the performance of the model. Additional ablations on the number of attention
heads for Attn-MBSG, the B parameter for weighted addition and probability p for drop
features are presented in the supplementary material.

The most important parameters for graph-based learning are the size of the graph and the
degree of each node, i.e., the neighborhood size k. Here we use the ResNet-50 encoder and
the CIFAR-10 dataset for all our experiments. We expect the best value for & to be close to
the batch size divided by the number of classes, since this is the expected number of samples
in a mini-batch having the same class label. For CIFAR-10 with a batch size of 256, this
value is 256/10 & 25. We also expect performance to improve with larger batch sizes, since
this translates to larger graphs, and hence more samples per class. These expectations are
verified by the results of our experiments shown in Table 2 and Table 3.

Model k=0 k=4 k=8 | k=16 | k=32 | k=64 | k=128 | k=256
MBSG (dropfeat) 94.44 | 9491 | 95.10 | 9524 | 9522 | 95.02 | 94.11 | 92.88
Attn-MBSG (dropfeat) | 94.30 | 94.79 | 94.88 | 95.05 | 94.97 | 9490 | 94.43 | 93.52

Table 2: Image classification results on CIFAR-10 using a Resnet-50 encoder and MBSG, while
varying the neighbourhood size k. All the networks are trained with a batch size of 256 using a single
layer GNN.

Model BS=32 | BS=64 | BS=128 | BS=256 | BS=512
MBSG (dropfeat) 94.34 | 94.88 95.10 95.24 95.28
Attn-MBSG (dropfeat) | 94.38 94.82 94.95 95.05 95.12

Table 3: Image classification results on CIFAR-10 using a Resnet-50 encoder and an MBSG, with
different batch sizes. All the networks are trained with a neighbourhood size of k = 16, using a single
layer GNN.
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4.4 Robustness experiments

The performance of models on standard well-curated datasets is an important consideration,
but equally important is their robustness to perturbations in the input and to adversarial at-
tacks. We use CIFAR-10 for these experiments, as is common in the literature [10, 16], where
image classification is an easy task since the dataset has a small number of visually distinct
classes. Despite this, models such as ResNet-50 can be very sensitive to local perturbations
(see Figure 2), hence this lack of robustness is a serious issue.

In order to test the robustness of MBSGs to image perturbations, we first consider ran-
dom (pixel-wise) Gaussian noise and local Gaussian blurring on input images, with varying
levels of corruption severity. The evaluation of test accuracy is done via transductive test-
ing, where a mini-batch consists of a single corrupted image along with a training set of
uncorrupted images. The class label prediction made by the model for the corrupted image
is compared against the true label. Figure 2 shows plots of test accuracy, measured in the
manner described above, for the best performing variations of MBSG (sum) and Attn-MBSG
(sum) on the CIFAR-10 dataset for different levels of corruption severity. We observe that
models using MBSGs are far better at accommodating the effects of local perturbations to the
images (Fig. 2 first row) with 50% or better test accuracy in relative terms over the baseline,
at higher levels of corruption. Although the effects of local Gaussian blur are less harmful,
models based on MBSGs are still better by about 2% over the range of corruption severities
we have considered (Fig. 2 second row).

We also test the robustness of the model to two recently proposed and popular black-box
adversarial attack methods, simBA [7], and Bandits-TD [11]. Table 4 shows the mean and
median number of queries before a successful attack, and the attack success rate, for different
MBSG models for the two attack methods. The MBSG models have lower attack success
rates and higher mean/median queries before a successful attack when compared to the base-
line ResNet model. The large increase in mean queries can be attributed to a heavier tail in
the distribution of queries, as can be seen from the histogram plots in Figure 3, which show
results for the best performing variations of MBSG (dropfeat) and Attn-MBSG (dropfeat).
Plots for other variations are provided in the supplementary material. The Attention MBSG
models outperform the baseline model but do not perform as well as the MBSG models.
One reason for this might be that any perturbation in the input samples has a compounding
effect on calculating the attention weights and, therefore, the aggregation. Overall, using the

SimBA Bandits-TD
Model Mean | Median Attack Mean Median Attack
Queries | Queries | Success rate | Queries | Queries | Success rate
Baseline ResNet-50 357.31 302 100.00 % 564.22 524 87.93 %
MBSG, concat 508.53 388 99.79 % 768.86 620 87.77 %
MBSG, sum 520.46 394 99.89 % 708.55 638 87.74 %
MBSG, dropfeat 572.15 387 99.68 % 787.69 659 87.66 %
Attn MBSG, concat 415.11 342 99.89 % 613.15 574 87.92 %
Attn MBSG, sum 358.88 319 100.00 % 558.31 542 87.94 %
Attn MBSG, dropfeat | 392.19 338 99.79 % 590.17 580 87.84 %

Table 4: Black-box adversarial attack results for the baseline and the proposed models using simBA
[7] and Bandits-TD [11] on the CIFAR10 dataset. A higher number of queries is better, and a lower
attack success rate is better. Here the mean and median number of queries is calculated over successful
attacks only.
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Figure 3: Histograms of the number of queries required until a successful attack (over 1000 target
images) on the CIFAR10 dataset using dropfeat MBSG and Attn-MBSG for simBA (top) and Bandits-
TD (bottom). The queries axis is limited to 3000 queries for clarity of presentation. Models using
MBSGs (red) require more queries on average for a successful attack as compared to the baseline
model (blue). The plots for other model variations are provided in the supplementary material.

MBSG module can help significantly improve robustness against common noise perturbation
as well as black-box adversarial attacks.

5 Discussion

Our proposed MBSG method for mini-batch training shows great promise in application
to image classification with respect to performance and robustness. MBSGs can be used
with the most popular network models and require a modification of only their last layer.
As such, we anticipate that they could find use for diverse computer vision tasks beyond
classification as well, including segmentation [1, 12], region proposal detection [18] and
relationship modeling [28]. We also show how a mini-batch graph can be used for GAN
training and connect this with previous work on improved training for GANs [20], in Section
3 in the supplementary material. We show that using mini-batch graphs in the discriminator
mitigates model collapse in GANSs.

In ongoing work, we are extending our method so as to be able to apply it to larger
datasets. The present limitation is not conceptual, but rather, has to do with computational
requirements. From an implementation standpoint, we are working on parallelization so
that the samples in a mini-batch can be spread across multiple GPUs. We are also working
towards a more efficient use of the available memory.

There is an increasing interest in the vision community to build systems that can perform
well in a variety of real world applications, where inputs may have unwanted perturbations
or the model itself may be subject to attacks from adversaries. This work is a step towards
achieving that goal by improving upon raw classification performance, and providing appre-
ciable added robustness to image perturbations and adversarial attacks.
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