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Abstract

Video alignment aims to match synchronised action information between multiple
Video alignment aims to match synchronised action information between multiple video
sequences. Existing methods are typically based on supervised learning to align video
frames according to annotated action phases. However, such phase-level annotation can-
not effectively guide frame-level alignment, since each phase can be completed at dif-
ferent speeds across individuals. In this paper, we introduce dynamic warping to take
between-video information into account with a new Dynamic Graph Warping Trans-
former (DGWT) network model. Our approach is the first Graph Transformer frame-
work designed for video analysis and alignment. In particular, a novel dynamic warping
loss function is designed to align videos of arbitrary length using attention-level features.
A Temporal Segment Graph (TSG) is proposed to enable the adjacency matrix to cope
with temporal information in video data. Our experimental results on two public datasets
(Penn Action and Pouring) demonstrate significant improvements over state-of-the-art
approaches.

1 Introduction
The amount of video materials available through online platforms, e.g., YouTube, has been
growing rapidly. Research in video action understanding is a pressing need due to its wide
application in video recognition, human-computer interaction, etc. However, action cate-
gories hardly capture the dynamic progression of an action. For example, during a push-up
action, a video consists of body up and body down phases as shown in Figure 1. Therefore,
the human action video alignment problem has received increasing attention in recent years,
which aims to automatically synchronise actions between multiple videos.

The nature of the video alignment task initially encourages research focusing on super-
vised learning [3, 12, 29] where each frame is predicted to match one of the action phases.
In addition, Song et al. [31] proposed unsupervised alignment with additional language re-
sources, and NN-Viterbi [27] combines a neural network and a non-differentiable Viterbi
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Pushup Action
Head at floor

Head at floor

Body down

Body Up

DGWT

Figure 1: An illustration of the video alignment pipeline using our proposed DGWT model.
The learned attention representations are used for fine-grained temporal understanding.
Highlights of DGWT include a temporal segment graph and dynamic attention warping.

process to learn from ordering supervision iteratively. At the same time, direct manual anno-
tation for visual correspondence across videos is challenging and infeasible to scale. Thus,
we focus on designing a self-supervised approach. Recently, self-supervised learning meth-
ods have been utilised to deal with the problem that an action phase can have an arbitrary
length and contain a varying number of frames in different videos. For example, Dwibedi
et al. [12] introduced a differentiable cycle-consistency loss that can be used to find corre-
sponding time points in multiple videos. Nevertheless, most of the existing research applies
a simplified approach by assuming that the phases can be aligned through key events. How-
ever, predicting the key events does not guarantee perfect alignment. As illustrated in Figure
1, the push-up action can be broken into body down and body up phases but each phase can
be completed in different time intervals with arbitrary speed of motion within that phase.
Therefore, within an action phase, a direct frame-by-frame mapping (with interpolation) be-
tween videos would not produce a perfect alignment.

To this end, this paper proposes a novel self-supervised video alignment model, Dy-
namic Graph Warping Transformer (DGWT), which predicts the action phase labels using
a Transformer-based spatio-temporal feature extraction method, with a temporal graphical
operation inserted in between the spatial and temporal transformers to further enhance the
learning of frame dependencies. Meanwhile, end-to-end learning is guided by a dynamic
attention warping loss function to optimise the model explicitly for frame alignment in addi-
tion to frame-wise phase label prediction.

Our design is motivated by the following factors. 1) Spatio-temporal feature learning
remains a challenging issue in the video analysis task. In contrast to previous state-of-the-art
architectures with sophisticated convolutions, e.g., 3D CNN or memory design, we embrace
the recent development of Vision Transformer (ViT [11]) as the Spatial Transformer and an-
other Temporal Transformer to encode spatial and temporal features. 2) Compared to many
successful graph neural networks on images, temporal data does not exhibit a straightfor-
ward graphical structure. How the adjacency matrix can be built in the context of video
alignment remains unexplored. Thus, to enhance the ability of the temporal transformer for
identifying key frames and matching the global action progress, we design a segment-level
graph operation to formulate the given sequence into a graphical model. 3) In order to
achieve explicit optimisation of frame-level alignment, we introduce the warping problem
into the self-supervised paradigm. In line with the spirit of self-supervised learning, we ex-
plore frame-level guidance between different videos via warping. Most dynamic warping
methods are imposed on low-level signals while action videos often contain extensive visual
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features and complex content. We thus designed a warping loss that is customised for videos
with multiple stages and various causal relations between actions.

