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Abstract
In this work, we consider the problem of training deep neural networks on partially

labeled data with label noise. That is, semi-supervised training of deep neural networks
with noisily labeled data. As far as we know, this is a scarcely studied topic. We present a
novel end-to-end deep generative framework for improving classifier performance when
dealing with such data challenges. We call it Uncertainty Mining Net (UMN). We utilize
all the available data (labeled and unlabeled) to train the classifier via a semi-supervised
generative framework. During training, UMN estimates the uncertainty of the labels to
focus on clean data for learning. More precisely, UMN applies a novel sample-wise
label uncertainty estimation scheme. Extensive experiments and comparisons against
state-of-the-art methods on several popular benchmark datasets demonstrate that UMN
can reduce the impact of label noise and significantly improve classifier performance.

1 Introduction
Deep Learning (DL) models for classification, to learn powerful representations, usually
require a large amount of training data. However, for many real world problems, it is not al-
ways possible to obtain sufficiently large, well annotated training data. What one usually gets
is limited training data with corrupt labels which affect the model performance. Although
acquiring large data is not hard, considering the information explosion on the internet, accu-
rate labeling is usually an expensive and error-prone task which involves human interaction,
especially experts with knowledge in the specific field. In many enterprise use-cases, one has
to train DL models using limited training data with corrupted data labels. It becomes very
challenging to apply the current popular deep learning frameworks to solve this problem.

In this paper, we propose a framework for semi-supervised learning in the presence of
label noise. Our major contributions can be summarized into the following aspects:
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Figure 1: An overview of UMN framework: X and Y are the observed inputs and poten-
tially corrupt labels. θ and θ ′ are semi-supervised generative models. η and η ′ are noise
functions that perturb the input X . The red and green colored arrows represent the flow of
unlabeled and labeled data through the models respectively. θ is updated via a stochastic
gradient descent approach so as to minimize the classification and VAE losses, and θ ′ is the
Exponential Moving Average (EMA) of θ . The sample-wise uncertainty (ε) in the predic-
tions of θ and θ ′ are used to re-weigh the gradients that are back propagated to θ via the
classification loss. The general architecture for θ is adapted from [8]. VAE indicates Varia-
tional AutoEncoder and C-VAE represents Conditional-VAE. Note that in θ ′, when making
predictions (on labeled data) only the weights from encoder of the VAE and the classifier
are used. For simplicity, the KL loss for the predictions on unlabeled data with respect to an
uniform prior is not shown.

• Though the problem under study is common in many real world scenarios, the topic
is scarce in the literature. We propose one of the first complete solutions for semi-
supervised learning with noisy labels.

• We propose a generative process that models sample-wise label noise and use it to
minimize the effects of label noise in training classifiers. We validate the approach
through improved experimental results.

• We also propose an approach to estimate per sample label noise using the iterate mov-
ing average model. We have provided theoretical analysis/explanation for the same.

• Finally, we develop an end-to-end deep learning framework (Figure. 1) to train on
partially labeled datasets with noisy labels.

2 Related Works
In recent times, the problem of training deep neural networks with noisy labeled data has
started to draw attention. Natarajan et al.[15] propose the unbiased estimator of the surro-
gate loss function and calculate theoretical bounds for empirical risk optimization. Model-
ing the consistency as the regularization for deep neural network is another route for robust
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learning with noisy labeled data. Reed et al.[17] design a robust loss to model the prediction
consistency. In [13], the authors propose a knowledge distillation framework where they
train an auxiliary model on a small set of clean data samples and linearly combine its pre-
dictions with the observed labels to form the new targets to train. Menon et al. model the
corruption process of a dataset by learning the class-probability estimator [14]. Another way
of regularization for training on noisy labels is to estimate the class conditional corruption
ratio. Goldberger et al.[2] propose a softmax layer along with the classifier to predict the
class conditional corruption ratio. In [6], they propose MentorNet which learns a data driven
dynamic curriculum using a meta learning scheme. In [20] the authors present a joint opti-
mization approach that alternates between optimizing the model parameters and the sample
labels during training.

