
LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH 1

Robustness Learning via Decision Tree
Search Robust Optimisation

Yi-Ling Liu
y.liu17@imperial.ac.uk

Alessio Lomuscio
a.lomuscio@imperial.ac.uk

Imperial College London
United Kingdom

Abstract

We present a novel method for robustness training for ReLU-based deep neural net-
works. The method involves a decision tree search targeting the worst-case data points
to generate adversarial examples. We combine the decision tree search method with
robust optimisation to train a robust model while maintaining accuracy at comparably
lower computational effort than state-of-the-art methods. The efficiency is obtained by
focusing on small regions centred around the input that have significant potential to gen-
erate adversarial samples. We implemented the resulting method in the framework DT-
SROBUST, which was evaluated against state-of-the-art defence methods on MNIST and
CIFAR10 datasets. In experiments, DTSROBUST achieved a 14.2% gain on efficiency
against the state-of-the-art defence methods in MNIST and 10.3% of that in CIFAR10
while maintaining similar accuracy.

1 Introduction
In the recent decade, machine-learning methods based on deep neural networks (DNNs) have
achieved breakthroughs in several domains, including computer vision [26] and natural lan-
guage processing [5]. Increasingly, neural networks are being considered for safety-critical
systems. For this to happen in a safe and secure manner, it is essential that the DNNs used
in safety-critical applications are robust and trustworthy.

It is now well-known that many DNNs are generally fragile to seemingly imperceptible
changes to their input data [28]. Well-documented examples of such fragility to carefully-
designed noise can be found in the context of image detection [12], video analysis [31],
and traffic sign misclassification [6]. In response to this vulnerability, a growing body of
work has focused on improving the robustness of DNNs [22, 25]. In particular, the literature
concerning adversarial robustness has sought to improve robustness to small, imperceptible
perturbations of data. To this end, robust training algorithms, i.e. adversarial training [8],
typically incorporate norm-bounded, adversarial data perturbations in a robust optimisation
formulation.

Adversarial training has provided a rigorous framework for analysing, and improving
the robustness of DNNs considering norm constrained perturbations. However, adversarial
training requires learning via a large number of perturbed examples before robustness may

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Sabour, Frosst, and Hinton} 2017

Citation
Citation
{Devlin, Chang, Lee, and Toutanova} 2018

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2014

Citation
Citation
{Hendrycks and Dietterich} 2019

Citation
Citation
{Wei, Zhu, Yuan, and Su} 2019

Citation
Citation
{Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, and Song} 2018

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Papernot, McDaniel, Wu, Jha, and Swami} 2016{}

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

2 LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH

be obtained. This is expensive and time-consuming. Therefore, developing computationally
effective and robust training approaches is a topic of interest.

In this research, we propose a robust learning method based on decision tree search and
robust optimisation. Given an arbitrary input to a DNN, our algorithm searches in small
regions centred around the input that have significant contributions to generate adversarial
samples. As we show, the method results to be more robust against different adversarial at-
tacks and is competitive results with Fast Gradient Sign Method (FGSM) [8] and Projected
Gradient Descent (PGD) [22]. In the experiments reported the method also reduced sig-
nificantly the number of adversarial examples required for adversarial training leading to
computational advantages when generating robust models.

The remainder of this paper is organised as follows. Section 2 introduces some prelimi-
naries about how adversarial examples can be formulated under different attacks on DNNs.
In Section 3 we describe a novel method to generate adversarial examples with decision
tree search, while Section 4 introduces how adversarial examples are employed for adversar-
ial training via robust optimisation. Section 5 reports experimental results obtained on the
MNIST and CIFAR-10 datasets; section 6 concludes the paper.

Related work. Several defence methods for DNNs have been proposed to improve
robustness. A method for network distillation to improve the generalisation capability of
DNNs by transferring extracted knowledge from a large network to a small one was proposed
in [25]. Although the experiments showed that network distillation can enhance robustness
against Jacobian-based Saliency Map Attack (JSMA) [24], network distillation was unable to
defend against the PGD attack developed in [22]. Adversarial training [8] concerns explicitly
training a model on adversarial examples, in order to make it more robust against attacks or
to reduce its test error on clean inputs. A disadvantage of adversarial training is that it takes
more training efforts compared with other methods. In [14] a method is put forward to create
a deep subnetwork as an auxiliary network to detect adversarial examples. Several related
works have also attempted to detect adversarial examples in the testing stage [9, 21], but
failed to defend against FGSM and Carlini & Wagner Attack (C&W) [3]. Input reconstruc-
tion approaches aim to transform adversarial examples to clean data and then applying these
to assist neural networks to predict correct results with denoising autoencoders (DAEs) [10],
but it does not guarantee global optimality.

