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Abstract

Nona-Bayer colour filter array (CFA) pattern is considered one of the most viable
alternatives to traditional Bayer patterns. Despite the substantial advantages, such non-
Bayer CFA patterns are susceptible to produce visual artefacts while reconstructing RGB
images from noisy sensor data. This study addresses the challenges of learning RGB
image reconstruction from noisy Nona-Bayer CFA comprehensively. We propose a
novel spatial-asymmetric attention module to jointly learn bi-direction transformation
and large-kernel global attention to reduce the visual artefacts. We combine our pro-
posed module with adversarial learning to produce plausible images from Nona-Bayer
CFA. The feasibility of the proposed method has been verified and compared with the
state-of-the-art image reconstruction method. The experiments reveal that the proposed
method can reconstruct RGB images from noisy Nona-Bayer CFA without producing
any visually disturbing artefacts. Also, it can outperform the state-of-the-art image re-
construction method in both qualitative and quantitative comparison. Code available:
https://github.com/sharif-apu/SAGAN_BMVC21.

1 Introduction

The past decade has experienced a revolutionary takeover in mobile photography. Explic-
itly, the alleviation in computation photography and innovation on mobile hardware allows
the original equipment manufacturers (OEMs) to provide handy experiences to the mobile
photographers. However, the perceptual quality of smartphone cameras still incorporates
notable drawbacks due to the smaller sensor size and unable to deliver professional-grade
image quality in stochastic lighting conditions [13, 28]. Contrarily, enlarging the sensor size
of the mobile cameras always remains a strenuous process. Explicitly, the compact nature
of mobile devices holds back the OEMs to perceive a substantial push in the sensor size.
To address such an inevitable dilemma, many OEMs have leveraged pixel enlarging tech-
niques known as pixel-binning with non-Bayer CFA patterns [5, 17, 20, 28]. Among such
non-Bayer CFA patterns, Nona-Bayer has illustrated widespread practicability over its Bayer
counterparts.
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Typically, a Nona-Bayer CFA pattern comprises three consecutive homogenous pixels in
the vertical and horizontal direction, as shown in Fig. 1. Notably, such a CFA pattern allows
the sensing hardware to combine homogenous pixels into a bigger pixel to gather up to
three times higher light intensity in stochastic lighting conditions. Apart from the improving
low-light performance, a Nona-Bayer CFA concedes the practicability of higher resolution
sensors in mobile devices and allows to produce high definition contents (i.e., 8K videos)
with a natural bokeh effect. Hence, most recent flagship smartphones like Samsung S20
Ultra, Note 20 Ultra, S21 Ultra, Xiaomi Mi 11 Ultra, etc., have utilized such Nona-Bayer
CFA on top of the 108-megapixel image sensor to deliver a versatile photography experience
to enthusiastic mobile photographers.

Despite numerous advantages, reconstructing an

RGB image from a Nona-Bayer CFA is a challenging
task. It is worth noting, the distance of homogenous
pixels between two recurring Nona-Bayer CFA pat-
terns are three-time larger than a typical Bayer CFA
(please see Fig. 1. Subsequently, any complex com-
position like text with a distinct background that ap- @ ) (b)
pears between two consecutive patterns can produce Figure 1. Comparison between CFA
visual artefacts. Moreover, the substantial sensor patterns. (a) Nona-Bayer CFA. (b)
noise along with artefact-prone CFA pattern makes Bayer CFA.
the reconstruction process notably complicated [28].
We found even the state-of-the-art deep image reconstruction methods (i.e., joint demosaic-
ing and denoising (JDD), non-Bayer reconstruction methods) illustrate notable shortcomings
in reconstructing RGB images from a noise-contaminated Nona-Bayer CFA pattern. In most
instances, the existing methods tend to produce structural distortion and false colour arte-
facts, as shown in Fig. 2.