Semi-supervised learning with few labeled samples is also a well studied area. Typical
related works include [3, 8, 21]. Kingma et al. [8] propose a stacked deep generative semi-
supervised model by training on partially labeled datasets. They first train a variational auto-
encoder on the labeled data, then stack on top of another conditional variational auto-encoder
and continue training in semi-supervised fashion to get a robust classifier. In [21], the authors
train a classifier in semi-supervised way using temporal ensemble approach. They train a
student network and maintain a teacher network as the exponential moving average of the
student. They use classification loss for labeled data and enforce consistency loss between
teacher and student for unlabeled data. Semi-supervised learning approaches have also been
employed to deal with noisy labels in fully labeled datasets [1, 9, 12]. This typically involves
splitting the given labeled dataset into labeled (mostly clean) and unlabaled (mostly noisy)
datasets and applying a semi-supervised learning approach.

There have been limited works dealing with bi-quality data [4], [11]. Bi-quality data is
defined in [4] as datasets with few labeled samples where the labels are potentially corrupted.
In [11], the authors discuss to use the deep generative semi-supervised model to model noisy
labels. They assume that the categorical corruption rate is known which does not hold in
many real scenarios. In comparison to the related works, we present a new framework for
training a robust classifier with a partially labeled dataset containing label noise. We assume
that pre-knowledge of label corruption rate and/or a separate clean dataset are not available
during model training. This is more close to the real scenarios.

3 Method
The goal of our work is to train a robust classifier model using a dataset that has a limited set
of labeled samples and has label noise. Our proposed framework consists of two major com-
ponents. First, is a stacked generative model for semi-supervised learning whose generative
process includes a model for sample-wise label noise. The true label of a sample is treated
as a latent variable in the generative process. Second, is a sample-wise label uncertainty
estimation scheme using the exponential moving average model. The difference between the
predictions of the classifier being trained and its iterate moving average is used to estimate
per-sample label uncertainty during training. The two components are combined to form an
end-to-end robust learning framework that reduces the influence of potentially mislabeled
samples on the classifier during the training process. The framework does not require any
prior knowledge of the label corruption rates or a cleanly labeled subset for pre-training. In-
stead, the framework estimates sample-wise label uncertainty during model training. In the
following subsections, we will provide details of the proposed framework.
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3.1 Semi-Supervised Learning with Label Noise

In [8] a generative process for semi-supervised learning was proposed. The approach stacked
a generative model for the data conditioned on latent class and feature variables (M2) over a
generative model for the data with a continuous latent variable (M1). They also showed that,
for semi-supervised learning, stacked M1+M2 yielded better results than using M2 alone or
M1 followed by a classifier. Instead of the two separate generative models, authors in [11]
proposed an unified, generalized generative process for semi-supervised learning as

y,zb ∼M(y), p(zb),za ∼ pθ (za|zb,y), x∼ pθ (x|za). (1)

Where, M is the multinomial distribution and p(zb) is a Normal distribution. y indicates
the true label. The latent variable za is jointly generated from zb and y. zb is the latent
representation of the input. To deal with label noise, in [11] a model for mislabeling was
added to the above generative process: ŷ∼ pθ (ŷ |y). Where, y is treated as a latent variable.
ŷ is used to denote the observed labels. This term, however, modeled only categorical (class
conditional) label noise. We propose to instead model sample-wise label noise as

ŷ∼ pθ (ŷ |y,za). (2)

The term p(ŷ |y,za) represents the likelihood of a sample’s observed label ŷ being correct
given the latent label y and the sample itself. Since this term models sample-wise label
correctness probability, without loss of generality, it can be used for both symmetric and
asymmetric noise models.