A related stream of research focuses on robustness against black-box attacks and trans-
ferability [20, 23]; these are not directly comparable to the present method which focuses on
white-box attacks. More generally, a recently emerging line of work focuses on efficient ver-
ification methods for neural classifiers [2, 7, 13, 15, 16, 30]. While these efforts can improve
adversarial training, they remain focused on model validation.

2 Preliminaries
We here define the notations and symbols used for problem formulation and then recall two
state-of-the-art adversarial attack methods, which are also used for experimental compar-
isons in the experimental section.

Problem Formulation. Suppose the number of object classes k in a dataset of size n
with {(xi,yi)}n

i=1, where xi ∈ Rd is the input data in d dimensions and yi ∈ {1, ...,k} is a
label in k classes. Given a deep neural network N with associated function f (·) : Rd → yi,
the loss function of the network with parameters θ on (xi,yi) is expressed as L(xi,θ ,yi), for
instance the cross-entropy loss for a neural network. An adversarial example and the label

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Papernot, McDaniel, Wu, Jha, and Swami} 2016{}

Citation
Citation
{Papernot, McDaniel, Jha, Fredrikson, Celik, and Swami} 2016{}

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{J.H.protect unhbox voidb@x penalty @M {}Metzen and Bischoff} 2017

Citation
Citation
{Grosse, Manoharan, Papernot, Backes, and McDaniel} 2017

Citation
Citation
{Lu, Issaranon, and Forsyth} 2017

Citation
Citation
{Carlini and Wagner} 2017

Citation
Citation
{Gu and Rigazio} 2015

Citation
Citation
{{Liu} and {Lomuscio}} 2020

Citation
Citation
{Papernot, McDaniel, and Goodfellow} 2016{}

Citation
Citation
{Botoeva, Kouvaros, Kronqvist, Lomuscio, and Misener} 2020

Citation
Citation
{Gehr, Mirman, Drachsler-Cohen, Tsankov, Chaudhuri, and Vechev} 2018

Citation
Citation
{Henriksen and Lomuscio} 2020

Citation
Citation
{Katz, Huang, Ibeling, Julian, Lazarus, Lim, Shah, Thakoor, Wu, Zeljic, Dill, Kochenderfer, and Barrett} 2019

Citation
Citation
{Kouvaros and Lomuscio} 2021

Citation
Citation
{Wang, Pei, Whitehouse, Yang, and Jana} 2018

LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH 3

of that are defined as x′i ∈ Rd and y′i ∈ {1, ...,k}, respectively. A perturbation between the
original input data xi and the adversarial example x′i is represented as δ = x′i− xi ∈ Rd . The
gradient of the loss function L with respect to the vector xi is denoted as5xL(·).

Given a trained neural network N and an original input data sample x, generating an
adversarial example x′ under some norm p can be defined as a box-constrained optimisation
problem:

min
θ

E(x,y)∼D

[
max
x′∈U

L(x′,θ ,y)
]
, (1)

where U = {δ : ‖x−x′‖p < ε} denotes the uncertainty set of allowed perturbations between
two data samples within lp distance. This optimisation problem emphasises on searching an
optimal solution with minimal cost given the worst-case realisation from U .

Adversarial Attack Methods. We recall two representative attack methods for gener-
ating adversarial examples. We start from Fast Gradient Sign Method (FGSM) [8] which
consists of a fast method to generate adversarial examples. The second is the PGD attack
method [22] which is robust against most of the existing adversarial detecting defences. We
will evaluate robustness of our work against these two attack methods in the experimental
section 5.

1.) Fast Gradient Sign Methods (FGSM). [8] propose a fast method for generating adver-
sarial examples called Fast Gradient Sign Method. They perform one step gradient update
along the direction of the sign of gradient at each pixel of input data. In this approach, given
an adversarial input x′ = x+δ , where x is the original input image and δ is the perturbation,
the loss function of the model for adversarial input can be express as Equation (2):

L(x′,θ ,y′) = L(x,θ ,y)+(x′− x)Ox L(x,θ ,y), (2)

where θ is the hyperparameters of a model. Through minimising L(x′,θ ,y′) subjecting to
‖x′− x‖∞ ≤ ε , the required perturbation is derived as Equation (3):

δ = x′− x = ε · sign(Ox Lθ (x)), (3)

where ε is the magnitude of the perturbation constraint. Increasing ε value increases the
likelihood of x′ being misclassified by the classifier f (·), but larger changes are more easily
detected by humans.

2.) Projected Gradient Descent (PGD). The PGD attack [22] is widely believed to be
one of the state-of-the-art attack methods. This method adopts the multi-step variant FGSM,
which is essentially projected gradient descent on the negative loss function [18]:

x′t+1 = Clipx+δ (x
′
t +α · sign(Ox L(x′,θ ,y))), (4)

where α is the variant step size at the step number t and Clip function makes sure the output
falls in the valid input value. PGD iteratively re-starts from many points in the `∞ balls
around data points from the respective evaluation sets.