Figure 2: Noisy Nona-Bayer reconstruction with state-of-the-art image reconstruction meth-
ods at 0 = 30. (a) Ground-truth RGB Image. (b) Noisy Nona-Bayer Input. (c) Deepjoint
[8]. (d) Kokkinos [19]. (e) DPN [17]. (f) BJIDD [28]. (g) SAGAN (Ours)

To address the deficiencies of existing works, we propose a novel learning-based JDD
method for Nona-Bayer reconstruction. To the best concern, this is the first work in the
open literature that introduces an end-to-end deep model for reconstructing RGB images
from a noisy Nona-Bayer CFA pattern. Our proposed method incorporates a novel spatial-
asymmetric attention module to reduce visual artefacts from reconstructed RGB images. Our
proposed module learns attention over the vertical and horizontal transformation of a Nona-
Bayer CFA and combines it with large-kernel global attentions. Additionally, we proposed
an adversarial (a.k.a generative adversarial network (GAN) [9]) guidance with our spatial-
asymmetric attention for producing visually plausible images. We denoted our proposed
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method as spatial-asymmetric attention GAN (SAGAN) in the rest of the paper. The practi-
cability of the proposed method has been extensively studied with the benchmark dataset and
compared with state-of-the-art deep reconstruction methods. The major contributions of the
proposed method have been summarized as follows: 1) Proposes and illustrates the practica-
bility of an end-to-end deep network for performing image reconstruction from challenging
noisy Nona-Bayer CFA pattern images. 2) Proposes a novel spatial-asymmetric attention
module to reduce visual artefacts and combined it with adversarial training to produce plau-
sible images. 3) Compare and outperform existing learning-based reconstruction methods in
both qualitative and quantitative comparison.

2 Related Works

The related works of our proposed method have briefly described in this section.

Joint demosacing and denoising. Noise suppression with reconstructing RGB images
from CFA patterns have illustrated a significant momentum in recent years. In practice,
such JDD manoeuvres can significantly improve the perceptual quality of final reconstructed
images. In the early days, JDD was mostly performed with optimization-based strategies [11,
30]. However, in recent time, deep learning has takeover the limelight from its traditional
counterparts by learning JDD from a convex set of data samples.

In recent work, [8] trained an end-to-end deep network to achieve state-of-the-art per-
formance in Bayer JDD. Later, [19] combined deep residual denoising with a majorization-
minimization technique to perform JDD on the same CFA pattern. Similarly, [21] also pro-
posed a deep method with density-map and green channel guidance to outperform their pre-
vious JDD methods. Apart from the Bayer JDD, a recent study [28] proposed a deep network
to perform JDD on Quad Bayer CFA. Notably, [28] has illustrated that visual attention with
perceptual optimization can significantly accelerate the performance of non-Bayer JDD.

Non-Bayer Reconstruction. Quad Bayer CFA shared similar characteristics as a Nona-
Bayer CFA and widely used in recent smartphones cameras. A recent study [17] has pro-
posed a duplex pyramid network for reconstructing the Quad Bayer CFA pattern. Similarly,
[16] proposed to learn an under-display camera pipeline exclusively for Quad Bayer CFA.

Attention Mechanism. The concept of attention mechanisms intends to focus on the
important features as similar to the human visual system. In the past decade, many works
have incorporated novel attention mechanisms for accelerating different vision tasks. In
recent work,[12] proposed a squeeze-and-excitation network for achieving channel-wise at-
tention for accelerating image classification. [32] proposed a residual attention network for
having 3D attention over intermediate features. Later, [33] proposed a lightweight convolu-
tional block attention module to accelerate the learning process of feed-forward networks.
Similarly, [36] proposed a convolutional attention mechanism to learn dynamic feature at-
tentions. It is worth noting, none of the existing methods has exploited the visual attention
on asymmetric manner. In this study, we depicted that such spatial-asymmetric attention can
significantly improve the performance of low-level vision task, explicitly the Nona-Bayer
reconstruction.