From (1) and (2) the posterior distribution can be factorized as

q(za,zb,y|x, ŷ) = q(za|x)q(y|za)q(zb|za,y). (3)

Note that the encoder q has no dependence on observed label ŷ. Following which the Ev-
idence Lower Bound (ELBO) can be derived as shown in (4) (details in the supplementary
materials). Where qφ (y|za), qφ (za|x), qφ (zb|za,y), pθ (za|zb,y), pθ (x|za) indicate the classi-

ELBO =− ∑
x∈{L,U}

Eqφ (za|x) ∑
y∈C

qφ (y|za)qφ (zb|za,y)p(zb)− ∑
x∈{L,U}

Eqφ (za|x) ∑
y∈C

qφ (y|za)p(y)

− ∑
x∈{L,U}

Eqφ (za|x) ∑
y∈C

qφ (y|za)Eqφ (zb|za,y)
(

log pθ (za|zb,y)− logqφ (za|x)
)

+ ∑
x∈{L,U}

Eqφ (za|x) log pθ (x|za)+ ∑
x∈{L}

Eqφ (za|x) ∑
yk∈C

qφ (yk|za) log pθ (ŷ|yk,za). (4)

fier, encoder, conditional encoder, conditional decoder and decoder functions respectively.
L, U , C are sets of labeled data, unlabeled data and labels respectively. The last term is the
labeled loss term and is the supervised portion of (4). To deal with label noise, this term uses
the label uncertainty function pθ (ŷ|yk,za) that modulates sample weights during the gradient
back-propagation. The detailed calculation of pθ (ŷ|yk,za) is given in the following section.
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3.2 Uncertainty Estimation
We model the point-wise label correctness probability using a point-wise label uncertainty
estimate ε(za).

p(ŷ |y,za) =

{
1− ε(za), if ŷ = y
ε(za)/(C−1). otherwise (5)

The labeled loss term can then be formulated as

Eqφ (za|x)
[

f (ε(za))qφ (y|za)
]
. (6)

where f (ε(xa)) = log[ (C−1)(1−ε(xa))
ε(xa)

]. That is, samples contribute relatively more to the gra-
dient back-propagation when the estimated corruption rate is small which indicates that there
is a high probability that the given label is correct. By focusing on these reliable targets dur-
ing training, we can train a more robust classifier. From this, one can see that the key is to
approximate ε(za) precisely, and that it cannot be known apriori. We estimate ε(za), during
the training process, using the differences in predictions from the updating classifier model
and its moving average model.

In comparison, the label correctness in [11] is modeled using a constant predefined cate-
gory wise uncertainty ε . This assigns the same weight for all samples belonging to the same
category, i.e., all labeled terms contribute equally to the gradient back propagated regardless
of their label correctness. In most real scenarios the class conditional corruption rate cannot
be known beforehand and it is not accurate to apply the same categorical corruption rate to
all data samples of a given class.

Exponential moving average of the model weights is calculated as:

θ
′
t = γθ

′
t−1 +(1− γ)θt , (7)

where θ is the set of weight parameters of the classifier model and θ ′ is its exponential
moving average. γ controls the smoothness of model updates. We name them Learner and
Guider models respectively. t is the step index of the iterative optimization. Since this iterate
average gives optimal bound for convergence rate [16] and can be less sensitive to the noisy
updates, we adopt it as the Guider model to estimate the label uncertainty.

We estimate the label uncertainty via the absolute difference in the predicted probability
of the Learner and the Guider for the observed class as following

ε(za) = |g′(za, ŷ)−g(za, ŷ) |, (8)

where g′ and g are the classifier’s output of the Learner and Guider respectively for the
given sample za and observed class ŷ. As the Learner learns from the noisy labeled data,
the Guider model is used to approximate label uncertainty and weigh the training samples
based on the uncertainty to limit the contributions of unreliable samples to the gradients’
back-propagation. It has to be noted that the value of ε(za) (eq. 8) in our approach is not
a true uncertainty measure, it is a weight factor that gives an empirical measure of relative
label uncertainty. Our experiments also validate that estimating relative label uncertainty is
sufficient to train robust classifiers.