3 Decision Tree Search Attack
We now present a decision tree search adversarial attack DTSATTACK to generate effective
adversarial examples. The method is composed of four steps. We first initialise spanning tree
for tree traversal; then we traverse such tree according to a confidence value and initialise

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Kurakin, Goodfellow, and Bengio} 2017

4 LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH

Algorithm 1: Decision Tree Search Adversarial Attack: DTSATTACK

1 function DTSADVERSARIALATTACK ;
Input : Clean image dataset x

Initialise perturbation constraint setting for ε

Initialise search trees T
Output: Effective adversarial examples x′

2 Initialise Spanning Tree to obtain maximal distance values;
3 while not terminalNode and P ≤ ε and time < TimeOut do
4 while iterationTime < stepSearchTime do
5 Tree Traversal: Traverse the spanning tree according to the confidence value for each

node i;
6 Initialise Exploration Nodes: Explore available expanding nodes Ne;
7 for each exploration nodes Ne do
8 Nodes Sampling: Randomly choose one region from available sub-regions;
9 Back Propagation: Update associated information for each node along the path;

10 end
11 end
12 Choose Best Child Node: Choose one of the best path from the root node ;
13 Make One Move: Make one move based on the best exploration node as child node and

update new root node;
14 end

explorable nodes. We then sample values for each node on the tree from the explorable nodes
and update the confidence information in the back propagation step. This iteration continues
until the termination conditions are satisfied, as summarised in Algorithm 1.

Spanning Tree Initialisation. For each image x ∈ Rd in d dimensions, x can be sep-
arated into m sub-regions with the number of pixels j in each sub-region. To search the
most potential pixels with a higher probability of generating an adversarial example, we first
compute each pixel by the distance between the average value xa and each pixel value as
D = ‖xi− xa‖, where xi is the value of each pixel i, and the matrix D is the distance of each
pixel xi from the average value. The larger value in D, it stands for the more potential pixel
intuitively. We then sort D by the value with descent order as DS = Sort(D) and divide DS
into m sub-regions Nm with the number of points j in each sub-region. This initialisation
step establishes a starting search step for the root node Nr of the spanning tree, which will
be the start point of the next tree traversal step.

Tree Traversal. We now present how to expand nodes from the initialised spanning tree
and what criteria are used to make decisions of choosing nodes in the tree traversal step. In
this step we consider the most promising moves according to a confidence value of each node
in the spanning tree. Each node of the spanning tree is regarded as a sub-region Nm from the
previous step. In each move k, we choose a child node Nc with the highest confidence value
down to a leaf node Nl . The confidence value Ck of associated information in each node
Nc of the spanning tree is formulated as Equation (5), which is on the basis of Monte Carlo
Tree Search [4] algorithm, a decision search algorithm for decision process, and revised
accordingly:

Ck =
wk

vk
+ c

√
lnVk

vk
, (5)

where wk stands for the Euclidean distances for the node considered after the k-th move, vk
stands for the number of visits for the node considered after the k-th move, and Vk stands for

Citation
Citation
{Coulom} 2006

LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH 5

N1

∆1r

(a)

N1

∆1r

N2

∆2r

N3

∆3r

(b)

N1

∆1r

N2

∆2r

N3

∆3r

N4

∆4r

N5

∆5r

(c)

N1

∆1r

N2

∆2r

N3

∆3r

N4

∆4r

N5

∆5r

N6

∆6r

N7

∆7r

(d)
Figure 1: The process of the decision tree search attack.

the total number of visits after the k-th move. The exploration parameter c is theoretically
equal to

√
2. The higher the confidence value means the more contributions to search adver-

sarial examples. Conversely, the lower probability to obtain an adversarial example the lower
is the confidence value. This confidence measure above is inspired by neural approaches to
game playing [27].

Node Sampling. In a sampling step, from the leaf node Nl identified in the previous step,
we choose among the exploration nodes Ne. The explorable nodes consist of the remaining
sub-regions excluding the ancestors of a node Na in the tree. For example, the explorable
nodes of the root node Nr are the remaining sub-regions from the sub-regions in the root
node. We first sample nodes from these explorable nodes and simulate whether an adversar-
ial example is generated. This step continues by choosing from the remaining sub-regions
randomly and applying perturbations accordingly on the datapoints j in each sub-region
until the end of the search time. We then simulate based on these newly perturbed points
and examine whether an adversarial example is found. The randomly choosing process is
formulated as:

RC = random(Savai(Ne)−Sused(Na)), (6)

where random choose one region from the remaining sub-regions randomly, Savai = {N|N ∈
Ne,exploration nodes} is the available set of explorable sub-regions and Sused = {N|N ∈
Na,ancestor nodes} is the sub-regions in the ancestors of a node.

