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Abstract

Recent studies have demonstrated the effectiveness of warping in transferring unique
textures to the output of the pose transfer networks. However, due to the mutual depen-
dencies of image features and pixel locations, joint estimation of flow map and output
image is very likely to get stuck in local minima. Current solution is limited to offline es-
timation of the maps. However, in this way the flow is generated without interaction with
the incarnation parts of the generative model, causing it to struggle with the occlusion
parts of samples. To address the issue, we introduce a patch generation module which
acts as a mediator between the output values and flow estimations, cutting their mutual
dependencies while encouraging the flow maps to merely focus on regions that are not
correctly generated by the patch estimations, regions like clothing with unique colors or
textures that due to the scarcity of data can not be properly learned during the training
phase of the network. Our patch generation module benefits from two individual experts
on removing the visible parts of the source sample which disappear in the target view and
drawing those invisible parts which appear in the novel view of the sample. Experimental
results demonstrate that our method outperforms the state-of-the-art on two well-known
databases, Deepfashion and Market1501.

1 Introduction

In this paper, we consider the problem of parser-free pose synthesis [1, 7, 9, 11, 36] which
aims to transfer a source sample into a given target pose. As no kind of semantic maps is
considered as the input, it is difficult to estimate an accurate warping function that is able
to transform each part of the source sample to its corresponding region in the target view.
Another problem is with the mutual dependencies of the output sample and the flow map,
where it is impossible to accurately estimate the flow map without a correct prediction of
the output sample, while the correct estimation of the output sample is already dependent on
the correct estimation of the flow field. This causes the network to easily get stuck in local
minima.

The single current solution is a two-stage framework [19] that proposes to estimate the
maps using an offline pre-training strategy, where an additional network is considered for
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extracting the flow map so as to be further used as a prior to the main generative process.
This way, the mutual dependency is replaced by a set of pre-defined structures that should
be maintained during the process of image generation. However, this comes just at the cost
of losing interaction with other parts of the generative model.

To address the issue, we propose the flow maps to adaptively learn from the estimations
of the output sample rather than the fix keypoints at the input of the network. To do so, first
a holistic estimation of the target pose (along with its texture in invisible parts) is provided
by a patch generation module. Then, comparing the estimation with the source sample, a
patch transfer module shifts its attention towards the areas that fail to be generated in the
previous estimation of the patch generation module. Since the output of the patch generation
is completely isolated from the warping maps, even at the point of local minima we still have
some gradients which drive the optimization towards a more general solution.

For patch generation, we propose to learn about the source and target samples in a dis-
entangled manner which helps the transfer function be specialized on specific tasks. To do
S0, target patches are set to be estimated from the same locations in the source sample but
through two distinct functions that act as individual experts on the source and target samples.
For patch transfer, we utilize an adaptive warping strategy in which the flow map is recur-
sively estimated in interaction with the output of the patch generation module. This way, the
estimations of the invisible parts are directly incorporated in the process of flow map estima-
tion which is critically important in realizing a 3D estimation of warping functions despite
having operated by 2D functions.

The main contributions of our paper can be summarized as follows: (I) we propose an
online strategy for estimating the flow map which benefits from recursive estimation of the
output sample rather than a set of sparse keypoints at the input of the network. In contrast to
the single current solution [19], it enables the flow map to directly learn from the invisible
parts of the samples and also reduces the complexities by paying attention to the regions
that can not be properly learned during the training phase of the network. (II) we propose
a novel patch generation module which learns to generate the target patches through a set
of consecutive operations. This way our module learns to transmute the neighborhoods in
their own locations rather than moving them to other parts of the spatial space which has
significant difficulties with the limited receptive field of convolutional kernels.

The effectiveness of our method is verified through a series of extensive experiments con-
ducted on two well-known databases, Deepfashion and Market1501 where we outperform
the state-of-the-art.

2 Related Work

The topic has recently seen an explosion of scientific works, mostly due to its great potentials
in many applications like image animation [21, 22, 23] and virtual reality [12, 17]. In this
section, we provide a brief review on the most related work and then clarify the necessity of
conducting our proposed method.