An explanation of why our approach for estimating label uncertainty works is as follows.
Near convergence, θ oscillates about θ ′ (supporting theorem and proof are in the supplemen-
tary material). Given that the minima of loss for clean samples are more tightly clustered
together than that of noisy samples, θ ′ will converge closer to the minima associated with
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clean samples. Then for each sample, the absolute difference between the predictions of θ ′

and θ is proportional to the gradient norm of the loss with respect to θ ′. Larger the gradient
higher the chance that the minimizer of the loss for a sample is far from θ ′ and hence more
likely to be a noisy sample. This is different from filtering out samples based on prediction
confidence, which does not take into account that the minimum of loss for some noisily la-
beled samples might be lower than that of the clean samples. Our approach builds an outlier
rejection mechanism based on the gradient norm of the sample-wise loss. Although we use
the absolute difference, there is also an exploration space for investigating other distance
metrics.

UMN provides a flexible framework. Depending on the task, the encoder and decoder
can be implemented using various deep learning architectures, e.g., AlexNet, GoogLeNet,
ResNet, etc. Though we only show experiments on image classification problems, UMN can
be applied to similar problems in other domains.

4 Experiments and Results
Our experiments are designed to evaluate whether UMN is an effective approach to learn
a good model with limited annotated noisy training data. We compare UMN to popular
approaches of supervised learning, semi-supervised learning and robust learning which deal
with noisy labels. These methods represent some of the state-of-the-art approaches for model
learning with noisy data. Further, we evaluate the performance of applying the uncertainty
estimation module to identify corrupted labels.

We experiment on a variety of image classification problems with varying degrees of
label corruption rates. We use three popular datasets including MNIST, SVHN and CIFAR-
10. For a comprehensive evaluation, we set up five different uniform labels corruption rates
including [10%,20%,30%,40%,50%].

4.1 Implementation Details
In the experiments, supervised deep learning framework means all the labeled data are di-
rectly used for training. We compare against a CNN architecture with 13 convolutional
layers (detailed architecture in the supplementary material) and ResNet-101 architecture [5]
representing supervised learning approaches. To compare against semi-supervised learning
approaches, we select two popular works - Mean-Teacher (MT) [21] and Mislabeled-VAE
(M-VAE) [11]. Langevin et al. [11] only briefly discuss their idea without showing much
details of the model architecture and experimental results on popular benchmarks. In this
work, we implement the idea in [11] and compare with UMN on all three datasets. In our
experiments, we use the same encoder and decoder architectures for UMN and M-VAE.

To compare against robust learning approaches, we choose recent works including Men-
torNet [6], Joint Optimization framework (JO) [20] and Reweight [18]. For a fair comparison
with these approaches, we follow all the original setting in these papers for our experiments.
For each corruption ratio, we ran 5 experiments by randomly choosing samples to corrupt
each time, and report the mean error rate.

As illustrated in Fig. 1, our framework (UMN) is composed of two encoders and two
decoders (VAE and C-VAE) along with a classifier. For the experiments on MNIST, we
adopt a multi-layer perceptron (MLP) architecture similar to the one proposed in [8], for
the VAE, C-VAE and the classifier models. The encoders, decoders and the classifier of our
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model use a single hidden layer with ReLU activation and an output layer without activations.
For SVHN and CIFAR-10, we apply a 13-layer convolutional neural network (ConvNet) to
build our framework (detailed architecture in the supplementary material).

We use the Adam optimizer [7] with an initial learning rate of 0.001, β1 = 0.90 and
β2 = 0.99. The decay for the moving average model is set as described in [21]. Each
experiment has 5 runs and each run has 350 epochs. In each epoch, UMN utilizes all the
labeled and unlabeled training data. For the supervised learning frameworks, we only use the
labeled data. We implemented the whole framework using TensorFlow and ran experiments
on a single NVIDIA Tesla P100 GPU.