Back Propagation. We now present how to update the information for the newly ex-
plored nodes under the constraint with ‖δ‖p ≤ ε . We select one path from the previous
sampling step with the maximal distance between the newly perturbed and the clean points.
We then back propagate and update the corresponding distance value and number of visits
for the confidence values of nodes along the expanding path. The perturbation amount P in
each iteration is constrained with ‖δ‖p ≤ ε , which is formulated as Equation (7):

P = ‖
T

∑
t=0

R

∑
r=0

∆tr‖p ≤ ε, (7)

where ∑
R
r=0 ∆tr stands for the number of perturbations in each node, and T is the total number

of nodes along the same path.
The whole process is represented in Figure 1a-1d. First, the image is divided into m sub-

regions and the root node N1 is selected as the start point in the spanning tree (Figure 1a).
The tree is then expanded to N2 and N3 (Figure 1b). These two nodes are then sampled
and the updated confidence values are back propagated accordingly. Then path with highest
confident values of nodes (N1, N2) is selected (Figure 1c). The expanded nodes N4 and N5
are then sampled to check if an adversarial example is acquired. The confidence values are
updated for each node of the whole path accordingly. The nodes (N1, N2, N5) are selected and
the nodes (N6, N7) are expanded from N5 (Figure 1d). The simulation and back-propagation

Citation
Citation
{Silver, Huang, Maddison, Guez, Sifre, G.Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot, Dieleman, Grewe, Nham, Kalchbrenner, Sutskever, Lillicrap, Leach, Kavukcuoglu, Graepel, and Hassabis} 2016

6 LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH

Images Initial
Tree

Adversarial
images

Feature
Database

Initialise Exploration
Nodes Tree Traversal

Sampling NodesBack Propagation

x0

x1

...

xD

a(1)
0

a(1)
1

...

a(1)
N (1)

. . .

. . .

. . . a(L)
0

a(L)
1

...

a(L)
N (L)

a(L+1)
1

a(L+1)
2

...

a(L+1)
K

Input
layer

Hidden
layers

Output
layer

DTSAttack

DTSRobust

x x′

f (x′)

0/1
M (x′)

L (x′ ,θ)

Figure 2: The DTSROBUST Implementation Framework.

steps are applied as previously mentioned. These iterations continue until the termination
conditions are satisfied. The parameter ∆tr stands for the number of perturbations in each
node. For example, ∆1r in the node N1 is the perturbations applied when N1 is selected. The
overall perturbations applied in an adversarial example are the summation of perturbations
of the nodes along the whole path.

The decision tree search attack is summarised in Algorithm 1. The algorithm starts by
initialising the spanning tree (line 2). In the search iteration, the spanning tree is traversed
according to the confidence value (line 5) and available expanding nodes are then explored
(line 6). For each exploration node, one region is randomly chosen from available sub-
regions for sampling (line 8) and the associated information is updated for the nodes along
the search path (line 9). These iterations (line 4-13) will continue until the termination
conditions are satisfied.

4 The DTS Robust Framework
In this section we introduce a robust optimisation method that interacts with DTSATTACK
from the previous section to form the basis of the DTSROBUST framework. To be more
specific, we combine robust optimisation with DTSATTACK thereby obtaining a method
that is evaluated against other attack methods, which also include robust optimisation.

Robust Optimisation. The robust optimisation method [1] described below aims to
obtain stable solutions under uncertainty of the data. The uncertainty has a deterministic and
worst-case nature; perturbations to the data are drawn from uncertainty sets U . The objective
in robust optimisation is to obtain solutions that are feasible and well-behaved under any
realisations of the uncertainty from U . An optimal solution among feasible solutions has
minimal cost given the worst-case realisation from U . Robust optimisation thus normally
have a min-max formulation, where the objective function is minimised with respect to a
worst-case realisation of perturbations. The corresponding robust optimisation is:

min
x

sup
(A,b,c)∈U

{cT x : Ax≤ b}, (8)

where A is a given matrix, (b,c) are the given vectors and the objective is to search a solution
x which is robust to perturbations within the uncertainty set U in the data.