Given these design considerations, our contributions are summarised as follows: 1) To
the best of our knowledge, we present the first approach that successfully introduces graph
neural networks and warping to learn representations for video alignment that demonstrates
state-of-the-art performance. 2) The spatio-temporal transformers are applied to encode local
temporal dependency into an arbitrary-length high-level attention representation. 3) Within
the spatio-temporal transformers, a Temporal Segment Graph (TSG) is designed to con-
vert temporal data into a graphical structure. With TSG, frames within a segment can be
smoothed and the distinction between segments is enhanced to effectively identify the tran-
sition of adjacent action phases. 4) We propose a Dynamic Attention Warping (DAW) loss
function that can compare videos of variable lengths based on their attention representations
to find the optimal frame alignment without extra supervision.

2 Related Work
Video Alignment. Human action recognition is a fundamental and well studied problem
in computer vision, and various standard benchmarks span across still images [6, 28, 37]
through to videos [17, 19, 30, 32]. Human action alignment as a branch of video recog-
nition task has recently received growing attention in the community. Early studies have
presented various solutions to this problem, including unsupervised learning [31], weakly-
supervised learning [5], and self-supervised learning [12, 29]. In particular, self-supervised
learning methods can effectively deal with arbitrary length videos. Time-Contrastive Net-
works (TCN) [29] is a self-supervised approach for learning representations and robotic be-
haviors entirely from unlabelled videos recorded from multiple viewpoints. Temporal cycle-
consistency (TCC) [12] loss is used to find correspondences across time in multiple videos.
Recently, Purushwalkam et al. [26] enhanced TCC loss to learn correspondence in space and
time via cross video cycle consistency. Besides, Cao et al. [4] proposed a few-shot learning
framework (Ordered Temporal Alignment Module) that can learn to classify a previously
unseen video. In contrast, we apply graph neural networks and Dynamic Programming loss
to help the model learn the representation without label supervision.
Graph Attention Networks. Neural network algorithms for processing graphical data have
become one of the most important machine learning areas [36]. Specifically, Graph Con-
volutional Networks (GCNs) [7, 8, 9, 14] can learn local and global structural patterns of
graphs with convolutional functions. However, typically the graph node neighbourhoods are
aggregated with equal or pre-defined weights which can vary greatly. Thus, other meth-
ods [33, 34, 35] have applied the attention mechanism into graph neural networks. Graph
attention networks (GATs) [34] utilise self-attention to enhance node features. The attention-
based graph neural network (AGNN) [33] is designed to replace all the intermediate fully-
connected layers with propagation layers and attention mechanisms. In our work, in contrast
to other graph attention networks, DGWT restructures sequential data into a segment-based
graphical structure data to capture relationships in videos.
Dynamic Programming. Dynamic Time Warping (DTW) [22] is one of the most popular
self-supervised algorithms for measuring similarity between two temporal sequences, and
computes the best possible alignment between two time series of different lengths. This
method has been widely applied to analyse time series applications, such as speech recogni-
tion [25, 39]. Recently, DTW approaches have been applied to a few video analysis tasks.
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Figure 2: Overall architecture of our proposed DGWT model. This end-to-end framework
consists of Spatio-temporal Transformer, graphical operation and warping optimisation.

Chang et al. [5] proposed Discriminative Differentiable Dynamic Time Warping (D3TW)
that solves sequence alignment with discriminative modelling and end-to-end training. The
Time Shift Dynamic Time Warping (TS-DTW) model [20] is derived for performing auto-
matic alignment whilst achieving data selection and matching between inherently inaccurate
and incomplete sequences. For video alignment, Haresh et al. [15] leverage the combination
of temporal alignment loss using Soft-DTW and temporal regularization terms for aligning
video sequences, and Hadji et al. [13] combined DTW loss with global cycle-consistency
loss to enforce the temporal alignment. Our work focuses on aligning action attention and
obtaining an effective graphed attention representation by utilising dynamic programming.

