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Abstract

Videos are a popular media form, where online video streaming has recently gathered
much popularity. In this work, we propose a novel method of real-time video stabiliza-
tion - transforming a shaky video to a stabilized video as if it were stabilized via gimbals
in real-time. Our framework is trainable in a self-supervised manner, which does not
require data captured with special hardware setups (i.e., two cameras on a stereo rig
or additional motion sensors). Our framework consists of a transformation estimator be-
tween given frames for global stability adjustments, followed by scene parallax reduction
module via spatially smoothed optical flow for further stability. Then, a margin inpaint-
ing module fills in the missing margin regions created during stabilization to reduce the
amount of post-cropping. These sequential steps reduce distortion and margin cropping
to a minimum while enhancing stability. Hence, our approach outperforms state-of-the-
art real-time video stabilization methods as well as offline methods that require camera
trajectory optimization. Our method procedure takes approximately 24.3 ms yielding 41
fps regardless of resolution (e.g., 480p or 1080p).

1 Introduction
Due to the recent popularity in social networking services (SNS), videos have become a
popular media form, demanding higher visual quality as time progresses. Recently, cameras
(including smartphones) make use of hardware configurations to produce stabilized videos.
One such method is the Optical Image Stabilizer (OIS), which negates instability caused by
hand movements via adjusting the optical lens positions. Another mechanism is the Elec-
tronic Image Stabilizer (EIS) that is designed to compensate for more substantial motion.
However, these methods require specialized motion-sensing hardware synchronized with
image capture, and may lead to significant cropping of the frame boundaries of the original
video, which results in an inevitable zoom-in effect. Fig. 2 shows a real example of a video
captured with OIS and EIS.

To cover such limitations, software approaches have been developed typically for offline
purposes, namely post-processing of existing videos [8, 17, 18]. Offline approaches have
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Figure 1: Illustration of ap-
proach. Given a shaky cam-
era path (black line profile),
our method applies global trans-
forms(top row). Then, spa-
tially smoothed flow warping is
applied for further stability(2nd
row). Lastly, the image margins
are inpainted to minimize miss-
ing regions (last row).

Figure 2: Example of the crop-
ping ratios among OIS+EIS, our
method and original frames taken
by a Galaxy S10. OIS+EIS ex-
hibits zoom-in effects.

shown success with stabilization quality, but the computational speed is an issue. More re-
cently, due to the growing popularity in online streaming, works on real-time methods [19,
20, 29, 30] have been introduced. Especially, deep learning-based methods [29, 30] uti-
lize the fast feed-forward mechanism and a supervised approach to realize real-time perfor-
mance. Compared to offline methods, however, the real-time approaches exhibit a slight
loss of stability and increased distortion artifacts. Moreover, supervised learning methods
require capturing simultaneous ground truth footages for supervised learning, which is a
time-consuming process.

A desirable video stabilization can be characterized by minimal cropping, low visual dis-
tortion, and high stability. In this work, we propose a deep learning-based approach to enable
real-time video stabilization with these aspects. The idea is to introduce a cascade module
which consists of a coarse (global) stabilizer and a fine (detail) stabilizer to handle complex
camera motion in the wild effectively. The coarse stabilizer estimates the rigid inter-frame
transformations among the multiple (unstable) frame inputs for global adjustment of sub-
sequent frames. Next, a fine stabilizer applies the spatially smoothed optical flow between
input frames to handle parallax and spatially varying instability. Both stabilizers use moving
average filters to suppress noisy camera motion without explicitly optimizing camera trajec-
tories. After the stabilization step, the inpainting module fills in the blank margins induced
by the stabilization process. Fig. 1 shows an illustration of the process.

A notable aspect of our method is that our approach does not require any ground truth
videos for deep architecture training, but yet manages to produce strong stabilization effects
in a self-supervised manner. This distinguishes our method with supervised methods [29, 30]
that require sets of two videos, one of which is unstable while the other is physically stabi-
lized with gimbals, captured simultaneously. The proposed network is fully convolutional
and is trained end-to-end, where our model achieves real-time regardless of input video size
(e.g., 480p or 1080p) with a single GPU. The contributions of our work are listed as follows.

• We propose a real-time approach for video stabilization. The input video is stabilized
via a single feed-forward through the constituent modules.
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• We introduce a self-supervised training method for video stabilization. Therefore,
existing videos can be used for network training.

• Our method induces low levels of cropping, low visual distortion, and high stability.
The proposed approach outperforms the state-of-the-art methods both quantitatively
and qualitatively.

