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Abstract

It has become critical for deep learning algorithms to quantify their output uncertain-
ties to satisfy reliability constraints and provide accurate results. Uncertainty estimation
for regression has received less attention than classification due to the more straightfor-
ward standardized output of the latter class of tasks and their high importance. However,
regression problems are encountered in a wide range of applications in computer vi-
sion. We propose SLURP, a generic approach for regression uncertainty estimation via
a side learner that exploits the output and the intermediate representations generated by
the main task model. We test SLURP on two critical regression tasks in computer vi-
sion: monocular depth and optical flow estimation. In addition, we conduct exhaustive
benchmarks comprising transfer to different datasets and the addition of aleatoric noise.
The results show that our proposal is generic and readily applicable to various regression
problems and has a low computational cost with respect to existing solutions.

1 Introduction

The increasing use of Deep Neural Networks (DNNs) fuelled significant advances in the last
decade in Computer Vision and fully benefited from the improvements in data availability
and computational power. Currently, the main factor impeding a wider adoption of DNNs
for critical tasks is their lack of reliability and interpretability. Subsequently, a lot of ef-
fort has been dedicated to the uncertainty estimation of model predictions during inference,
which aims to alleviate the impact of out-of-distribution and noisy inputs. The most popular
approaches are either based on ensembles, or on some simplificatory assumptions applied to
Bayesian Neural Networks [12, 32, 47]. In both cases, the predictive uncertainty is related
to the output diversity, the quality of which is correlated to a higher computational cost.
Moreover, classification models have received more attention since their output is simpler
and allows for an easier definition of uncertainty estimation metrics [18, 19]. In a regression
setting, DNNs are expected uncertainty-wise to provide a probability distribution over the
target domain, but most existing models also lack a default uncertainty output. Following
the works addressing classification models, some strategies and metrics for uncertainty esti-
mation and calibration have been proposed more recently for regression [16, 26]. However,
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Figure 1: An example for uncertainty estimation on optical flow task. The predicted flow is made
by FlowNetS [9]. The prediction error is the end-point-error between ground truth flow and predicted
flow. We can see that our uncertainty estimation map can correspond well to the true error, including
the semantic loss area (middle left) and the edges in the connected domains of the prediction flow map.

the proposed solutions tend to be more specific due to the higher variability of the output do-
main associated with diverse input data, e.g time series forecasting vs. pixel-wise regression.
As a default solution, ensemble-based strategies are relatively effective but incur a significant
training and inference computational cost, which is sometimes prohibitive when considered
along with the memory requirements for some tasks.

Alternatively, using a side learner [7, 20, 28, 49] may provide a generic solution for
predictive uncertainty estimation. The side learner could be regarded as a post-processing
applied to the prediction result. Therefore, it is a straightforward approach to provide a pre-
cise uncertainty estimation without influencing the performance of the main task model or
further refining its hyper-parameters. However, for some pixel-wise regression tasks, this
approach may be challenging because of the importance of the semantic context. Compared
with the uncertainty for time series data that pays more attention to long short-term informa-
tion, the uncertainty of image-based tasks should give more consideration to the semantics
of the image. The uncertainty map is based on the prediction map because of the similar
higher level encoded semantics. However, obviously, the prediction result might miss rele-
vant semantics with respect to the ground truth, which may have a detrimental effect on the
uncertainty estimation. Our work intends to fill this gap by introducing SLURP, a general
side learning approach for regression problems able to recover semantic information absent
from the main task prediction. Our contributions are as follows. 1. We are the first to solve
the uncertainty estimation problem for general pixel-wise regression tasks with an auxiliary
network. 2. We propose a transposable architecture which may be used along with the main
task model without modifying/re-training/affecting the performance of the latter, thus greatly
improving our proposal’s adoption potential. 3. We demonstrate our side learner’s flexibil-
ity on two fundamental vision tasks. The extensive experiments validate our algorithm’s
consistent performance in line with SOTA uncertainty estimation algorithms. The main ad-
vantage of our proposed solution is the efficiency and simplicity of its implementation and
its competitive uncertainty performance.