Warping: Warping has long been demonstrated to be the most effective way of transfer-
ring unique textures in image reconstruction techniques [3, 4, 14, 18, 21, 22, 23, 30]. The
idea has widely used in novel view synthesis when the aim is to generate a target view of a
static scene [8, 15, 34]. However, simplicity of a static scenario hinders these frameworks
to be directly applied for the complex problem of pose generation. For a static scene, it is
quite effective to encode a set of simple affine transformations like rotation and translation
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Figure 1: Simpli ed architectures of ow eld estimation in different methods. MonkeyNet
and FOM are applicable on video streams

and then apply them for generating a novel view of the sample. However, in the case
dynamic scene we need to consider some far more complex scenarios in order to deal
the motor complexities of a moving object. For this purpose, the rst warping based pc
generation method was initialized by aggregating a set of pixel-wise transformations [
Later work [22, 23] tried to estimate the ows from differences of some latent codes whi
are extracted by feeding the keypoints into two individual encoders. These methods stro
suffer from underestimation of manifolds, arising from the sparseness of keypoints.

Progressive Methods The main idea is to transfer the source patches to their corr
sponding locations in the target pose [25, 26, 27, 35, 36]. However, despite the claims,
idea has a profound dif culty with moving the patches. Moreover, due to the consecuti
concatenation of features, it is dif cult for a human observer to interpret the procedure tl
causes the texture to be washed out during the consecutive updates.

Parser based approachesRecently, parsers have been widely adopted for image ge
eration tasks [2, 5, 11, 16, 24, 28, 29]. The main idea is built upon the style transfer
which proposes to gradually add the source textures to a generative model. For human
generation, the network is usually provided with the parsing map of the source sample
target map is estimated from its corresponding keypoints [13, 31, 32]. Despite the su
rior performance of parser based techniques in accurate estimation of clothing shape,
effectiveness for accurate transfer of textures is far inferior than the warping strategies.

In this paper, we propose a combination of two modules named patch generation
patch transfer. Our patch generation module is applied in a hierarchical manner whic
similar to the progressive methods, but unlike them it does not seek for moving the patcl
Our patch transfer module is based on the warping strategy, but unlike the existing meth
it learns to estimate the ow eld based on the adaptive estimations of the output sample
constraint just on the areas that has not been properly generated by the PG module (F
1).

3  Our method

Our method consists of three individual modules; Patch Generation (PG), Patch Tran
(PT), and Merging module that are employed along with two additional encoders and «
decoder of the model (Figure 2). PG is a fully convolutional module that learns to estim
the whole representation of target samples aimed to further guide the warping maps of
PT module. The second module (PT) is for preserving the locality of textures. The tasl
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Figure 2: Detailed structure of our proposed method

to keep the clothing textures of the generated image as much similar to the correspondi
neighborhoods in the source sample. To avoid any potential over tting of the decoder, w
propose to separate the tasks of blending and decoding of features. To do so, we consi
two individual modules, a Merging module and a decoder. Merging is built upon some
fully convolutional layers that are placed before the decoder, but the fact that distinguishe
between the merging and the decoding part of the network is the different strategies w
utilize in their normalization layers, where the encoders and decoder bene t from Spectre
Normalization while the Merging is just built upon the Batch Normalization layers.

3.1 Patch Generation Module
3.1.1 Con guration of the module

The module consists of two encodeis;(andE,) and a set of Incarnation blocks (ICs). The
encoders learn to project the source image and also the pose representation into a fea
space, where the small dimension of embeddings make it easier to combine their charact
istics. Pose representation is in fact the volumetric stack of heatmaps concatenated toget
from the source and target samples. Each heatmap is a Gaussian envelope that is cent
on a skeletal keypoint. The intuition behind the generative process of this module can t
represented as follows:

Assume that we are already provided with two functiarendb, wherea is considered
for removing the visible parts of the source sample which disappear in the target view, ar
b is considered for drawing those invisible parts which appear in the novel view of the
sample. This requires both the functions to be calculated from the target pose but makir
the modi cations on the source sample. Obviouslymerely attends to the source pixels.
Therefore, it can be directly learned as an attention map that is exclusively applied to th
pixels of the source sample, just using the same loss function of the generative proce:
However, forb, it needs to be informed about the values of the new locations which are
merely introduced in the target sample, potentially unavailable when our estimation of th
pose is limited to the raw representation of the skeletal points.