Given this, the problem can be formulated as the search of a stable solution in a small
neighbourhood around every training point xi. This neighbourhood corresponds to the un-
certainty set Ui. For example, we may set Ui = Rp(xi,r), a region with radius r around xi
with respect to some norm p. To do so, we select from the neighbourhood a representative

Citation
Citation
{Bental, Ghaoui, and Nemirovski} 2009

LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH 7

x′i = xi + δxi , the point on which the network output will induce the greatest loss. The net-
work output on x′i is required to be yi, the output for xi. Assuming that many test points
are close to training points from the same class, we expect that the training algorithm will
have a regularisation effect and consequently will improve the network performance on test
data. Moreover, we expect this approach to increase the robustness of the network output to
adversarial example. Hence, the training network is optimised with a min-max approach:

min
θ
L= min

θ

m

∑
i=1

max
δ≤‖ε‖

J(x′i,θ ,yi), (9)

where δ is the uncertainty set under the constraint ε corresponding to the adversarial example
x′i. This involves optimising the model parameter θ with respect to a worst-case data (x′i,yi)
with entropy J, rather than against the original training data; the i-th worst-case data point is
selected from the uncertainty set δ . The uncertainty sets are determined by the problem at
hand; adversarial training [8] can be understood as one such problem.

DTS Implementation Framework. We now introduce the decision tree search robust
optimisation framework in Figure 2, including the robust optimisation function applied in a
training modelM. This is divided into two steps: the first consists of an attack generation
step with DTSATTACK; the second is a robust optimisation step. For the attack generation
part, first, a model f (·) is trained as an assistant classifier from a training dataset of images
x. Then, the procedure follows a training loop. In each training loop, corresponding to a
training epoch, a minibatch of size m of images is randomly selected from the training dataset
x. This minibatch is then analysed by the DTSATTACK to generate adversarial examples x′.
Whether or not the images generated by DTSATTACK are proper adversarial examples is
determined by a test on the assistant classifier f (·). The resulting adversarial examples x′

form the basis for training the robust model M(·), which is initially untrained. The loss
value L is updated according to the softmax result of the robust modelM. The training loop
continues for as many epochs as required until the required accuracy is converged.

Following the framework mentioned above, the DTSROBUST randomly selects a mini-
batch in each epoch until the loss of the robust model converges to a desired value. The
convergence criteria ensures that resulting model M is robust in small neighbourhoods of
every training point around x. We call these neighbourhoods the perturbations δ and we
represent them as x′ = x+δ . The overall process can be regarded as a solution to the robust
optimisation problem against adversarial examples.

5 Experimental Results
In this section, we evaluate the DTS robust optimisation algorithm presented in the previous
section and report the results obtained with the MNIST [19] and CIFAR10 [17] datasets. We
evaluate the robustness obtained against different attack methods, namely FGSM, PGD, and
DTS. More details about experiments can be found in the supplementary material.

Experimental Setup. The MNIST database of handwritten digits contains a training
set of 60,000 examples, and a test set of 10,000 examples. The digits were size-normalised
and centred in a fixed-size image of 28×28. We generated adversarial examples under the
perturbation constraints of size εDIFF = 0.02 and 0.03 respectively. The parameter εDIFF
means that the modification rates of pixels for adversarial examples are no more than 2%
and 3%. To investigate model capacity, we consider two training networks of simple and
wide architectures, respectively. The simple network consists of two convolution layers of

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{LeCun and Cortes} 1998

Citation
Citation
{Krizhevsky and Hinton} 2010

8 LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH

Target Model
Adversary

Nature FGSM FGSMR PGD2 PGD5 PGD20 DTS1 DTS2 l2 εDIFF

S. (FGSM Training) 96.2 95.1 94.8 92.7 91.4 89.7 90.8 89.6 3.87

0.02

S. (PGD Training) 95.8 95.2 94.2 93.6 92.7 90.6 91.5 90.8 3.71
S. (DTS Training) 97.7 96.3 95.1 93.8 93.3 91.9 91.9 91.6 3.27
W. (FGSM Training) 97.4 96.7 96.4 94.6 94.1 92.7 92.8 92.3 3.95
W. (PGD Training) 96.9 95.7 95.3 95.1 94.8 93.4 93.5 93.1 3.86
W. (DTS Training) 97.8 96.8 96.3 95.8 95.2 94.1 93.9 93.6 3.79
S. (PGD Training) 94.8 92.7 91.9 90.7 89.9 88.7 89.5 88.6 4.17

0.03
S. (DTS Training) 96.5 94.1 93.2 92.7 92.3 90.6 90.5 90.1 4.04
W. (PGD Training) 96.1 92.8 92.1 91.3 90.3 89.7 90.1 89.3 4.28
W. (DTS Training) 97.3 94.3 93.7 93.1 92.5 91.7 91.8 91.2 4.21

Table 1: The resulting accuracy of nature training, FGSM, PGD and DTS methods against
white-box adversarial attacks with εDIFF = 0.02 and 0.03 on MNIST dataset.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

A
C
C
U
R
A
C
Y

0 500 1000 1500 2000 2500 3000

EPOCH

NAT
FGSM
PGD
DTS

(a) Accuracy (ε0.02).