2 Related Works

2.1 Major uncertainty estimation approaches

1. Distribution-based approaches By assuming a probability distribution over the model
output and by minimizing the associated negative log-likelihood [29, 39], one may obtain
the aleatoric uncertainty of the prediction result. Based on this idea, [1] separate the formu-
lation and use it as a two-task learning which could improve the main task and uncertainty
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performance on indoor depth estimation. As for the considered distribution, Gundavarapu et
al. [15] choose to use a multi-variate Gaussian to capture the aleatoric uncertainty in hu-
man pose, while in their experiments [13, 26] choose the best performing distribution from
an exponential distribution cluster. Apart from supervised methods, [40] learns uncertainty
from monocular depth in a self-supervised way with a teacher-student framework using the
concept of [29], while being too specific for re-implementation on the other tasks.

2. Ensemble-based approaches In the statistics community [10, 43] and later in computer
vision [26, 31], the most conventional way to capture model uncertainty has been to use
bootstrapping in which the uncertainty is linked to the variance of multiple outputs gener-
ated by re-sampling. Although it is accessible and well studied, this approach is not well
suited to deep learning as it tends to degrade the main task performance. Instead of using
part of the data each time, Deep Ensembles [32] uses the full data to train the model under
different stochasticity sources and combines the aleatoric uncertainty estimation proposed
by [29]. While this method is easily adaptable to different tasks while still achieving an ex-
tremely competitive baseline [2], its memory and run-time consumption make it inefficient
in real applications due to its dependence on multiple, potentially heavy models. Eddy Ilg
et al. [26] use a multiple-hypothesis network combining with the concept of [29] to reduce
memory consumption of ensembles. However, it is specific for optical flow, it has to modify
the main task model and add an extra network in the end for merging the hypotheses, and it
requires multiple stages of training.

3. Bayesian approaches Learning the posterior distribution of the weights of the main task
neural network given the training dataset is a way to obtain the uncertainty from the net-
work architecture [3]. Gast et al. [13] try to weight the uncertainty from network weight
by using assumed density filtering [4], but in this case the network has to be modified. MC-
Dropout [12] is a widely used method which mimics a BNN by using injected Dropout layers
to sample the network weights. It needs to do multiple times forward propagation which is
costly especially for pixel-wise regression tasks. At the same time, an additional challenge
is raised by properly balancing the main performance and the quality of the generated uncer-
tainty due to the number and position of the injected Dropout layers.

2.2 Side learning for uncertainty estimation

With the development of deep learning, DNNs are becoming more sophisticated, and the
training of DNN and the selection of hyperparameters have also become particularly impor-
tant [45]. As it avoids changing the main task model structure, a side learner is in this respect
a convenient approach to estimate uncertainty. Lee er al. [34] use a conditional GAN [27] as
an auxiliary model to project an image-pair input in optical flow to an uncertainty provided
by a MC-Dropout version of main task to reduce the time cost, but its performance will be
decreased during dataset shift. Yoo et al. [49] design a side learner to learn the loss supplied
by the main task model. However, the goal of this work is to provide a single predicted
loss for the main task, which is not suitable for pixel-wise uncertainty estimation. Instead of
predicting the loss from the main task model, based on [32] and [29], Hu et al. [20] trains
sequentially a network which is identical to the main task model to fit the prediction error.
It can improve the stability of uncertainty training but the memory cost of the uncertainty
estimator will increase with the increase of the main task model scale. DEUP [28] not only
uses a side learner to predict the loss but in order to better obtain the epistemic uncertainty, it
enriches the input of the side learner but it needs to train three models including a main task
model with aleatoric uncertainty estimator, a data density estimator and a loss side learner.
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This has high requirements for model selection and training. Corbiere et al. [7] introduces
ConfidNet which can conveniently provide the uncertainty by adding an auxiliary network
after the main task encoder. It shares a more similar approach with our work. It shows a good
performance but it works only for classification task and it has to re-tune the encoder part
for uncertainty prediction so it structurally depends on the main task network and requires
two-stage training.

For pixel-wise regression tasks, the number of data points is huge and data preparation will
be costly. SLURP does not need to modify the main task model, does not require data prepa-
ration. It faces on general pixel-wise regression tasks, which is different from all the works
mentioned above. We use a direct and explicit design, and only train the side learner once
to get the uncertainty. This can circumvent the difficulty of modifying the main task model
caused by the complexity of the structure, or the lack of the training codes. Using only the
in-distribution data, without touching the main task model, we can get better quality and
robust uncertainty. Fig. | gives an example on uncertainty estimation of our work.