4.2 Datasets and Results
MNIST
MNIST is a widely used dataset in machine learning community. It includes 60,000 images
with size 28×28 pixels. In our experiments, we use 50,000 images for training and 10,000
images for testing. 100 labeled data samples are used in the experiments. In semi-supervised
training, each mini-batch has 5 labeled samples and 95 unlabeled examples. In our compared
supervised model, we apply a Multi-Layer Perceptron (MLP) classifier with one hidden layer
of 784 units with ReLU activation. All the results are listed in Table 1.

From the results, we can find that UMN performs much better than other approaches.
Besides UMN, M-VAE [11] also outperforms other benchmarks. One possible reason may
be due to probablistic modeling of the uncertainty. However, M-VAE depends on the pre-
defined label corruption ratio which can’t be obtained in most real scenarios. Note that we
use the ground truth corruption rates for the value of ε in M-VAE.

We did not run Reweight [18] on the MNIST dataset since the experiments an implemen-
tation of their approach on noisy MNIST data is not available and our implementation of the
approach would not be a fair comparison without having the right parameter settings.

SVHN
We also experiment with the Street View House Numbers (SVHN) datasets. This dataset
includes 73,257 RGB images of 32× 32 resolution belonging to ten different classes. Fol-
lowing the same experimental setting as in [21], we use 500 labeled data samples from
SVHN where 50 data samples per category and we use the rest of the images for unlabeled
data in the semi-supervised learning setting. We randomly corrupt the sample labels within
each category uniformly with our defined corruption rates. In our experiment, each batch
includes 5% labeled data.

The comparison results are shown in Table 1. As listed in this table, we can find that
UMN behaves the best in general except for the case when the corruption ratio is 10%.
However, we do not observe this phenomena in MNIST and CIFAR-10. One possible reason
may be that the consistency loss term which minimizes the deviation of the student from
the teacher network helps MT model alleviate the effects of noisy labels when the label
corruption ratio is small. The performance of MT drops significantly as we ingest more
mislabeled data. From the results, we also observe that other two robust learning approaches
(MentorNet and Reweight) achieve better performance than supervised only but much lower
than these Semi-supervised learning methods. Possibly because these methods do not utilize
the unlabeled data.
As illustrated in Fig. 2, over-fitting is observed in the M-VAE at higher label corruption
ratios. As we discuss previously, one major reason is because of the pre-defined ε which is
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Table 1: Comparison of results on different benchmarks. S-1 represents the supervised learn-
ing with 13 conv layers and S-2 represents supervised learning with ResNet-101. MN and
RW indicate the MentorNet and Reweight approach respectively. Error rate percentage % is
used as the measurement unit.

Dataset Corr. Approaches
ratio S-1 S-2 MT M-VAE MN RW JO UMN(ours)

MNIST 10% 29.4 29.5 6.6 4.3 25.6 - 10.1 2.5±0.14
20% 36.2 36.6 11.7 2.7 39.7 - 18.1 2.8±0.37
30% 41.1 43.0 14.6 7.4 45.8 - 26.7 5.3±3.9
40% 51.3 49.0 17.9 9.9 57.7 - 29.5 5.8±3.8
50% 57.5 59.4 34.4 28.0 65.3 - 55.3 18.0±12.0

SVHN 10% 34.9 32.0 18.0 26.1 29.1 27.3 26.6 23.9±0.2
20% 46.3 46.0 45.5 35.2 42.1 39.0 33.3 30.5±0.3
30% 61.4 58.9 53.0 37.2 53.8 51.9 42.3 30.9±0.6
40% 61.8 60.5 63.9 40.1 59.1 53.7 56.6 37.1±0.9
50% 65.1 63.3 65.9 48.3 62.0 57.9 65.1 43.2±1.4

CIFAR 10% 43.2 41.3 39.2 41.2 41.2 39.4 40.3 37.8±0.5
-10 20% 46.3 44.7 42.1 43.9 42.4 41.9 42.5 39.8±0.8

30% 52.9 50.0 47.8 51.4 51.6 49.9 46.7 43.5±0.5
40% 57.1 56.9 52.2 52.1 54.1 53.9 48.7 43.5±1.2
50% 63.3 61.3 65.4 56.3 57.1 58.3 55.4 51.9±1.7

used as the constant value during the training. In contrast, UMN applies the sample-wise
uncertainty estimation. Furthermore, the training of UMN also converges faster with better
performance.