To solve the problem, we consider to imposeoastraintonb in order to endow it with
the information about the exclusive locations introduced in the target sample. It is clear th:
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multiplying the attention map with the feature map of the source sample and then addir
b to the result, we get an estimation of the target sample. Siriseconsidered to properly
distinguish between the newly introduced points in the target sample and the object pc
of the source image, it should be able to not only distinguish between the points of the ta
sample from its background but also between different parts of the object in the target vi
This implies that multiplying dunctionof b with the target sample will provide us with the
pose map of the target sample. But as¢bastraint(mentioned above) we just assume that
this functioncan be approximated by a sigmoid function. So, given the raw representati
of the target poseand the source sampéeand the values ad andb, we can estimate the
pose of the target sampig; and also the pixel values of the target sanglg

Sout = a(t) f(g+ b(t); tour=(s Db)(1) Sout 1)

where,sandt are respectively referred to as appearance code and pose code of the sam

It is noteworthy that, the functiob should not be confused with an attention map, bu
it can be expressed in this form, just in order to extract the spatial information of the tar
sample. Now that we just need to obtain the ideal valuesaridb , we can go for optimizing
them as part of the general optimization problem of our network.

Since equations in (1) are reciprocally conditioned on each other, in one side we uti
the pose map to estimate the code of the appearance and then bene t from the estirn
appearance to update the pose map, it is possible to rede ne the equation in the form
recursive composition that is approximated by a set of local transfer functions. This w
we get more expressive approximationsaoindb, de ned as a set of simple Incarnation
functionsF 7 ; andF ¢, wherei denotes the index of the Incarnation Block anstands for
the channel index of the functions

s=Fgi(t 1) f(s 1)+ Fgi(ti 1)
tic =S (Ft():,|) SC
In fact, each local functiof -; is a transfer block that receives as the input the estimate
poset; ; and appearance feature mgp, of the previous block and output the new pgse

and appearancgof the sample. This way, we can generate a compositional transfer functi
that is expressive enough to represent the complex manifold of images.

)

3.1.2 Whatis the need for the PG module?

PG is a hierarchical pose generation module that gradually learns to transfer the value
the source pixels to their corresponding values in the target sample, under a conditiol
framework of their poses. Such de nition primarily brings to mind the similar idea of th
progressive pose transfer [35, 36] and the question that why do we even require a nove
gorithm to progressively transfer an image into another while these methods already pro
us with the same function, similarly through a set of alternative updates.

The short answer is to avoid overlapping with the task of the PT module. Because
method already bene ts from another module whose functionality is merely de ned on trar
ferring the patches. Therefore, having another module that also contributes to the tas
patch displacement, there would be a mutual dependency that strongly challenges the
mality of reaching towards a global solution of the task. Having this in mind, our PG modLt
was developed so as to just provide a modi cation on the "value" of pixels without having
role in moving the patches.
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Another problem of progressive methods [35, 36] lies in their pose update strateg)
whereby a concatenation of the previous pose and appearance is considered to be an
dated version of the novel pose. This way, the inference of this concatenation is practical
left to the next update of the blocks. Therefore, the next update on appearance will have
manage a collective update on both the appearance and pose characteristics. By repea
this process, it becomes more and more complicated for the module to focus on transferril
the textures rather than trying to manage a balanced relation between the pose and text
characteristics of the feature maps. In contrast, our PG is considered to directly extract tl
pose just by applying an attention mdp Which specializes only in incarnating the target
poses) on the estimated values of the target sample without any connection to the values
source pixels. This way, the source appearance will be excluded from the process of updati
the target pose.

3.2 Patch Transfer

The module is considered to move the patches of the source sample to their correspondi
locations in the target pose. The necessity of the module stems from the uniqueness of so
clothing patterns that are not frequently present in the training samples, and therefore c
not be correctly learned during the training phase of the network.

To create the ow map, we propose to utilize a convolutional modeM E in Figure 2)
whose inputs are the feature maps extracted from the en&gderd also the output of the
last incarnation blocls,. As the output, the module returns a dual-map whose entries are
the locations of pixels along theandy axes. The map is then utilized in a gride sampling
operation to conclude the values of the target features from their corresponding locatiol
in the source feature map. As the gride sampling strategy, we utilize the idea of Spatii
Transformer [6] in which the Gride Sampler (GS) projects each point of the source ma|
So(@;; by) to thei-th location of the Warped Sampl/(S:

wgi)= a4  smnmax0lja m)max0lj b nj) ©)
(m;n)2N (a;bi)

where, N (a;;b;) is a neighborhood of four pixels around the pofat;b;) in the source
sample. This way, the sampler is just allowed to copy the pixels at the nearest locations clo
to (a;by). By doing so in iterations, it enables to model displacements while also allowing
for propagation through the sampling mechanism.