3 Dynamic Graph Warping Transformer
In this section, we present our Dynamic Graph Warping Transformer (DGWT) network for
self-supervised feature learning. The problem is essentially modelled as a sequential la-
belling process. Formally, given a sequence of T frames from a video X = {x1, . . .xt , . . .xT},
we aim to build an end-to-end model to predict the action phase labels Y = {y1, . . . ,yt , . . .yT}.
In our proposed DGWT, a Spatio-temporal Transformer is designed to extract spatial and
temporal features from videos. We also design a Temporal Segment Graph (TSG) that can
divide a video into several fixed-length segments to learn frame dependencies to better iden-
tify key events. In addition, a key component of our method is to extract between-video
information for video alignment. To find the optimal frame alignment without extra super-
vision, we introduce Dynamic Attention Warping into the loss function so that the attention
representation can be constrained by action phases and progress information. An overview
of our DGWT model is illustrated in Figure 2.

3.1 Pure Transformer Architecture Overview
The first step in video analysis tasks is generally spatio-temporal feature extraction. The suc-
cess of attention-based models in NLP has recently inspired approaches in computer vision
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to integrate transformers into vision tasks, such as action recognition [1, 2, 24]. Recently, a
pure-transformer based architecture has outperformed its convolutional counterparts in im-
age classification, which is Vision Transformer (ViT) [11]. Inspired by recent action recog-
nition networks [1, 2, 24], we propose a spatio-temporal transformer model for video align-
ment as shown in Figure 2. Therefore, we propose a spatio-temporal Transformer model for
self-supervised feature learning.

As the architecture overview shown in Figure 2, the input video X ∈ RT×h×w×c is firstly
mapped to a sequence of tokens Z ∈Rnt×nh×nw×d by using the same patch embedding method
as ViT, and then the tokens are reshaped into RN×d after adding position embedding. The
spatial vision transformer forwards all tokens extracted from the video through the trans-
former encoder to extract visual features of each frame Hs = {hs

t }T
t=1 ∈RT×d . The temporal

transformer then applies attention mechanisms to encode global dependencies for the ex-
tracted visual feature sequence Hs and outputs the temporal attention representation of the
video sequence Ha = {hs

t }T
t=1 ∈ RT×d .

In a self-attention block of transformers, the queries, keys and values Q=XWq, K =XWk
and V = XWv, are linear projections of the input X with Q, K, V ∈ RN×d . The process of a
self-attention block is defined as:

Al = LN(So f tmax(
QKT
√

dk
)V )+Al−1 , (1)

Hal
= MLP(LN(Al))+Hal−1

, (2)

where Hal
denotes lth self-attention map and dk represents the attention feature dimension.

LN and MLP represent the Layer Normalisation and Muti-Layer Perception, respectively.
Even though Transformers can extract both spatial and temporal representations, they

cannot perform sufficiently well for the video alignment task. Specially, the temporal Trans-
former has difficulty identifying key frames and matching the global action progress. There-
fore, we further propose the TSG component to enhance the ability of the temporal Trans-
former and DAW loss to find the optimal frame alignment without extra supervision.

3.2 Temporal Segment Graph
There is significant research investigating dependencies between complex information in
video data. Since the emergence of the deep learning paradigm, spatial dependency has been
encoded via convolution operations. However, the key challenge of video alignment is to
learn dependencies between frames in a local range and identify key frames and match them
with global actions. The temporal attention mechanism has the ability to learn these depen-
dencies and, thus we propose a temporal segment graph to help the temporal transformer
distinguish key frames among global actions.