3 Method

This section describes the proposed method as well as our SAGAN architecture.
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Figure 3: Overview of the proposed method. Our SAGAN comprises a novel spatial-
asymmetric module and guided by adversarial training.

3.1 Network Design

Fig. 3 illustrates the overview of the proposed SAGAN architecture. The proposed method
has been designed as a deep network incorporating novel spatial-asymmetric attention mod-
ule along with adversarial training. Our generative method (S) learns to translate a Nona-
Bayer mosaic pattern (In) as S : Iy — Ir. Here, (Ir) present the reconstructed RGB image
as Ig € [0,1]7*">3_ H and W represent the height and width of the input mosaic patterns
and output RGB images.

3.1.1 Spatial-asymmetric Attention Module

The proposed spatial-asymmetric attention mod- f
ule intends to reduce visual artefacts from the |
reconstructed RGB images. As Fig. 4 depicts, E
we leverage asymmetric convolution operations |
[7, 22] to extract a sequence of vertical and hor- i
izontal feature maps. Later, we utilized spatial |
attention [33] over the extracted horizontal and E
vertical features to perceive a pixel-level feature i
suppression/expansion as follows: :

Fy = 1(Cs([Za(Av(X)): Zy(Ay (X))]) (1) | Freomeosmes e [ |

r Max Pooling ( Average Pooling | Global Pooling | Fully Connected Layer
p

N @ Addition @ Concatenation @ Multiplication "4
~
<~

F = 7(Cs([Za (Ar(X)): Zm(Ar(X))]) (2) Figure 4: .Overvm.:w of proposed spatial-
asymmetric attention module. Our pro-

Here, A(+), C(-), and 7 represent the asym- posed block aims to substantially reduce
metric convolution operation, square convolu- Visual artefacts, which typically arises
tion and sigmoid activation, respectively. Addi- due to Nona-Bayer CFA.
tionally, Z and Zy; present the average pooling
and max pooling, which generates two 2D feature maps as Xy € RV Xy € RIXHXW
and concatenated into a single 2D feature map.

An aggregated bi-directional attention over a given feature map has obtained as:

Fc=Fv+Fyg 3
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Apart from the asymmetric attention, we also appropriated a squeeze-extractor descriptor
[12] to learn depth-wise attention on a globally extracted feature map as follows:

F¢ =Mr(Z(Cs(X))) 4)

Here, My and Zg present consecutive fully connected layers and global pooling opera-
tions.

Notably, our spatial-asymmetric module incorporated large-kernel convolution (i.e., 9 x
9) operations. Here, these square convolution operations are intended to learn global image
correction by exploiting larger reception fields [26]. We obtained the final output of the
spatial-asymmetric attention module as follows:

SA = (Z)(Fc X FG) (5)

Here, ¢ denotes the leaky ReL.U activation function.

3.1.2 SAGAN Generator

The proposed SAGAN generator has been designed as well-known U-Net architecture with
convolutional features gates [1, 14, 29]. Our SAGAN generator utilized multiple feature
depth levels (i.e., 64, 128, 192, and 256) for feature encoding-decoding. Each feature level of
the proposed generator comprises a residual block and a spatial-asymmetric attention block.
Here, the residual blocks are intended to accelerate denoising performance, while spatial-
asymmetric attention blocks are intended to reduce visual artefacts. We obtained downsam-
pling and upsampling using square convolutional (with stride = 2) and pixel-shuffles upsam-
pling operations. Apart from that, our SAGAN generator also comprises two consecutive
middle blocks with a short distance residual connection. Additionally, it connects multiple
layers of encoder-decoder with 1 x 1 convolutional feature gates. Here, the short distance
residual connection and the convolutional gates help our SAGAN converge with informative
features.