3.3 Merging Module and Decoder

Given two distinct sets of features from the PT and PG modules, we need to determir
which parts of these characteristics is more relevant for describing each point of the targ
sample. The features may be complementary or just one of them is enough to describe t
characteristics of a point. To determine how they relates to each other, we propose to encc
the neighborhood characteristics where the model nds how to give a priority to the warping
features if the neighborhood belongs to a clothing pattern. This can be performed using sor
convolutional kernels with a receptive eld of greater than one, applied on a concatenatio
of the two sets of features. In addition, as there is a possibility for one set of the featur
maps to be descriptive enough in some points, it is necessary for the feature maps to be
the same length. In addition, we utilize the Batch normalization for the convolutional layer:
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of this module which is different from the Spectrum+Batch normalization that is utilize
with the encoders and decoder of our network. This is considered to provide some kinc
consistency between the coding parts of our network.

Given the output of the merging module, we utilize a fully convolutional decoder 1
project the resulting feature maps onto the output space. Our decoder bene ts from two
connections but does not utilize any kind of feature normalizations like AdalN to avoid a
restrictions on the generalization ability of the network, which is a critical issue in toleratir
small variations in pose or appearance.

3.4 Training

For training, we consider an adversarial strategy where PG, PT and Merging modules are
lectively considered as the generator of the model. In contrast, we utilize a dual-discrimin:
strategy which is an effective way for incorporating texture-pose consistency into the de
sion making of the discriminator. This way, the naturalism is only considered in case of the
samples whose texture and pose are compatible to the conditional samples of the disc
nators. Given this intuition, we de ne two individual shape and appearance discriminat
d1 andd,, whered; is conditioned on the pose of the target sampledneoh the appearance
of the source image and consider to train them in a MinMax optimization with the over
generator:

Lagv= Eflog[di(y;X):d2(y; p2)lg+ Eflog[(1  di(G(X; p1; p2);X))(1  d2(G(X; p1; p2); Dz)()] )g
4

For a better transfer of clothing patterns, we add an additional loss to focus on the c
parison of the garment regions. To do so, a perceptual distance is computed over the gar
regions of images. Given the binary masks, we calculate the perceptual distance from
VGG embeddings of the masked generated and masked ground truth images. The masl
extracted from the semantic segmentation maps of the images. There is also an altern
to calculate the loss between the mask embeddings rather than the masked images, |
the rst way we can incorporate the shape of the garments into the embedding space
consequently into our loss function.

L= SEKUGY M) U(GOcpyp) MO)Ks ©)

whereU () is thei-th feature map of the pretrained VGG19 network &m@) is the mask
image. We also consider the style loss function which measures the correlation betweel
Gram matrices of the generated and ground truth images.

La= SAKQW MO) Q(GKcPip) MOk ©)

whereQ is the Gram matrix we extract from theh feature map of the VGG19 network. In
addition to the these semantic losses, we also consider the L1 distance between the m:
images.

Li=ky M(y) G(Xpup2) M(y)ks (7)

Considering all the functions together, our nal loss function is representdd as
I 1Ladvt I oLpr+ 1 1Lst+ | 1L1, wherel . is the regularization coef cient of each term.
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reference | parser-based Deepfashion Market1501
1s" SSIM' | FID# | LPIPS# 1s" SsIM! FID# | LPIPS#

ADGAN [13] CVPR20 X 3.3788] 0.7716 | 13.88| 0.22

PISE[32] CVPR21 X 3.4124| 0.7669 | 9.94 0.20

RAN[11] CVPR21 X 0.782 | 12.24| 0.21 0.315 | 23.33 | 0.27
DeformableGAN[20] | CVPR’L8 3.439 | 0.756 3.185 | 0.290

PATN[35] CVPR19 3.2019| 0.7713| 21.73| 0.25 | 3.1604| 0.2814| 38.36 | 0.31
SelectionGAN[25] CVPR19 3.2818| 0.7640 | 32.31| 0.27 | 3.4473| 0.3305| 104.08| 0.34
BiGraphGANJ[26] BMVC20 3.4292| 0.7776 | 24.19| 0.24 | 3.3288| 0.3253| 36.67 | 0.30
GFLA[19] CVPR20 3.4371| 0.7673 | 15.67| 0.22 3.1715| 0.2803 | 28.49 0.28
Our method 3.4621| 0.7767 | 10.80| 0.19 | 3.1919| 0.3191| 27.69 | 0.26