Compared to spatial temporal convolution and recursive neural networks, graphical mod-
els [34] provide a new solution to model frame dependencies. However, graphical models
are normally applied on images that can be naturally divided into spatial partitions. For
video analysis, we need to construct graphs to represent the sequential information in videos
effectively. To address this problem, we propose a novel solution to build fixed-size graphs
using temporal segments, and the operation is conducted in between the spatial and temporal
transformers. In this graph G = {V,E}, nodes V capture the spatial representation of nodes
V capture the, and the edges E represent the relationship between nodes in a segment. To
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formulate this step, we use D to denote the diagonal matrix of node degrees, and A denotes
the adjacency matrix. Thus with the normalized graph Laplacian matrix [36], the temporal
graph operation can be denoted as

Hgraph = σ(D−
1
2 AD

1
2 HsW ) , (3)

where W is a layer-specific trainable weight matrix and σ() denotes an activation function.
Given the extracted spatial features Hs of all frames and the adjacency matrix A, the out-
put Hgraph represents the graph enhanced feature. Note that the length T of each video is
different. Therefore, it is not trivial to create a universal graphical model across all videos.

Aggregation

Figure 3: The process of building a graph
with aggregation operation in a segment.
The green matrix represents the diagonal
degree matrix.

In the video alignment task, the key objec-
tive is to detect key event frames that can dis-
tinguish two adjacent action phases. Because
a video may contain multiple repetitive ac-
tion phases, we suggest to keep each segment
short so that each segment can distinguish the
fine changes between frames. For example, in
push-up actions, the up and down phases are al-
most visually reversible. With short segments,
the segment that contains key event frames, e.g,
the highest and lowest body positions, can be
distinguished. To this end, we build a local
graph partition with an aggregation operation:

Dτ(i, i) =
L

∑
t= j

(Aτ(i, j)) , (4)

where Dτ and Aτ represent the τ th segment of
D and A respectively. The aggregation opera-
tion of one segment is shown in Figure 3. The
T × T adjacency matrix indicates T/L graph
partitions, each of which denotes a segment. If T is not a multiple of L, the remaining
frames would contain a smaller segment. After the graphical operation, the transition matrix
will smooth the frame-level spatial features in each segment and increase the distinction be-
tween adjacent segments, to the benefit of the temporal transformer for better understanding
the progress of the actions in an action sequence.

3.3 Dynamic Attention Warping
Different individuals may complete an action in variable time intervals and speed. In other
words, a perfect prediction model does not guarantee accurate alignment. For example,
a down-phase of 1.5 seconds cannot be uniformly extended (interpolated) to match another
one with 3 seconds because the pace may be changing during the course of action. Therefore,
our solution here is to utilise self-supervised learning to tackle this challenge and introduce
the dynamic warping algorithm so that the temporal attention representation learning can be
guided by more accurate alignment information.

We locate this self-supervised alignment as a dynamic time warping problem, which
has been widely used in alignment tasks. We denote two attention representation sequences
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Haβ

= {Haβ

1 ,Haβ

2 , . . . ,Haβ

l } ∈ Rl×da and Haγ

= {Haγ

1 ,Haγ

2 , . . . ,Haγ

m } ∈ Rm×da of length l
and m corresponding to the video Xβ and X γ . The goal of the Dynamic Attention Warping
(DAW) is to find the best alignment automatically. We impose rigid constraints on eligible
warping paths based on the observation that each video frame can only be aligned to a single
action phase label. Thus, we first build the cosine matrix ∆(Haβ

,Haγ

) := [cos(Haβ

i ,Haγ

j )].

Then, we calculate the cost rl,m of aligning frame xβ

i of video β to frame xγ

j of video γ as in
Algorithm 1. An example of the warping path is shown in Figure 4.

Algorithm 1: Forward recursion to compute the alignment cost.

/* l : the length of video Xβ; */
/* m : the length of video X γ; */
/* r : the distance; */

Input : Haβ

,Haγ

1 r0,0 = 0;ri,0 = ∞;r j,0 = ∞

2 for j = 1 to m do
3 for i = 1 to l do
4 ri, j = cos(Haβ

i ,Haγ

j )+min{ri−1, j−1,ri−1, j,ri, j−1}

Output: rl,m

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7

r3,1 r3,2 r3,3 r3,4 r3,5 r3,6 r3,7

r4,1 r4,2 r4,3 r4,4 r4,5 r4,6 r4,7

r5,1 r5,2 r5,3 r5,4 r5,5 r5,6 r5,7

(Attention Representation)Video 1

Video 2

Figure 4: Dynamic Attention Warping formu-
lation for video alignment. The →↘ moves
through the matrix showing the process of
computing the distance.