2 Related Work
Video stabilization approaches consist of offline and real-time methods. Offline methods are
characterized by strong stabilization effects while having a high computational load. On the
other hand, real-time methods are computationally efficient but convey weaker stabilization
effects compared to offline methods. We briefly address offline and real-time approaches in
the following.

Previous works on offline methods deal with techniques including Structure from Motion
(SfM) [12], depth information [16], 3D plane constraints [33], 3D reconstruction [2], light
fields [27], gyroscopes [1, 11, 24], and partial 3D information [7, 13, 14]. Image-based
methods have also shown sufficient quality [3, 6, 10, 22, 32]. Grundmann et al. [8] apply L1-
norm optimization for camera path computation and extend the approach to handle rolling
shutter effects [9]. Liu et al. [17] model camera paths for each image patches, and extend
the idea to model the entire pixel profiles [18]. This work shows that spatially smoothed
flow is useful for stabilizing frames, which our approach builds upon. Recently, Choi and
Kweon [4] introduce an iterative frame interpolation approach to video stabilization.

Real-time methods typically employ more efficient computations while using historical
frames to estimate stabilization parameters. Liu et al. [19] proposes computing sparse mesh
profiles via applying median filters to pixel profiles. This idea is extended further to video
coding [20]. Limitations of these methods are the slight wobbling artifacts and relatively
low stabilization quality compared to offline methods. Recently, deep learning-based algo-
rithms [21] take advantage of fast feed-forward capabilities. Wang et al. [29] propose a su-
pervised learning approach to video stabilization by defining the novel stability and temporal
loss terms. Similarly, Xu et al. [30] proposes training an adversarial network in a supervised
manner, which estimates transformation parameters to generate stabilized frames. Compared
with those approaches, our approach does not require stable videos for training. Recently,
Yu and Ramamoorthi [32] propose a learning method using principal components of opti-
cal flow information. Our approach estimate smooth warping field via neural network and
produces high-quality stabilization.

The core module of our pipeline is related to deep image tranformation estimation and
image inpainting. Deep homography estimation [5, 23] enables transformation matrix esti-
mation between two frames without explicitly extracting image features. On the other hand,
advances in image inpainting tasks employ specific deep architecture components for natural
inpainting quality [15, 31]. Although image boundary inpainting is a difficult task, our deep
margin inpainter utilizes multiple adjacent frames to fill in frame boundaries.

3 Architecture
We aim to achieve high-quality stabilization and high computational speed via three sequen-
tial modules, namely the coarse stabilizer, fine stabilizer, and margin inpainter. The overall
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Figure 3: An overview of the Coarse-Net, Fine-Net and Margin-Net during testing. The
Coarse-Net computes the transform parameters among input frames with respect to the center
image Ii, which are then averaged to transform Ii to Ci. The Fine-Net compute the mean of
the flow maps to warp Ci, generating Fi. Finally, the Margin-Net takes Fi and neighboring
input frames to generate Fm

i , which is applied with the margin mask to generate the final
output frame Oi.

process of our method is illustrated in Fig. 3. The coarse (first) stabilizer estimates the rigid
transformations among frames to globally transform a frame for stabilization. The fine (sec-
ond) stabilizer estimates the spatially smoothed flow among frames to adjust the remaining
instability. Finally, the margin inpainter fills in the frame boundaries to reduce the need for
cropping. Unlike prior work that runs offline, our approach does not involve any optimiza-
tion, camera pose estimation. Instead, sequential feed-forward passes of the coarse and fine
networks produce the stabilized frames, which has been shown to be effective [32].

3.1 Coarse stabilizer
Our approach first estimates the image transformations between video frames.1 The network
for coarse motion estimation (Coarse-Net) is built upon the U-Net architecture [26] followed
by fully connected (FC) layers to estimate the transformation parameters. The Coarse-Net
takes an optical flow F j→i from image pairs (I j, Ii) and produces the transformation param-
eters that can relieve abrupt motion. The network is shown in Fig. 3 (a).

With this procedure, an i-th image Ii has the estimated transformation parameters p j→i
of the adjacent time stamps j ∈N . They are averaged to produce a transformation matrix T.
It is obtained from pi as defined below:

pi :=
1

2N

N

∑
j=−N, j 6=i

pi+ j→i. (1)

T adjusts the target frame to produce Ci = T(Ii) for stabilization.2 This procedure is equiva-

1We empirically found the 3-DoF rigid transformation
[R(θ) t

0 1

]
is surprisingly effective for video stability, com-

pared with transformations having higher DoF. The supplement summarizes our experiment results on other type of
transformations that include scale and/or shear. Please note that the combination of Coarse stabilizer and Fine sta-
bilizer and their moving average can effectively handle challenging motions (zoom, parallax, and so on), as shown
in Fig. 6, 7.