We also conduct experiments to evaluate the model performance with different labeled
data scales in the SVHN dataset. We compare UMN with a popular supervised robust learn-
ing approach MentorNet (MN) [6], for which the test errors are illustrated in Table 2. In
UMN, the training data also covers these unlabeled data which can’t be used by MN. UMN
shows better performance when training data has less than 1000 labeled data samples per
class. MN gets better performance as the size of the labeled data increases, this also coin-
cides with the findings in [19] about the robustness of DNNs to label noise when there is
enough labeled data. But, when there is limited annotated data available, like in many real
use-cases, UMN can be very useful for robust training of DNN classifiers.

In addition, we evaluate the performance of UMN with higher corruption rates and com-
pare it with MentorNet [6]. UMN achieves error rates of 49.1%, 53.1% and 54.5% which is
significantly lower than 67.1%, 70.0% and 71.2% achieved by MentorNet for label corrup-
tion ratios of 60%, 70% and 80% respectively.

Table 2: Test errors rates with varying number of labels for SVHN
Num labels 1K 2K 3K 10K 20K
UMN 23.9 18.1 16.3 14.8 13.2
MentorNet 30.5 27.9 25.1 18.3 11.2

CIFAR-10
Next, we run the comparisions on CIFAR-10 dataset [10]. This dataset contains 32× 32
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Figure 2: Illustration of error rates’ comparisons between UMN and other benchmarks on
SVHN during training stage under different corruption ratios (20%,30% and 40%). UMN is
less prone to overfitting on mislabeled data at higher corruption ratio.

pixels RGB images belonging to ten different classes. To have a fair comparison, we follow
the same experimental setting as used in [21]. We randomly select 100 data samples from
each category. In total, 4,000 labeled data samples are included in the training set. The rest
of the training data are used for unlabeled data. The results are summarized in Table 1. From
the listed results, we can see that UMN achieves the best performance compared to all other
approaches.

From the experimental results, one can see that M-VAE is, in most cases, the second best
behind UMN. Though there are similarities in how mislabeling is modeled in our generative
processes, the use of sample-wise label uncertainty estimation in UMN is shown to be a
better approach for robust training of DNN classifiers.

4.3 Identifying samples with corrupt labels
We conduct experiments using the MNIST-digit dataset to quantify how well UMN can
identify samples whose labels are corrupted. We say, a sample’s label is corrupted if there
is a disagreement between the predictions of the Learner and the Guider models. That is,
if the estimated ε > 0 (Eq. 8) for a given sample. Table 3 summarizes the accuracy in
identifying samples with corrupt labels. The sample-wise estimate of ε obtained in the final
epoch of training is used in the analysis. From the listed results, we can see that UMN has
demonstrated very promising potential for filtering out noisy data. It could be easily adopted
to other related works as the data pre-processing (cleaning) step.

Table 3: Performance of identifying samples with corrupt labels.
Corruption rate 10% 20% 30% 40% 50%
Recall 1.0 0.85 0.71 0.85 0.8
Precision 0.32 0.55 0.71 0.79 0.7
F1 score 0.48 0.67 0.71 0.82 0.75

5 Conclusion
In this work, we target a new problem of training a DNN classifier on partially labeled
data with label noise and propose a novel framework (UMN). UMN is an end-to-end semi-
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supervised deep generative framework. It can help train a better classification model with
limited, noisily annotated training data. In addition, UMN can be used to explicitly ap-
proximate the label uncertainty for a given potentially mislabeled data sample. Compared to
previous works, UMN does not need a subset of cleanly labeled data or any pre-knowledge of
the label corruption model and rate for robust training of classifiers. UMN directly provides
sample-wise label uncertainty estimation via the prediction differences between the classifier
being trained and its moving average. Experimental results demonstrate the superiority of
UMN over state-of-the-arts on popular benchmarks.
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