3 Our method

3.1 Problem description and motivation

Our training procedure is a two-step process that first consists of training a DNN f to perform
its main regression task. Then in a second stage, the parameters in f are fixed and will not
be updated any more. Based on a primary DNN f, we train a second DNN g to predict the
uncertainty of the first DNN.

Task 1: given dataset D = {(x;,y;) };, we write P(Y |x) the conditional distribution for the
ground truth value given an input value x (e.g an RGB image). Let us denote f, the main task
predictor, which is trained by minimizing the objective function /( f(x),y) over the dataset.

Task 2: Once the DNN f is trained, we propose to add a new task, namely the prediction
error estimation. Our goal is to predict the error done by the DNN, i.e., to learn to predict
l;(f(x),y). Note that the loss does not need to be the same as s, since in some cases, Iy
could follow a specific design such as in focal loss [35], in scale-invariant error [11], etc.
Hence we aim to predict the error loss [,(f(x),y). As is the case with regression tasks, a
sensible choice for /, is the mean square or absolute error. Our uncertainty DNN g, will have
the following training objective:

argmin L (1 (£(x),5),8(F(x).x) ) M

8
where L denotes an objective function which needs to be minimized to obtain a model able
to predict the error of f.
Note that the error prediction task of task 2, is related to predicting the total uncertainty

of the DNN. The total uncertainty U (f,x) may then be interpreted as the sum of prediction
errors according to [28]:

/ L(f(x),)dP(y|x) )

In subsection 3.2, we explain the structure of the side learner g, and in subsection 3.3, we
present the design of the loss L to learn to predict the uncertainty.
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Figure 2: General solution for pixel-wise uncertainty estimation. We take monocular depth estimation
as an example. In main procedure, Main task stream f is first trained and frozen. Then we use the
input and the output of f to train g. An uncertainty generation block is implemented on feature pairs
from different stages. The n outputs of context blocks from different stages will be sent to the final
fusion block. The conv-layers in detailed operations are described as (shape, number, dilation ratio).

3.2 Side learner’s architecture

The side learner g takes two inputs: x and f(x). The combination of image features and
prediction result in uncertainty map that depends on the initial image and on the prediction
of f. The design of this architecture is inspired by empirical observations on the prediction
error maps. We notice that, for pixel-wise regression tasks, prediction errors are organized 1.
along edges of connected domains in the prediction map; 2. as hard predictable areas which
are not captured in the prediction map but only exist in the RGB image, e.g. distant or small
objects and occlusions. Therefore, the RGB image needs to be combined with the prediction
map to recover the semantic information absent from the main task prediction. Meanwhile,
we use convolutional features given by the encoders with a final fusion block to better cap-
ture the edge information [36]. The concatenated convolutional features are followed by a
context block [44] described as follows.

We structure the side learner g in the following three parts, with Figure 2 showing the general
design for our pixel-wise uncertainty estimator.

1. Feature encoders: They aim to learn and extract the richer convolutional feature pyra-
mids [36] from raw input (RGB data) and from the final prediction map preparing for the
next steps. We choose the widely used backbone DenseNet [23]. Note that the architecture
is agnostic, and DenseNet could be replaced by the other backbones like ResNet [17], de-
pending on the context. The image encoder in g can be trained from scratch but can also
be replaced by the trained and frozen image encoder from f. It depends on how closely the
image input is related to the prediction error. If we have multiple images as a concatenated
input, we need to encode the image on which the prediction error is based. We recommend
using the same structure for the feature extractors of the image and the prediction map, so as
to avoid information asymmetry. The following operations will be done from coarse to fine.
2. Feature fusion: For each pair of RGB and final prediction features, we concatenate them
followed by the convolutional layers in order to reduce the channel number. Dropout layers
are implemented before the features are input to the convolutional layer, to reduce the bias
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Figure 3: 1D synthetic regression task comparison example. X-axis: spatial coordinate of the Gaus-
sian process. Green curve: ground truth; Blue points: training samples; Red curves: main task predic-
tion; Orange zooms: the uncertainty coverage (1-sigma for inner interval, 2-sigma for outer interval).

caused by focusing on specific patterns. The goal is to find the similarity and the difference
between two sources of features to bring out the lost information during main task training.
3. Context block: The architecture of this block follows that of the context network in
PWC-net [44]. With various dilation ratios, the convolutional layers can take the features
from different size of receptive fields. The output intermediate uncertainty from the previous
stage will be up-sampled and concatenated as a guide feature to the input of current stage.
After obtaining the output of the context block with different resolutions, we up-sample these
outputs toward the same size as the prediction target and then use a simple convolutional
layer to sum them up with different weights as a final fusion output.