3.1.3 SAGAN Discriminator

The architecture of our SAGAN discriminator has been designed as a stacked convolutional
neural network (CNN). The first seven layers of the proposed discriminator are 3 X 3 con-
volution layers, which we normalized with batch normalization and activated with a swish
activation. The convolutional layers are followed by a spatial-asymmetric attention module
and 1 x 1 convolutional output layer with sigmoid activation. Here, every (21 — 1) layer of
our SAGAN discriminator reduces its spatial dimension by incorporating a stride = 2.

3.2 Optimization

The proposed SAGAN has been optimized with a multi-term objective function. For a given
training set {In’,I¢'}7_, consisting of N image pairs, the training process aims to minimize
the objective function describes as follows:

* . 1 L t t
w farg%n;tzzlﬁs(S(IN),IG) (©6)
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Here, Lg represent the proposed SAGAN loss, and W presents the parameterised weights
of the SAGAN generator.

Reconstruction Loss. Our proposed SAGAN loss comprises an L1-norm as standard
reconstruction loss as follows:

Lr=|Tc—1Ir 1 @)

Here, Ir presents the reconstructed RGB output of S and Ig presents the ground-truth
RGB image.

Perceptual Colour Loss (PCL). Apart from the reconstruction loss, we leverage a per-
ceptual colour loss [28] to perceive a consistent colour accuracy across different colour
spaces. Here, the perceptual colour loss is obtained as follows:

Lo=AE (IG,IR) ®)

Here, AE represents the CIEDE2000 colour difference [23], which has calculated by
comparing reconstructed image (Ir) and the ground-truth image (Ig).

Adversarial Loss. The proposed SAGAN leverages adversarial training to produce nat-
ural colour while retaining texture information. Therefore, discriminator maximise a loss
Ex,y as: Exy[logD(X,Y)]. Contrarily, our SAGAN generator aims to minimize the gener-
ator loss as follows:

L =—Y logD(Ig,Ig) 9)
t
SAGAN loss. We perceived SAGAN loss by adding individual losses as follows:

Ls=Lr+Lc+As.Lg (10)

Here, Ag presents the adversarial regulators, which has been tuned arbitrarily as Ag =
le — 4 for stabilizing our adversarial training.

4 Experiments and Results

The practicability of the proposed SAGAN has verified with dense experiments. This section
details the experiments and discusses the results.

4.1 Experiment Setup

We extracted a total of 741,968 non-overlapping 128 x 128 image patches from DIV2K
[4], Flickr2K [31], HDR+ [10] datasets to learn noisy image reconstruction. We presumed
that JDD performed after non-linear mapping and was independent of additional ISP tasks
similar to previous works [8, 19, 28]. Subsequently, we sampled sSRGB images according to
the CFA pattern and contaminated the sampled images with random noise as (VIn|o). Here,
o represents the standard deviation of the noise distribution, which is generated by N (-) over
a sampled input Iny. We evaluated our method in both sSRGB and Linear RGB colour spaces.
To evaluate our method in SRGB space, we combined multiple SRGB benchmark dataset
including BSD100 [25], McM [34], Urban100 [6], Kodak [35], WED [24] into an unified
dataset. Apart from that, we included linear RGB images from MSR demosaicing dataset
[15], which has been denoted as Linear RGB in later sections.
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Apart from that, we studied our proposed method with real-world noisy data samples.
Therefore, we trained our SAGAN with real-world noisy sampled images from Smartphone
Image Denoising Dataset (SIDD) [2, 3]. Also, we developed an android application to
capture noisy images with real Nona-Bayer hardware. Later, We incorporated a Samsung
Galaxy Note 20 Ultra hardware (i.e., 108MP Nona-Bayer sensor) to collect Nona-Bayer
captures for evaluating our SAGAN on real-world scenarios.

We implemented our SAGAN in the PyTorch [27] framework. The generator and dis-
criminator of the proposed network have optimized with an Adam optimizer [18], where
hyperparameters are set as B; = 0.9, B, = 0.99, and learning rate = 5¢ — 4. We trained our
generator and discriminator jointly for 200,000 steps with a constant batch size of 16. It took
around 120 hours to converge with given data samples. We employed a graphical Nvidia
Geforce GTX 1060 (6GB) graphical processing unit (GPU) to conduct our experiments.