0
15

30
45

60
75

90
LO

SS

0 500 1000 1500 2000 2500 3000

EPOCH

NAT
FGSM
PGD
DTS

(b) Loss (ε0.02).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

A
C
C
U
R
A
C
Y

0 500 1000 1500 2000 2500 3000

EPOCH

NAT
FGSM
PGD
DTS

(c) Accuracy (ε0.03).
0

15
30

45
60

75
90

LO
SS

0 500 1000 1500 2000 2500 3000

EPOCH

NAT
FGSM
PGD
DTS

(d) Loss (ε0.03).

Figure 3: MNIST accuracy and loss with εDIFF = 0.02 ((a) & (b)) and 0.03 ((c) & (d)).

sizes 32 and 64 filters, and a fully connected layer of size 1024. The wide network consists
of two convolution layers of sizes 64 and 128 filters, and also a fully connected layer of size
1024. Both networks are adversarially trained with FGSM, PGD and DTS methods; Table 1
reports the resulting accuracies against white-box attack adversaries on different adversarial
trained methods and architectures.

The CIFAR10 dataset contains a training set of 50,000 examples, and a test set of 10,000
examples of 32×32 colour images in 10 different classes. The values of input images were
also normalised in the interval [0,1]. As before, we generated adversarial examples under the
perturbation constraints of size εDIFF = 0.02 and 0.03. For the CIFAR10 dataset, we used the
Resnet model [11] as the simple network and modified the network via using wider layers
by a factor of 10, resulting in a network with 5 residual units with (16, 160, 320, 640) filters
each. The experimental results are shown in Table 2.

MNIST. Table 1 summarises the resulting accuracies obtained on the MNIST dataset.
We generated adversarial examples using the white-box attack method of FGSM, PGD and
DTS with εDIFF = 0.02 and 0.03, and then evaluated them on a target network, that was
adversarially trained independently, with different methods. The target models consist of
two different architectures, which are simple and wide networks. For example, S.(FGSM
Training) means the target model trained with FGSM adversarial training using a simple net-
work. The first column (Nature) stands for the accuracy of each adversarially trained target
network without attacks. The FGSM random attack (FGSMR) was implemented according
to [29], whereby small random perturbations are performed before applying FGSM. The
PGD attack considered 10 random restarts uniformly distributed under ε per input and set-
tings of 2, 5 and 20 steps with step size 0.01. The search time for DTS attack is constrained
in 1 second and 2 seconds respectively; once an adversarial example is found, the process

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Tramer, Kurakin, Papernot, Boneh, and McDaniel} 2017

LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH 9

Target Model
Adversary

Nature FGSM FGSMR PGD2 PGD5 DTS1 DTS2 l0 l1 l2 εDIFF

S. (FGSM Training) 93.8 93.0 92.5 89.5 89.1 87.9 87.0 14.5 13.6 3.93

0.02

S. (PGD Training) 93.3 92.4 92.0 91.6 91.2 90.1 88.9 13.8 12.9 3.82
S. (DTS Training) 94.8 93.2 92.8 91.9 90.7 90.5 89.8 12.3 11.3 3.74
W. (FGSM Training) 94.2 93.9 93.3 91.4 90.8 90.3 89.5 14.2 13.9 3.91
W. (PGD Training) 94.0 93.7 93.4 92.9 92.3 91.6 91.0 13.9 13.5 3.84
W. (DTS Training) 94.9 94.1 93.7 93.2 92.5 91.7 91.5 12.4 11.9 3.79
S. (PGD Training) 92.4 89.8 88.4 87.6 86.9 86.4 85.9 20.8 18.9 4.22

0.03
S. (DTS Training) 93.2 92.5 91.8 90.7 89.7 88.6 87.4 19.2 18.3 4.04
W. (PGD Training) 93.4 90.1 88.9 88.1 87.4 87.1 86.2 20.3 19.2 4.34
W. (DTS Training) 93.8 92.5 92.1 91.4 90.2 89.3 88.6 19.5 18.6 4.21

Table 2: The resulting accuracy of nature training, FGSM, PGD and DTS methods against
white-box adversarial attacks with εDIFF = 0.02 and 0.03 on CIFAR10 dataset.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C
C
U
R
A
C
Y

0 5000 10000 15000 20000 25000 30000

EPOCH

NAT
FGSM
PGD
DTS

(a) Accuracy (ε0.02).

0
10

20
30

40
50

LO
SS

0 5000 10000 15000 20000 25000 30000

EPOCH

NAT
FGSM
PGD
DTS

(b) Loss (ε0.02).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C
C
U
R
A
C
Y

0 5000 10000 15000 20000 25000 30000

EPOCH

NAT
FGSM
PGD
DTS

(c) Accuracy (ε0.03).