3.3 Loss design

1. Natural loss: A straightforward way is to use mean square error loss (MSE) for [, in eq. 1
and eq. 2. In order to prevent the distribution of training target from being too sparse, we
take L, (f(x),y) = | £(x) — .

2. Target scaling: The uncertainty of the regression task is expressed across a support based
on the current value of the variable, with the support being contained in R. The uncertainty
of the classification task is related to the confidence of the classifier output, which is set to
take values in the range is [0, 1]. Hence we process /,(f(x),y) to bound it between 0 and
1. This can also avoid the influence of the effect from the outliers which have significant
prediction errors thanks to the following equation :

L(£(x),) = tanh(2 * L, (£(x), ) 3)

where A is a stretch hyper-parameter that can spread the training target as much as possible
between 0 and 1, and [, (f(x),y) is the normalized uncertainty target.
3. Cross-Entropy Loss: After having normalized the uncertainty /,, we select cross en-

tropy loss to describe the probability distance between training target /, and our predicted
uncertainty. Since [, € [0, 1], we choose a binary cross entropy (BCE) loss as L in eq. 1:

L(lu:8) = = Lillu(f(x1).y:) log(0 (g(f (x:). %)) + (1 = Lu(f (x:). 1)) log(1 — o (g(f (x:).x:)))]  (4)
where o(.) is the sigmoid function. Note that here we use BCE loss not for doing classifi-
cation, but for regression, and BCE can support a faster convergence for a Sigmoid output
value. By calculating the first derivation of eq. 4 with respect to 6(g), we can find that the
optimum will be 6(g) = i,.


Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018


YU ET AL.: SIDE LEARNING UNCERTAINTY FOR REGRESSION PROBLEMS WITH SLURP7

4 Experiments

Our main focus is on obtaining high-quality uncertainty maps on pixel-level regression tasks.
However, in order to illustrate more comprehensively our approach and show its applicabil-
ity in a different context, we also apply SLURP on a 1D toy dataset. Overall, our proposed
method is illustrated on a synthetic 1D regression dataset, and on two fundamental computer
vision tasks: optical flow (OF) and monocular depth (MD). For the former, we just visualize
it to give some reference and insights. For the later ones, we evaluate the quality of predicted
uncertainty maps, the basic idea is to see whether the predicted uncertainty map matches the
prediction error. To this end, we re-implemented the transferable uncertainty estimation ap-
proaches MC-Dropout (MC) [12], Single predictive uncertainty (Single-PU) [29], Empirical
ensembles (EE), ConfidNet (Confid) [7] and Deep ensembles (DE) [32] to the main task as
the comparisons. Due to its particularity, we reproduce the multi-hypothesis prediction net-
work (MHP) [26] only for the optical flow task. Specifically, to transfer Confid solution from
the classification task to the regression task, we duplicate the last few layers from the last
de-convolutional layer (or up-sample operation) and add three extra 3x3 convolutional layers
without changing the resolution as ConfidNet for regression. We keep the training schedule,
and the pixel-wise square error maps will replace the original training targets. We use two
evaluation criteria: AUSE and AUROC to evaluate uncertainty maps generated by differ-
ent methods. Additionally, we measure the efficiency of main task - uncertainty estimator
system from two perspectives: Runtime and Number of parameters. The specific formulas
as well as the implementation details for the methods we compare with are provided in the
supp. material.