2For convenience, we denote T as a transformation matrix as well as a function that transforms image using T.
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Input frame Raw optical flow Our smoothed flow
Figure 4: The Fine-Net produces spatially
smoothed flow maps via a single feed for-
ward operation that is purely induced by
camera movement. The raw optical flow
responds to the foreground, while our net-
work is agnostic to it.

lent to applying the moving average filter [28] to the relative displacements between frames
within the window 2N. Since the moving average filter is a low-pass filter, it leads to noise
suppression effects. This procedure enables finding the transformation to stabilize the target
frame, while avoiding expensive camera pose estimation and optimization.

3.2 Fine stabilizer
The image transformations estimated by the coarse stabilizer alone is not enough to handle
parallax and spatially varying instability. To stabilize such spatially varying instability, we
employ spatially smoothed optical flow. This stage is inspired by Liu et al. [18]’s work.
It demonstrates spatially smoothed pixel trajectories are what essentially underlies between
stabilized frames.

In practice, the smooth flow should be robust to foreground object movement. For exam-
ple, a moving person in a scene cannot interfere with the optical flow that is induced solely
by camera movement. Prior methods implement the smooth optical flow by identifying pix-
els with discontinuous flow vectors [18], which can be a slow process. Instead, we utilize a
simple neural network generating the smoothed optical flow through a single feed-forward.

In this regard, the architecture of the fine stabilizer (Fine-Net) produces smooth flow
with a tiny U-shaped network. Fine-Net applies subsequent down-sampling of the features
for filtering noisy motions. In addition, the average pooling layers in the network further
induces spatial smoothness. Thus, by design, the Fine-Net does not produce high-frequency
flow. Fine-Net is shown in Fig. 3 (b), and examples of smooth flow are shown in Fig. 4. It
shows that output flow is agnostic to small foreground movement.3

Likewise in the coarse stabilizer, the moving average is applied to a group of smooth
flow maps in a sliding window manner as Eq. (1). Averaged flow map generated from a
window of Ci frames, produce a stabilizing warp W for frame Ci, resulting in Fi. Unlike the
recent work by Yu and Ramamoorthi [32], our approach does not require an additional PCA
component, and solves the problem with simple network architectures.

3.3 Margin inpainter
As frames are adjusted to stabilized positions, missing blank regions are inevitably cre-
ated at the frame margins. This is due to temporally unseen content during camera shakes.
Thus, a typical post-processing, cropping the boundary of frame was needed in previous ap-
proaches [17, 19, 29] to conceal missing blank regions. However, excessive cropping leads
to loss of original content and the zoom-in effect as a consequence. We attempt to minimize
such cropping via the margin inpainter.

Our approach takes five frames, namely Ii−2, Ii−1, Fi, Ii+1, and Ii+2, where Fi is the
warped image obtained from Fine-Net. For motion compensation of the adjacent frames, the

3In Fig. 4, we use the full-sized images for the raw optical flow computation for the illustration. Fine-Net uses
resized video instead for optical flow computation as discussed in Sec. ??.
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Figure 5: Overview of all loss functions for self-supervised training. Losses for Coarse-
Net (yellow box), Fine-Net (green box), and Margin-Net (blue box) are shown. For each
network, the original image Ii is being self-augmented using the random image transforms
(gray box), and it is used for the loss function shown in red. For the data augmentation,
256×256 patches are used for training from the original image in the training phase.

smooth flow maps estimated from the Fine stabilizer are used to warp adjacent frames to the
stabilized center frame Fi. The aligned image frames are fed as input to the Margin-Net, as
shown in Fig. 3 (c).

Inspired by the gated convolutions [31], we implement the pixel gates via convolutional
layers that act as spatial attention modules. Adopting gated convolutions leads to effectively
handling the arbitrary shapes of the boundary masks, which is beneficial compared to the
equivariant nature of vanilla convolutional layers.

As a result, the Margin-Net learns how to combine adjacent frames to fill in the missing
area of Fi, and produces the inpainted image Im

i . The Margin-Net concatenates the original
Im
i and warped frames Fi as input to generate the inpainted frame Oi.

4 Self-Supervised Learning
To train Coarse-Net, Fine-Net, and Margin-Net appropriately, we propose a novel self-
supervised learning scheme. This distinguishes our approach with supervised methods [29,
30]. We carefully design the training methods for each module4, which is a crucial aspect of
making our approach work. An overview of the loss functions is depicted in Fig. 5.