4.2 Comparison with State-of-the-art Methods

The performance of SAGAN has been studied with different CFA Patterns (i.e., Nona-Bayer
and Bayer CFA patterns) and compared with state-of-the-art reconstruction methods. We
included deep Bayer joint demosaicking and denoising methods like Deepjoint [8], Kokki-
nos [19], Non-Bayer JDD method like BJDD [28], and Quad Bayer reconstruction method
like DPN [17] for the comparison. For fair comparisons, we trained and tested the recon-
struction methods with identical datasets. The performance of the compared methods has
cross-validated with three different noise levels, where the standard deviation of noise distri-
bution was set as ¢ = (10,20,30). Later, we summarized the performance of deep models
with standard evaluation metrics like PSNR, SSIM, and DeltaE2000.

4.2.1 Noisy Nona-Bayer Reconstruction

We performed an extensive evaluation on challenging noisy Nona-Bayer reconstruction by
incorporating quantitative and qualitative comparisons.

Model - sRGB Images Linear RGB Images
PSNR 1 | SSIM 7 | DeltakE | | PSNR 1 | SSIM 1 | DeltaE |

Deepjoint [8] 31.63 0.9026 3.11 39.00 0.9464 1.64
Kokkinos [19] 33.08 0.9321 2.75 39.26 0.9539 1.74
DPN [17] 10 | 33.49 0.9390 2.62 39.84 0.9702 1.50
BIDD [28] 34.02 0.9440 2.56 41.40 0.9751 1.64
SAGAN (Ours) 34.99 0.9503 2.18 43.17 0.9788 1.11
Deepjoint [8] 30.22 0.8495 3.44 36.14 0.8946 1.94
Kokkinos [19] 31.88 0.9080 297 38.18 0.9411 1.76
DPN [17] 20 | 3213 0.9152 2.92 38.39 0.9572 1.68
BIDD [28] 32,58 0.9212 2.86 39.71 0.9619 1.86
SAGAN (Ours) 33.33 0.9290 2.49 41.26 0.9675 1.32
Deepjoint [8] 28.81 0.7913 3.90 34.05 0.8407 2.29
Kokkinos [19] 30.81 0.8830 3.23 36.84 0.9203 1.95
DPN [17] 30 | 30.96 0.8904 3.21 36.99 0.9411 1.93
BIDD [28] 31.42 0.8990 3.14 38.27 0.9466 2.03
SAGAN (Ours) 32.10 0.9084 2.78 39.59 0.9525 1.57

Table 1: Quantitative Comparison for Noisy Nona-Bayer reconstruction.

Quantitative Comparison. Table. | demonstrates the performance of the different
learning-based methods for Nona-Bayer reconstruction. The proposed SAGAN outperforms
the state-of-the-art methods in both SRGB and linear RGB colour spaces. Also, the perfor-
mance of our SAGAN is consistent among different noise levels. Apart from suppressing
noise, our SAGAN can produce more colour-accurate RGB images with dense structural
information.
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Figure 5: Qualitative Comparison for Noisy Nona-Bayer reconstruction at o = 30. (a)
Ground-truth RGB Image (full). (b) Ground-truth RGB Image (crop). (c) Deepjoint [8].
(d) Kokkinos [19]. (e) DPN [17]. (f) BJDD [28]. (g) SAGAN (Ours)

Qualitative Comparison. We compared the reconstruction methods qualitatively by vi-
sualizing their performance. Fig. 5 illustrates the visual comparison between the existing
method and our SAGAN. It can be seen that the proposed SAGAN can reconstruct more
natural-looking plausible images with maximum noise suppression. Our novel SAGAN
can substantially reduce the visual artefacts that occur due to the non-Bayer CFA pattern.
Notably, our proposed adversarial spatial-asymmetric attention strategies allow us to learn
perceptually admissible images as similar to the reference images.