4.1 1D regression task toy example

We compare our proposed solution with MC [12], EE, Single-PU [29] and DE [32] on a
1D regression task dataset. The toy dataset is generated by Gaussian process, our spatial
coordinate range is x; € [—10,10]. From x; € [—7,7], we cross-select 875 data points as
training set and 175 data points as validation set. From x; € [—10, 10], we randomly select
400 points as test set. The main task predictor f with single output has only one hidden layer,
the Single-PU and DE are implemented based on a modified dual-output f. The detailed
model and training settings for all the methods are in the supp. material. Moreover, we
use two modes to train our SLURP side learner g. One is that we first train one f, then we
freeze it and train the g with the prediction result from f and the latent feature extracted
from the single hidden layer in f, i.e., sequential-training, which is the original design of
our approach. Another one is that we train f and g at the same time by using the negative
log-likelihood loss [29], i.e., joint-training. Because of the data dimension, the side learner
shown in Fig 2 is modified (see supp. material). As illustrated in Fig 3, the results of MC [12]
and EE give a good uncertainty on the unseen area, but little on the training part. While
DE [32] and Single-PU [29] can give a sufficient uncertainty to all areas. But in comparison,
their main task prediction accuracy has been affected. SLURP can achieve both reasonable
main task accuracy and tight uncertainty coverage especially for joint-training one.

4.2 Evaluation protocols for pixel-wise tasks

MD and OF are two fundamental regression tasks which have significant implications in a
wide range of applications. In terms of inputs, the main difference is that MD requires a
single RGB image, while OF needs an image pair. For each pixel, the MD output is a depth
value y; € R+, while the OF output is a 2-channel displacement vector y, € R>. We intro-
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duce below the evaluation criteria.

1. Uncertainty ordering: Let us consider that we want to remove the worst pixels based
on an uncertainty estimator; we expect that a good uncertainty estimator should allow us to
remove the less reliable data. This is evaluated thanks to the sparsification curve (SC), and
the area under sparsification error (AUSE) [5, 26, 30, 31, 40]. To build the SC, given a
set of data and their uncertainty, we iteratively erase m% (we take m = 5 in our experiments)
of the data which exhibit the highest uncertainty. Then we calculate the average prediction
error for the remaining data. Hence we have the SC. To evaluate the oracle SC, we remove
the m% data with the most significant prediction error and we calculate the average predic-
tion error for the remaining data. We denote the area between the two SC curves as AUSE.
The smaller the AUSE, the closer the order of the predicted uncertainty and the order of the
Oracle. As a note, AUSE could be changed if we change the error metric. Therefore, we
denote AUSE based on different error metrics as AUSE-xxx.

Implementations: Specifically, for monocular depth, we choose square error and absolute
relative error [11] .The corresponding AUSEs are AUSE-RMSE and AUSE-Absrel. For op-
tical flow we use EPE, which is the error map representing the Euclidean distance between
the ground truth motion and the predicted one, we denote its AUSE as AUSE-EPE.

2. AUROC: Since we have access to a soft evaluation of uncertainty, it is feasible to thresh-
old the dataset into two sets, namely the reliable set and the unreliable set. We propose for
MD to set the data as reliable if they check the inlier metrics threshold d1 criterion proposed
in [22], and for OF data is reliable if its EPE is below k = 2. We scale the predicted uncer-
tainty between 0 and 1 with min-max scaling and evaluate the ROC curve. The larger the
AUROC, the more data points are given correct confidence (uncertainty) and the better the
uncertainty estimator is.

3. Model efficiency: Due to the different schemes of uncertainty generation design, we
will measure the number of model parameters and time consumption of the entire system (#
Param.), including the main task model and uncertainty generator. We count the running
time (Runtime) while processing a whole testing dataset in one NVIDIA TITAN RTX GPU
and Intel Core 19-10900X CPU then take the average according to the number of samples.

4.3 Monocular depth

In this section, we introduce uncertainty estimations for MD. We choose BTS [33] as the
depth estimator, and the uncertainty estimators will be implemented based on this architec-
ture. BTS is one of the state-of-the-art architectures on MD benchmarks [14, 42]. As an
encoder-decoder based network it is well suited for the extraction of latent image features as
shown in Fig 2, however note that our strategy is agnostic to the main task architecture. In
accordance with the default setting, we choose DenseNet161 [23] as encoder for BTS. So for
our side learner, we take the trained and fixed image encoder of BTS as our image encoder,
and implement a new DenseNet161 encoder for estimated depth map.