0
10

20
30

40
50

LO
SS

0 5000 10000 15000 20000 25000 30000

EPOCH

NAT
FGSM
PGD
DTS

(d) Loss (ε0.03).

Figure 4: CIFAR10 accuracy and loss with εDIFF = 0.02 ((a) & (b)) and 0.03 ((c) & (d)).

will be terminated. From the results, the attack strength from strong to weak is DTS, PGD
and then FGSM as the accuracies against DTS attack (DTSX columns) are lower than PGD
and FGSM columns. This means that DTSATTACK is a stronger attack, and thus the re-
sulting accuracies among different trained networks are lower. In addition, the results show
that DTS contributes to improved accuracies against different adversaries, and maintain ro-
bustness even under the DTS attack itself. For example, the accuracy of S. (DTS training
networks) is 93.8, which is higher than other training networks 92.7 and 93.6 under the PGD
attack (column PGD2). Moreover, changing the architecture from simple to wide networks
also contributes to accuracies overall. The accuracies decrease only few percentages even
increasing εDIFF to 0.03 and the W. (DTS training) is more robust than W (PGD Training) in
general. The average distances required for DTS are smaller than the others as DTS searches
mainly the most potential features. Figure 3 reports the accuracy and loss trends for different
adversarial training methods over the first 3,000 epochs with εDIFF = 0.02 and 0.03. The
average memory usage for FGSM, PGD and DTS are 1.5, 1.7, and 1.8GB respectively. We
find that robust optimisation with DTS converges faster than the other two state-of-the-art
methods with 14.2% on average when compared with PGD method.

CIFAR10. Table 2 summarises the resulting accuracies obtained on the CIFAR10 dataset
with similar setting as MNIST. The results obtained also demonstrate that a strong adversary
can help to improve model accuracies. In addition, DTS contributes to improving the accu-
racies against different adversaries while retaining robustness against the DTS attack itself.
For example, the accuracy of W. (DTS training network) under the DTS attack itself (column
DTS2) is 91.5, which is higher than other networks with 91.0 or 89.5 (e.g., W. (PGD training
network) or W. (FGSM training network)) with εDIFF = 0.02. Comparing the results against
different network architectures reveals that changing the architecture from simple to wide

10 LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH

networks can contribute to accuracies generally. The average distances required for DTS are
smaller than FGSM and PGD as DTS only searches for the most potential features. Fig-
ure 4 reports the accuracy and loss trends for different adversarial training methods over the
first 30,000 epochs. The average memory usage for FGSM, PGD and DTS are 1.9, 2.2, and
2.3GB respectively. The data obtained support the conclusion that the adversarial training
with DTS converges faster with 10.3% on average than the other state-of-the-art methods.

Adversarial Examples with DTS We present some adversarial examples obtained for
MNIST and CIFAR10 in Figure 5 with different confidence values under εDIFF = 0.02.
Through DTSATTACK, only minor perturbations, where εDIFF = 0.02, are required to gen-
erate attacks. The odd columns are the original images with correct classes and the even
columns are their corresponding adversarial examples. In the figure, most confidence values
are over 0.5 while generating adversarial examples. From the results, the adversarial ones are
clear to distinguish from the correct classes. Some of these attacks are not easy to detect by
humans; see for example the ones reported for class cat to class dog with confidence values
of 0.69 and 0.45 in CIFAR10.

1

8 to 2, C = 0.56 9 to 4, C = 0.61 8 to 3, C = 0.72

6 to 0, C = 0.51 9 to 4, C = 0.58 4 to 2, C = 0.55

7 to 2, C = 0.54 1 to 8, C = 0.61 5 to 6, C = 0.55

8 to 2, C = 0.58 0 to 9, C = 0.48 3 to 5, C = 0.56

(a) MNIST adversarial images (ε0.02).

1

cat to dog, C = 0.69 truck to automobile, C = 0.66 cat to dog, C = 0.45

airplane to ship, C = 0.72 truck to airplane, C = 0.48 dog to horse, C = 0.58

ship to automobile, C = 0.65 airplane to cat, C = 0.42 ship to automobile, C = 0.58

truck to automobile, C = 0.56 bird to cat, C = 0.45 frog to airplane, C = 0.81

(b) CIFAR10 adversarial images (ε0.02).

Figure 5: Some adversarial examples for MNIST and CIFAR10 under εDIFF = 0.02.