4.1 Training Coarse-Net
To train the Coarse-Net, we generate a pair of an original image and a randomly transformed
image. The random transformation parameters p (e.g., rotation, translation) is sampled from
a bounded uniform distribution ranging up to 30 degrees and 50 pixels respectively.

Learning by random augmentation. As the first step, the image Ii is transformed via the
random rigid transformation matrix, yielding T(Ii). Then, the flow map between Ii and T(Ii)
is computed and fed to the Coarse-Net which estimates the parameter vector p′. Ii is then

4It is worth to note that all three networks in our pipeline can handle an arbitrary size of images – Coarse-Net
and Fine-Net take rescaled flow fields as input, and Margin-Net is fully convolutional. With this in mind, we use
smaller patches of 256×256 pix. of the video frames, to augment data and to reduce memory consumption during
training. The cropped frames can be flipped horizontally or vertically for further augmentations.
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transformed with p′ and results in Ci. We use the L1 loss function between the randomly
transformed frame T(Ii) and the estimated transformed frame Ci defined as:

Lt = ‖T(Ii)−Ci‖1 (2)

In addition, since we know the exact (randomly generated) ground truth (GT) param-
eter values, we can penalize the discrepancy between the GT parameter vector p and the
estimated vector p′. The loss is Lp = ‖p−p′‖1.

Learning by predicting rigid transformation. Lt and Lp show losses using a rigidly trans-
formed version of the same frame. In addition to these synthetic augmentations, another type
of loss teaches how to roughly align temporally adjacent image pairs.

For this purpose, we collect adjacent frames of Ii towards each of the K neighboring
frames from both sides5, such as Ii−K , ..., Ii−1 and Ii+1, ..., Ii+K . In this training phase, the
optical flow is computed via inputs (Ii, Ii+k), and the Coarse-Net estimates the transform
parameters pi+k. pi+k transforms Ii and produces Ci+k. Now we apply the sum of L1 losses
using Ii and Ci+k, Ln = ∑

k∈±[1,K]
‖Ii+k−Ci+k‖1. This loss function makes Coarse-Net to learn

rigid transform parameters for roughly aligning adjacent frames. This loss term increases
the robustness for handling dynamic scenes.

Thus, the overall training loss for the Coarse-Net is the weighted sum of the three losses
LC = αLt +βLp + γLn, where α = β = 1.0 and γ = 0.1.

4.2 Training Fine-Net
Learning by random augmentation. Training Fine-Net is similar to the training steps for
Coarse-Net. We reuse the randomly transformed image T(Ii) in Eq. (2) and compute the
optical flow between T(Ii) and Ii. This flow map is fed through the Fine-Net, producing a
smoothed flow map. Frame Ii is then warped by performing the backward warping technique,
using the computed smooth flow, producing the warped frame W(Ii). The L1 loss is applied
between T(Ii) and the estimated frame W(Ii), such as L f = ‖T(Ii)−W(Ii)‖1.

This loss helps the network to learn a relatively simple warping map which provides a
warm start for training. Note that the spatially smoothed flow maps are produced by the
Fine-Net’s architecture design, as shown in Fig. 3 (b).

Learning by predicting smoothed flow. The Fine-Net aims to estimate smooth flow maps
between neighboring frames and Ii. We apply the sum of L1 losses to the K frames as
follows: LN = ∑

k∈±[1,K]
‖Ii+k−Fi+k‖1, where Fi+k is the frame Ii warped towards Ii+k using

the Fine-Net’s predicted smoothed flow. The overall training loss for the Fine-Net is the
weighted sum of the two losses LF = αL f + γLN , where α = 1.0 and γ = 0.1.

4.3 Training Margin-Net
The task of the Margin-Net is to fill in natural content in the blank margins of Fi, as shown in
Fig. 3 (c). To train this network, we prepare a pair of images, with or without blank margins.
In order to obtain such images, we reuse T(Ii) in Eq. (2). In addition, the same random
transform is applied to the full-sized image of the dataset, and then cropping is applied. In
contrast to T(Ii), this procedure preserves the content at the frame boundaries, as shown in
Fig 5. Let us call this image TC(Ii).

5We use K = 2 in our experiment.
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Figure 6: Quantitative comparison with the state-of-the-art video stabilization methods [7,
8, 12, 13, 17, 18, 19, 20, 29, 30]. The results are evaluated with the three metrics: cropping
ratio, distortion value, and stability score. Higher values indicate better performance.