Datasets and procedures We choose two widely used datasets and their variations to train
and evaluate uncertainty estimators as follows. Training set: KITTI [14, 46] Eigen-split
training set [11]; Fine-tuning set: Cityscapes training set [8]; Test set: KITTI Eigen-split
test set, Cityscapes test set, Foggy Cityscapes-DBF test set [41] with three severity levels
and Rainy Cityscapes test set [21] with three parameter sets which indicate three severities.
KITTI depth dataset and Cityscapes dataset are both outdoor datasets. However, since the
ground truth on KITTI is sparse and has only half the content of the image, the model per-
formance is limited if training on KITTT and testing on Cityscapes. Therefore, we first train
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Datasets Criteria MC EE Single PU DE Confid Ours
AUSE-RMSE  8.14  3.17 1.89 1.68 1.76 1.68
KITTI AUSE-Absrel 9.48 5.02 4.59 432 4.24 4.36

AUROC 0.686  0.882 0.882 0.897  0.892 0.895

AUSE-RMSE 942 1156 9.91 1147 1048 9.48

CityScapes ~ AUSE-Absrel ~ 9.52  13.14 9.96 9.36 5.75 10.90
AUROC 0.420  0.504 0.386 0.501  0.519 0.400

After fine-tuning on CityScapes

AUSE-RMSE  7.72 820 435 3.03 4.05 3.05

CityScapes ~ AUSE-Absrel ~ 8.13 7.50 6.44 6.81 6.34 6.55
AUROC 0.705  0.786 0.741 0.856  0.821 0.849

AUSE-RMSE  7.06 729 4.17 3.42 4.89 3.39

CityScapes

Rainy s=1 AUSE-Absrel ~ 8.73 6.92 6.55 6.68 7.26 5.62
AUROC 0.659  0.757 0.731 0.746  0.697 0.788
CityScapes AUSE-RMSE  7.14 6.9 4.27 3.35 4.68 3.36
Rainy s=2 AUSE-Absrel 836  6.48 6.79 6.24 6.86 5.28
AUROC 0.667 0.767 0.731 0.756  0.714 0.794
CityScapes AUSE-RMSE 730  6.66 4.35 3.28 4.59 3.41
Rainy s=3 AUSE-Absrel ~ 8.27 6.03 6.44 5.85 6.64 5.05
AUROC 0.665 0.778 0.742 0.767  0.729 0.801
CityScapes AUSE-RMSE 780  7.82 342 3.05 3.98 3.04
Foggy s=1 AUSE-Absrel 836  7.33 6.78 6.58 6.21 6.25
AUROC 0.700  0.783 0.842 0.852 0.824 0.847
CityScapes AUSE-RMSE 782 753 342 2.98 3.86 3.01
Foggy s=2 AUSE-Absrel 8.20 7.09 6.55 6.35 6.02 6.06
AUROC 0.704  0.791 0.847 0.857 0.833 0.852
CityScapes AUSE-RMSE ~ 7.84 728 3.48 2.93 3.70 3.08
AUSE-Absrel ~ 7.87 6.80 6.19 6.01 5.78 5.80
Foggy s=3

AUROC 0.715  0.801 0.851 0.863  0.846 0.857

Table 1: MD uncertainty performance. Bold value: result with the best performance, Blue value:
second performance. s (e.g s=1) indicates severity, higher the s value, higher the severity.

models on KITTI Eigen-split training set then evaluate the uncertainty on KITTI Eigen-split
test set and Cityscapes test set. After that, we fine-tune the models on Cityscapes training
set and evaluate the uncertainty on all Cityscapes test sets listed above. Results Table 1
presents the performance of different methods in normal circumstances and against gradual
input perturbations. The top performing method is highlighted in bold, while the second one
is highlighted in blue. SLURP, ConfidNet and Deep ensembles exhibit competitive perfor-
mance being both ranked close in terms of uncertainty ordering on the different metrics, with
our proposal being clearly more robust against strong input perturbations.