As shown in Figure 4, all paths that
connect the upper left entry ∆11 to the lower
right entry ∆lm using only →↘ moves.
Thus, the DAW loss can be defined as
FDAW = rl,m that minimises the alignment
cost between the two attention represen-
tations as the optimal alignment. In this
case, we can obtain the best alignment. Be-
sides, DAW requires (l×m) operations and
(l×m) storage cost. With the DAW loss,
we can measure the similarity between two
video sequences, which may vary in speed.
By minimising the loss, we intend to make
the temporal Transformer understand the
aligned attention information.

4 Experiments

4.1 Experimental Setup

Datasets. The Penn Action [38] and Pouring [29] datasets provide collections of human
action videos which can be used for dense alignment. The Penn Action dataset contains
actions from different sports and exercises, and the Pouring dataset focuses on the interaction
between hands and a drinking glass. We follow the annotation rule provided by Dwibedi et
al. [12] for ground truth annotation. For the Penn Action dataset, we add key events and
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Table 1: Action phase classification (%)
results on both Penn Action and Pouring
datasets.

Method Penn Action Pouring
ResNet [16] 44.96 43.85

SaL [21] 74.87 85.68
TCN [29] 81.99 89.19
TCC [12] 81.26 89.23
DGWT 83.16 90.76

Table 2: Action phase progression results on
both Penn Action and Pouring datasets.

Method Penn Action Pouring
ResNet [16] 0.6267 0.6986

SaL [21] 0.5943 0.7451
TCN [29] 0.6762 0.8057
TCC [12] 0.6726 0.8030
DGWT 0.6856 0.8183

phases labels where a phase is the period between two key events and all frames in the
period have the same phase label. As densely labelling each video frame is time-consuming
and challenging work, we adopt the views of most annotators on key event frame annotation
[10, 18]. Besides, we exclude the strumming guitar and jumping rope actions because the
key event is difficult to define, following the same process as in [12].
Evaluation Metrics. Following the evaluation protocol of [12], DWGT is first trained on
the training set and then frozen. An SVM classifier is trained on the learned features from
DWGT to output the phase labels for each frame of the training data, with no additional
fine-tuning. We use phase classification accuracy which is the accuracy of each frame, and
phase progression measures how well the progress of a process or action is captured which
is computed as the the average R-squared measure (coefficient of determination) [23]. Both
metrics are implemented by the SVM classifier to evaluate the learned video representation.
In addition, the training and validation splits of both Penn Action and Pouring datasets follow
the setting in [12].
Implementation Details. Before training, all frames from each video sequence are resized
to 224×224 pixels. we first extracted the spatial features from the pretrained ViT-Base [11]
last attention layer. In the temporal transformer network, we stack six self-attention blocks
with 768 attention dimensions per layer which is the same as the ViT network. For training,
we apply ADAM as the optimiser of our model and set the learning rate as 1× 10−4. All
hyperparameters are optimised via cross-validation.

4.2 Comparison with SOTA methods
Our main comparison to state-of-the-art methods (training-from-scratch results) is sum-
marised in Table 1 and Table 2. We also add the results ResNet-50 features pre-trained on
ImageNet dataset. Results of compared approaches are obtained from [12]. For both classi-
fication metric (Table 1) and progression metric (Table 2), it can be seen that our proposed
DGWT model outperforms other approaches on both datasets consistently.

The performance of SaL is significantly better than using only spatial features (ResNet-
50) in both the Pouring dataset and the Penn Action dataset, but worse than other self-
supervised learning methods. We thus consider shuffling the order of the sequence can
learn temporal information but might not be able to learn the alignment dependencies in
a video sequence. Both of TCC and TCN are applied on the normal timeline and hence the
results verify that shuffling the sequence order is not a good choice for the alignment task. In
addition, TCN focuses on constrastive learning of different videos and TCC focuses on con-
sistency learning among sequences. Finally, the improved performance of our model shows
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Figure 5: Qualitative results of different approaches for Baseball Pitch video 67 in the Penn
Action dataset. The coloured area represents each action phase sequence.

that it is more effective to use segment-level attention representation learning which min-
imises the distance between multiple sequences, and our dynamic attention loss can better
predict action progress.
Qualitative evaluation. Example qualitative results for an action video in the Penn Action
dataset are shown in Figure 5. Overall, we can observe that the predicted action phase time-
line by DGWT is more similar to the ground truth. This means that our proposed model can
effectively learn frame dependencies within video sequences and the relationship between
key events and action progress.