4.2.2 Noisy Bayer Reconstruction

Typically, Nona-Bayer sensors are capable of forming a Bayer pattern by leveraging the
pixel-binning technique. Thus, we have studied our method on noisy Bayer reconstruction
to confirm its practicability in real-world scenarios.

Quantitative Comparison. Table. 2 illustrates the comparison between state-of-the-
art methods for noisy Bayer reconstitution on different noise levels. Notably, our SAGAN
outperforms the existing methods for noisy Bayer reconstruction as well.

Model s sRGB Images Linear RGB Images
PSNR 1 | SSIM 1 | DeltakE | | PSNR 1 | SSIM 1 | DeltaE |

Deepjoint [8] 33.04 0.9262 2.80 37.89 0.9496 1.81
Kokkinos [19] 3424 0.9412 2.664 38.45 0.9550 1.79
DPN [17] 10 | 36.51 0.9593 1.88 42.80 0.9790 1.21
BIDD [28] 36.68 0.9561 1.91 43.70 0.9760 112
SAGAN (Ours) 37.07 0.9616 1.76 43.66 0.9756 1.16
Deepjoint [8] 31.08 0.8594 3.54 35.30 0.8839 2.53
Kokkinos [19] 32.37 0.9052 3.16 36.77 0.9251 2.19
DPN [17] 20 | 3422 0.9316 233 40.32 0.9642 1.53
BIDD [28] 3443 0.9323 2.31 41.10 0.9596 1.42
SAGAN (Ours) 34.56 0.9375 2.20 4222 0.9715 1.22
Deepjoint [8] 28.99 0.7789 4.49 32.89 0.7997 3.38
Kokkinos [19] 30.27 0.8562 3.85 34.18 0.865 2.80
DPN [17] 30| 3232 0.8983 2.82 38.06 0.9405 1.92
BIDD [28] 32.75 0.9074 2.63 38.21 0.9298 1.75
SAGAN (Ours) 33.28 0.9212 241 40.78 0.9613 1.32

Table 2: Quantitative comparison for noisy Bayer reconstruction.

Qualitative Comparison. Fig. 6 visually confirms that the proposed SAGAN can pro-
duce plausible images while reconstructing images from noisy Bayer inputs. Also, it can
suppress maximum noise by retaining details comparing to its counterparts.

4.3 Nona-Bayer Reconstruction with Real-world Denoising

Real-world sensors are typically surrounded by multiple noise sources and can go beyond a
synthesized noise. Hence, we studied our method on real-world noisy images also.
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Figure 6: Qualitative Comparison for Noisy Bayer reconstruction at 6 = 30. (a) Ground-
truth RGB Image (full). (b) Ground-truth RGB Image (crop). (c) Deepjoint [8]. (d) Kokkinos
[19]. (e) DPN [17]. (f) BJDD [28]. (2) SAGAN (Ours).

Visual Results. Fig. 7 depicts the performance of proposed SAGAN on real-world
denoising with Nona-Bayer reconstruction. It can be seen that our method can handle real-
world noise and can produce visually plausible images without any visual artefacts.

Lo
(©)

() (b) (d) (e) ®
Figure 7: Nona-Bayer reconstruction with real-world noise suppression. (a) & (d) Noisy
image (RAW). (b) & (e) Noisy Nona-Bayer (input). (c¢) & (f) Reconstructed with SAGAN.