Table 1: A comparison between the performance of different pose transfer methods on Dee
fashion and Market databaseiesults reported from the original paper

4 Experiments

In this section, we evaluate the performance of our method in comparison with other stat
of-the-art. Evaluations are all conducted on two benchmark databases, Deepfashion [10] a
Market1501 [33]. Deepfashion is a high resolution fashion style database, primarily estal
lished for online shopping retrieval tasks. To split the samples, 101966 pairs of images a
picked up as the training set and 8750 pairs as the testing set of the Deepfashion databas
is noteworthy that the database includes some pairs in which images are not correctly pair
together whether in terms of presenting the same clothing or even the same individual
Market1501 is a low-resolution database, originally collected for monitoring tasks like per-:
son re-identi cation. In this case, we select 263632 pairs of images as the training sample
and 12000 pairs as the test samples. The challenge of this database is related to differen
in the background and clarity of the paired images which makes it more challenging task t
learn a correct transfer function for the main subject.

We bene t from the Adam optimizer with; = 0:9 andb, = 0:99. Our learning rate is
initialized at 0.0002, which remains constant Poﬁ epoches and then declines linearly to
zero during another 600 epoches, whBrés the number of the training pairs. For Deep-
fashion, images and their corresponding heatmaps are all cropped to the dimensions of 2
x 176, but for Market1501 we crop all the samples to 128 x 64 pixels.

4.1 Quantitative evaluation

In this section, we evaluate our method using four quantitative measures and compare
with the state-of-the-art. The measures are Inception Score (IS), Fréchet Inception Distan
(FID), Structural Similarity Index Measure (SSIM), and Learned Perceptual Image Patc
Similarity (LPIPS). SSIM is a fully statistical metric that measures the similarity of the gen-
erated samples and their corresponding ground truth images through the statistical featu
of image patches. This way, the delity of the generated image is jointly estimated along
with the clarity of pixels. 1S, LPIPS, and FID are all considered to measure the semanti
similarity of images. However for IS and LPIPS, the metric is a direct measure of the paire
embeddings between the generated and ground truth images, while for FID itis a comparisi
between the distributions of these samples that only measures the realism of the genera
images.

Our experimental results are listed in Table 1. As can be seen, there is no absolute winr
but our method is quite competitive on all the measures. The point comes from the fact th
the overall performance of all these method is a direct measure of the loss functions. F
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Figure 3: Qualitative comparison between our method and the SOTA, Deepfashion, M
ket1501

example, the higher the weights of the perceptual loss, the better scores would be achi
for the paired similarity measures like SSIM and IS but this comes at the cost of sacri ci
the photo realism of images which is measured by FID score. That is the reason that,

usually refrained to report all these measures together. BiGraphGAN directly bene ts fror
intensely weighted perceptual loss, therefore can achieve a fairly good performance on S
and IS measures but severely struggles with the visual quality of the generated samples.

shows the best result on the FID measure, which can be attributed to the parser maps o
method, but this comes in exchange for the time and effort consuming task of extract
the parsing maps for each test sample. In addition, this method needs to train two indivic
networks, one for generating the target segmentation map and other for generating the o
sample which reduces the scalability of the method. In contrast, our method demonstrat
be quite competitive in all the measures. It achieves the best results on almost all the pe
delity measures without sacri cing a good visual quality of the generated samples whi
is further proven in the next section but can be statistically found from the low FID score
the method.

4.2 Qualitative evaluation

For qualitative measure, we visualize a set of samples generated by our method along
their counterparts from the state-of-the-art. All the competing methods have been trai
on the same split of the training samples. The results are shown in Figures 3. As cal
seen, our method makes a signi cant improvement in visual quality and semantics of
generated samples, which is beyond the world of numbers presented in the previous sec
GFLA has some dif culties with generating correct semantics of images, arising from la
of interaction between an incarnation part and it's local attention module. In general,
delity of the textured patterns generated by our method is quite compelling compared
those generated by other methods. The skin color and position of body parts like ha
and legs are much more similar to the ground truth images. An interesting results is al
preserving the correct garment shape in our method. PISE also has the ability to keey
clothing items of the source samples like wearing a hat, however this method require