4.3 Ablation Study

The success of our DGWT can be attributed to both the framework design and technical im-
provement in each component. To analyse the effect of each component in DGWT, we con-
struct ablation study models including DGWTvit that uses only pretrained vision transformer
without any optimisation and DGWTtet that uses the spatio-temporal transformer represen-
tations and DAW loss but without TSG. In addition, models DGWTsup and DGWTsup+daw
are trained in a supervised learning setting, with the former using cross entropy loss, and the
latter using a combined cross entropy and DAW loss; and both models contain the complete
network (spatio-temporal transformers with TSG). Results are summarised in Table 3, from
which we can infer the following aspects.

Table 3: Action phase classification (%) results of
ablation study.

Method Penn Action Pouring
DGWTvit 46.22 48.34
DGWTtet 81.56 89.68
DGWT 83.16 90.76
DGWTsup 84.42 91.32
DGWTsup+daw 85.23 92.21

Different vision backbones. In our
pure transformer design (DGWTvit ),
we apply vision transformer as our
vision backbone. Compared to the
ResNet backbone (shown in Table
1), the performance of vision trans-
former features is slightly better. We
consider that the vision attention
mechanism might be able to capture
the main object information. How-
ever, without any temporal informa-
tion, the result is relatively low. Thus,
we think with spatial features only, the model cannot learn the alignment information.
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Temporal transformer. When adding the attention mechanism to learn the temporal infor-
mation (DGWTtet ), we observe that performance is significantly better than only applying
spatial features (ResNet in Table 1 and DGWTvit in Table 3), which also proves that temporal
information is important for video understanding. In addition, the performance is close to
TCC and better than TCN and SaL. This means that by using pure transformers (spatial and
temporal), the model can learn alignment information quite effectively.

Segment-level Graph. By adding the segment-level graph refinement (DGWT), we ob-
tained better performance. This proves our hypothesis that TSG can benefit the temporal
transformer for learning the transition of adjacent action phases.

Figure 6: Action phase classification results
(%) with segments of different lengths in
DGWT on the Penn Action (red line) and
Pouring (blue line) datasets.

DAW optimisation. The results also show
that supervised learning with cross entropy
loss does show higher performance than
using only self-supervised learning, which
is expected. On the other hand, by com-
paring DGWTsup and DGWTsup+daw, we
observe that when adding our proposed
DAW loss, the model can obtain further im-
provement, demonstrating the benefit of at-
tention warping even in a supervised set-
ting. This demonstrates the advantage of
our end-to-end framework that incorporates
spatio-temporal transformers, graph atten-
tion based feature enhancement and ex-
plicit alignment optimisation with warping.

Segment length in Learning. We observe
that when the segment length is 4 for the
Penn action dataset and 5 for the Pouring
dataset, the action phase classification achieves the best results as seen in Figure 6. The
results show that DGWT might not learn the alignment mechanism well when the number is
too low or too high. When the segment is too long, our temporal segment graph might lose
the key event information as the action progresses.

5 Conclusion

The key contribution of our work is to introduce warping as an essential task to the video
alignment problem. We have presented the first approach to introduce spatio-temporal trans-
formers for representation learning in video alignment tasks. Our Temporal Segment Graph
converts temporal data into a graphical structure by dividing a video into small segments.
Frames in each segment are non-reversible so can be encoded by aggregation using a graph.
In this way, frames within a segment are smoothed and the distinction between segments is
enhanced. With the proposed Dynamic Attention Warping loss, the model is able to opti-
mise the alignment between videos of arbitrary lengths using self-supervised learning. Our
experimental evaluation shows that on the Penn Action and Pouring datasets, our proposed
DGWT model provides state-of-the-art performance.
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