Learning to inpaint. Using the stabilized frame Fi and warped images of [Ii−2, Ii−1, Ii+1,
Ii+2] as input, the Margin-Net outputs an inpainted frame Im

i , utilizing the information from
the given adjacent frames. The Margin-Net is trained by the L1 loss between the transformed
frame TC(Ii) and the inpainted image Im

i : Lg = ‖TC(Ii)− Im
i ‖1.

Furthermore, we can isolate the loss to focus only on the inpainted region by applying a
mask to both TC(Ii) and Im

i : Ll = ‖m� (TC(Ii)− Im
i )‖1, where m is the inpainting margin

mask and � denotes the element-wise product. Since the stabilized frame Fi is used as
input, a mask indicating the inpainting region can be computed via the estimated transform
parameter and flow map from the preceding Coarse and Fine-Net. Using these two losses
together increases the training stability: LM = Lg +Ll .

5 Experiments
For thorough evaluation, we conduct an extensive quantitative comparison to both offline and
state-of-the-art real-time methods, visual comparisons, analysis against a commercial prod-
uct that runs offline, and ablation studies. We also present results on full resolution videos,
namely nHD (640×360), HD (1280×720), and FHD (1920×1080). For approaches without
public code, we refer to the reported numbers in each paper. For quantitative comparison,
we use three commonly used metrics [17, 19, 20, 29, 30] to assess video stabilization qual-
ity, namely the cropping ratio, distortion value, and stability score. For details including
implementation details, please refer to the supplementary material.

Test videos. Prior arts use videos that are publicly available from Liu et al. [17]. However,
it is important to note that no prior work validates all videos provided by Liu et al. [17] for
video stabilization. Instead, each method uses an arbitrary subset of the videos. To configure
the same experimental setup and to respect the numbers reported by state-of-the-arts, we use
the union of the video sets that were tested by them [7, 8, 12, 13, 17, 18, 19, 20, 29, 30].
Therefore, some videos that are not tested by an approach is not displayed in this paper.

The union of video set consists of 19 video clips, and it covers forward/backward motion
(#1-5, 9, 10, 18), side motion (#6, 7, 11, 12, 14) zoom-in and zoom-out (#8, 17), the rolling-
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Figure 7: Visual comparison with offline approaches [9, 17, 19, 29] in terms of zoom-in
effect. Pink bounding boxes of the same size are magnified to show image regions at the
same respective locations. Our approach shows the least amount of distortion and zoom-in
effect. Please see our supplementary video for visual results.

shutter artifact (#13, 15, 16, 19). The thumbnails of the video clips are shown in Fig. 6. Note
that our approach is validated with the union of the video sets tested by all prior works, and
we emphasize that this is the most extensive collection of comparisons in the video stabiliza-
tion literature. Furthermore, our network is trained on the DAVIS dataset [25] different from
the 19 test clips, which verifies the generalization of our approach.

Evaluation result. As shown in Fig. 6, the comparison with offline methods [7, 8, 12, 13, 17,
18], online (real-time) methods [19, 20, 29, 30], and ours indicates that the proposed method
shows favorable performance for the majority of videos. In particular, our real-time method
shows comparable cropping ratio to the recent approach proposed by Choi and Kweon [4],
although their approach runs offline and is designed to prevent any cropping.

We also conduct comparisons with a widely used commercial product, Adobe Premiere
(Pro CC 2017), and two recent approaches by Choi and Kweon [4] and by Yu and Raman-
moorthi [32]. Please refer to the supplementary material.

Ablation study. We conduct an extensive analysis of stabilization scores with various com-
bination of proposed modules (Coarse-Net, Fine-Net, Margin-Net), window sizes, regard-
ing resizing the frame inputs, types of transformations for Coarse-Net (translation, rotation,
scale, and shear). Please see the supplement for the details.

Visual comparison. Although it is not fair to directly compare our real-time method to
offline methods, we present visual comparisons to the state-of-the-art offline methods [9,
17, 19, 29] in Fig. 7. Notice that our method closely resembles the input content, while
state-of-the-art methods convey enlargements due to the zoom-in effect. Furthermore, we
can observe moderate levels of blur introduced by the other methods, whereas our approach
does not exhibit such artifacts. For detailed visual results, please refer to the supplement.

6 Conclusion
We propose an unsupervised learning algorithm for video stabilization that runs in real-
time. Our approach consists of simple and efficient modules, such as Coarse-Net for image
transform estimation, and Fine-Net for estimating the smoothed flow, and Margin-Net to
compensate cropped contents. By combining all the modules, our approach outperforms both
offline and real-time state-of-the-art methods on various videos (that shows zoom, rotation,
parallax, and so on) and is robust to severe camera movements.
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