4.4 Optical flow

FlowNetS [9] is a popular OF architecture, as the first learning-based optical flow estimation
method. We apply it as our main task model and implement the uncertainty estimators based
on it, since it can be regarded as a good example for uncertainty estimation on early structures
with special inputs. FlowNetS is also an encoder-decoder network, however - differently
from the more recent architectures with a separate feature extractor implemented for the first
image [24, 25, 40, 44, 48], FlowNetS takes directly image pairs as encoder input, so the
features from different encoder stages will be mixture feature maps of two RGB images.
Since the ground truth motion is based on the first image, the true error will be based only on
the first image, we use a new encoder to extract the RGB features only for the first image. In
this case, in our side learner, we use two trainable encoders respectively for the first image
and the predicted flow. We choose both DenseNet161 and DenseNet121 [23] as the encoders
in our experiments and we denote the latter Ours-light as a lightweight version of the former.
Datasets Training set: synthetic FlyingChairs training set [9]; Testing set: FlyingChairs test
set, synthetic Sintel training set [6] and real-world KITTI 2015 training set [14, 37, 38]. The
train-test split file for FlyingChairs dataset is provided officially. Sintel has more complex
moving objects and movements than FlyingChairs, while KITTI is taken from real-world,
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Datasets Criteria MC EE Single PU DE Confid MHP || Ours-light  Ours
FlyingChairs AUSE-EPE 275 1.97 1.28 1.26 1.92 1.88 1.16 1.20
AUROC 0.896  0.900 0.977 0.959 0945  0.936 0.977 0.974

KITTI AUSE-EPE  3.57 4.41 371 345 6.56 5.48 520 4.69
AUROC 0.870  0.904 0.848 0.866  0.687  0.854 0.791 0.800

Sintel Clean AUSE-EPE 333 2.89 2.74 3.02 5.28 2.61 3.02 2.91
AUROC 0.861  0.825 0.925 0.895  0.767  0.886 0.889 0.896

Sintel Final AUSE-EPE 3.30 3.02 3.09 3.05 6.06 2.71 2.95 2.86
AUROC 0.858  0.814 0.916 0.899 0.728 0.878 0.901 0.906

Table 2: OF uncertainty performance. Bold value: result with the best performance. Blue value:
second performance.

Task Criteria MC EE Single-PU DE Confid MHP || Ours-light Ours

MD Runtime (ms) 386 144 98 286 106 - 88
#Param. (M) 47.0 141.0 94.0 282.0 947 - - 87.2

OF Runtime (ms) 79 65 64 66 65 67 65 76
#Param. (M) 38.7 116.1 38.7 1163  78.6 78.8 57.0 105.3

Table 3: Average time cost for processing one image and number of parameters of the model(s) (main
task + uncertainty task). Bold value: result with the best performance. Blue value: second performance.

and exhibits larger movement magnitude.

Results Table 2 shows the uncertainty estimation performance on the various OF datasets.
Even though all uncertainty estimators are not fine-tuned on datasets other than the training
set, they maintain a good estimation level. On this very different scenario, MHP did a good
job due to its pertinence, but our side learner performs competitively and robustly across all
tests/metrics.

4.5 Model efficiency

Datasets and settings We select to use Sintel training set [6] and KITTI [14] Eigen-split
validation set [11] as the testing sets for Runtime evaluation. We use three models to form
EE and DE and eight forward propagations for MC. In MD, due to the instability of training,
we use sequential-training for Single-PU and DE. More details are in the supp. material.
Results Table 3 shows the model efficiency in two tasks. In OF task, due to the convenience
of modifying the main task model, we confirm that Single-PU is more efficient than the other
methods, while our lightweight version can achieve comparable performance. For MD, due
to the complexity in implementation for joint uncertainty generation, the side-learner-based
methods have a fixed computational footprint and take significant advantage in the cost. In
addition, our solution can reuse without re-tuning the main task encoder, so it is lighter and
faster than the other auxiliary networks.

5 Conclusion

In this work we proposed a novel solution for estimating the total uncertainty of a DNN.
SLUREP is a side learner that does not affect the main prediction estimator. Given a trained
main task model, we use the original input and main task prediction results as input, and the
prediction error as the target. Following feature extraction, fusion and content reconstruction,
we train for the total uncertainty of the main task prediction. SLURP can also exploit latent
features of the original input provided by a frozen feature extractor of the main task model,
such as an image encoder. We compared our proposal with popular uncertainty estimation
approaches, and performed detailed experiments on 2D pixel-wise regression tasks to prove
that our method is feasible and robust. Future works involve further optimizing the SLURP
structure to decrease its footprint and make it accessible for embedded processing, as well
as applying this side learning concept to other types of input signals.
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