6 Conclusions

In this work we proposed a decision tree search robust optimisation framework and presented
the experimental results obtained on MNIST and CIFAR10 datasets. We evaluated the pro-
posed approach against small perturbations since pre-processing components like denoising
elements are normally included in real applications. We believe that performance advantage
obtained was due to the fact that the decision tree search method considers the most promis-
ing features during the robust learning process, and only searches over the parameterised
manifold to worst-case perturbations of data. Further, DTS benefits from recent advances in
Monte Carlo Tree Search. For the reasons summarised above, the results we obtained show
that: i) the method can be deployed in different problems and datasets, e.g., MNIST and
CIFAR10, ii) DTS is computationally attractive compared to the present state-of-the-art, iii)
differently from other methods, it can defend against the FGSM and PGD attacks, and iv) it
achieves global optima while maintaining robustness.
Acknowledgements. A. Lomuscio is supported by a Royal Academy of Engineering Chair
in Emerging Technologies.

LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH 11

References
[1] A. Bental, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in

Applied Mathematics. Princeton University Press, October 2009.

[2] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Misener. Efficient verifi-
cation of neural networks via dependency analysis. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI), pages 3291–3299, 2020.

[3] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In
Proceedings of the 38th IEEE Symposium on Security and Privacy, pages 39–57, 2017.

[4] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
Proceedings of the 5th International Conference on Computers and Games, pages 72–
83, 2006.

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In arXiv:1810.04805, 2018.

[6] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song. Robust physical-world attacks on deep learning visual clas-
sification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1625–1634, 2018.

[7] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.
AI2: Safety and robustness certification of neural networks with abstract interpretation.
In IEEE Symposium on Security and Privacy (SP), pages 3–18, 2018.

[8] I.J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. In Proceedings of the International Conference on Learning Representations
(ICLR), 2015.

[9] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel. On the (statistical)
detection of adversarial examples. In arXiv:1702.06280, 2017.

[10] S. Gu and L. Rigazio. Towards deep neural network architectures robust to adversarial
examples. In Proceedings of the International Conference on Learning Representations
(ICLR), 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[12] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In arXiv:1903.12261, 2019.

[13] P. Henriksen and A. Lomuscio. Efficient neural network verification via adaptive re-
finement and adversarial search. In Proceedings of the 24th European Conference on
Artificial Intelligence (ECAI), pages 2513–2520, 2020.

[14] V. Fischer J.H. Metzen, T. Genewein and B. Bischoff. On detecting adversarial pertur-
bations. In Proceedings of the International Conference on Learning Representations
(ICLR), 2017.

12 LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH

[15] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zeljic, D. Dill, M. Kochenderfer, and C. Barrett. The marabou framework
for verification and analysis of deep neural networks. In Proceedings of the 31st Inter-
national Conference on Computer Aided Verification (CAV), pages 443–452, 2019.

[16] P. Kouvaros and A. Lomuscio. Towards scalable complete verification of relu neu-
ral networks via dependency-based branching. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 2643–2650, 2021.

[17] A. Krizhevsky and G. Hinton. Convolutional deep belief networks on cifar-10 https:
//www.cs.toronto.edu/~kriz/cifar.html, 2010.

[18] A. Kurakin, I.J. Goodfellow, and S. Bengio. Adversarial machine learning at scale.
In Proceedings of the International Conference on Learning Representations (ICLR),
2017.

[19] Y. LeCun and C. Cortes. Mnist handwritten digit database http://yann.lecun.
com/exdb/mnist/, 1998.

[20] Y. Liu and A. Lomuscio. Mrobust: A method for robustness against adversarial attacks
on deep neural networks. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2020.

[21] J. Lu, T. Issaranon, and D. Forsyth. Safetynet: Detecting and rejecting adversarial
examples robustly. In Proceedings of the International Conference on Computer Vision
(ICCV), pages 446–454, 2017.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. In Proceedings of the International Conference
on Learning Representations (ICLR), 2018.

[23] N. Papernot, P. McDaniel, and I.J. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. In arXiv:1605.07277,
2016.

[24] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In Proceedings of the 37th IEEE
Symposium on Security and Privacy, pages 372–387, 2016.

[25] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense
to adversarial perturbations against deep neural networks. In Proceedings of the 37th
IEEE Symposium on Security and Privacy, pages 582–597, 2016.

[26] S. Sabour, N. Frosst, and G. Hinton. Dynamic routing between capsules. In Advances
in neural information processing systems, pages 3856–3866, 2017.

[27] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G.Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. Mastering the game of go with deep neural networks and tree search.
Nature, 529:484–503, 2016.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

LIU, LOMUSCIO: ROBUSTNESS LEARNING VIA DECISION TREE SEARCH 13

[28] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.J. Goodfellow, and R. Fer-
gus. Intriguing properties of neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

[29] F. Tramer, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel. Ensemble adversarial
training: Attacks and defenses. In arXiv:1705.07204, 2017.

[30] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal safety analysis
of neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
pages 6367–6377, 2018.

[31] X. Wei, J. Zhu, S. Yuan, and H. Su. Sparse adversarial perturbations for videos. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 8973–8980, 2019.