User Study. We performed a blindfold user study to Method | RAW (Visualised) | SAGAN (Ours) |
verify the practicability of our proposed method. There- [Mos71 | 0.13 [ 0.87 |
fore, we showed image pairs comprising our recon- Taple 3: User study for real-
structed and noisy (RAW) image to the random users yorld noisy Nona-Bayer recon-
and asked them to select their preferred image from each  ¢tryction.
image pair. Later, we calculated the mean opinion score
(MOS) to summarized user preferences. Our proposed method can substantially score higher
MOS, as shown in Table. 3.

sRGB I Linear RGB Images
‘ Model | Base | SA ‘ PCL ‘ GAN } PSNR | | SSIM | | Deltak | } PSNR | | SSIM 1 | DelfaE | }
BascNet X | X | X | 2226 | 05800 | 1063 | 2465 | 06112 | 942
BascGAN | v | X | X | v | 2745 | 07730 | 609 | 2652 | 0.6684 | 848
SANWP | v | v | x | X | 3199 | 09125 | 280 | 3525 | 08191 | 187
SAN vl v | v | x| 3275 | 09240 | 258 | 3659 | 09588 | 142
SAGAN | v | v | v | v | 3347 | 09292 | 248 | 4134 | 09663 | 133

Table 4: Quantitative evaluation on proposed SAGAN. It can be seen that our proposed
components have a meaningful impact on the noisy Nona-Bayer reconstruction.

4.4 Ablation Study

The practicability of our proposed spatial-asymmetric attention with adversarial training has
been verified with sophisticated experiments. We removed our proposed components like
spatial-asymmetric attention block, PCL, and SAGAN discriminator from the network archi-
tectures. Later, we incorporated each of them individually and summarized the practicability
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of these components with quantitative and qualitative evaluation.

Quantitative Evaluation. Table. 4 illustrates the practicability of our proposed spatial-
asymmetric attention and adversarial guidance in both colour spaces. For simplicity, we
depicted the mean performance of each model on different noise levels (i.e., ¢ = 10,20,30).
It is visible that our proposed components play a substantial role in Nona-Bayer reconstruc-
tion.

Qualitative Evaluation. Fig. 8 illustrates the visual comparison between SAGAN vari-
ants. Also, it confirms that our proposed spatial-asymmetric attention can substantially re-
duce the visual artefacts, while our adversarial training helps us recover texture with natural
colours. Additionally, PCL has helped us to maintain a colour consistency across different
colour spaces.

i = i . u i =\ i = i T i =
s MWha Mha MWhs Mhs MWAs Wi
(b) (c) (H

(a) (d) (e)
Figure 8: Qualitative evaluation of our proposed SAGAN at o = 30. Our proposed compo-
nent can substantially reduce visual artefacts and produce perceptually plausible images (best
viewed in colour and zoomed). (a) Ground-truth RGB Image. (b) BaseNet. (c) BaseGAN.
(d) SANWP. (e) SAN. (f) SAGAN.

4.5 Discussion

Proposed SAGAN comprises a total of 29,448,766 trainable parameters. As being a fully
convolutional network architecture, the proposed network can be inference with different
resolution images. In our setup, we found it takes less than a second in reconstructing
a 1024 x 1024 x 3. It is noteworthy that our proposed SAGAN does not incorporate any
pre/post-operations. Therefore, the inference time with similar hardware is expected to re-
main constant. Despite showing an admissible inference time on a desktop environment, we
failed to study SAGAN on a real-world mobile setup due to hardware limitations. Neverthe-
less, the proposed SAGAN reveals a promising aspect of noisy Nona-Bayer reconstruction
through deep learning. Please see the supplementary material for implementation details and
more results of our proposed SAGAN.

5 Conclusion

We proposed a novel end-to-end deep method for reconstructing RGB images from a chal-
lenging Nona-Bayer CFA. Notably, our proposed method incorporates a novel spatial-asymmetric
attention mechanism with adversarial training. We studied the feasibility of our SAGAN on
different colour spaces and diverse data samples. Experimental results illustrate that our
SAGAN can outperform the existing methods in both quantitative and qualitative compar-
isons. However, due to hardware constraints, we failed to evaluate the performance of our
SAGAN by deploying it into real mobile hardware. It has planned to study the practicabil-

ity of a deep method like SAGAN for reconstructing images from Nona-Bayer along with
Quad-Bayer CFA on real mobile hardware in the foreseeable future.
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