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Abstract

Conventional methods for object detection typically rely on large, well-annotated
datasets, which are in short supply due to the high costs of labeling. In this paper, we
propose to label only large, easy-to-spot objects. We argue that these contain more pix-
els and therefore usually more information about the underlying object class than small
ones. At the same time, they are easier to spot and hence cheaper to label. Unfortunately,
standard supervised learning algorithms do not learn to detect small objects if only large
ones are labeled. Instead, they erroneously take up unlabeled objects as negative exam-
ples and their accuracy consequently deteriorates. To address that, we propose PCIS,
a novel combination of Pseudo-labels, output Consistency across scales, and an anchor
scale-dependent Ignore Strategy. In experiments on CityPersons, EuroCityPersons, and
MS COCO, we show that our approach outperforms existing pseudo-label generation
methods as well as an oracle which ensures that anchors overlapping missing annota-
tions are ignored during training. We demonstrate that using our method it is possible to
approach the performance of a fully labeled dataset with only a subset of the labels and
also to train detectors on extremely sparsely labeled images, e.g. if only 1 out of 200
objects is annotated.

1 Introduction

In recent years, object detectors have made significant progress in both performance and ef-
ficiency. However, conventional detectors require access to fully labeled training data, which
is costly to obtain. In order to reduce annotation costs, we suggest labeling only large, easy-
to-spot objects. We argue that these contain a greater number of pixels and therefore usually
more information about the underlying object class than small ones. By downscaling images,
we can generate objects of arbitrary size for training the detector even if only large ones are
annotated. At the same time, large objects are easier to spot and can therefore be labeled at
a lower cost.
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Figure 1: Miss rate on CityPersons [26] by PCIS compared to a supervised baseline, data
distillation [14], an oracle ignore, and unbiased teacher [11] if only large objects are labeled.
Given the largest 50% of annotations, performance close to the lower bound of using all
labels (100% of annotations and ignore labels) can be reached. If only the largest 1% are
labeled, our method achieves results that are only slightly inferior to a supervised baseline
using 50% of annotations.

Unfortunately, naively following a standard supervised training protocol results in poor per-
formance if only large objects are labeled. Such a detector does not learn to find small
objects. Because unlabeled objects are treated as background during training, performance
even deteriorates.

Compared to a fully annotated dataset, only labeling large objects (on the same number of
images) poses three main challenges. First, the number of bounding boxes per class is much
lower. Therefore, the detector is trained on a less diverse set of examples for each class.
Second, no examples of small objects are given, meaning that the detector is trained to only
detect large ones. Third, missing annotations are treated as background during training, ham-
pering performance.

Previous research on the related problem of dealing with missing annotations has focused on
mitigating the third issue by ignoring or downweighting anchors, which are likely to overlap
with a missing annotation. Experiments for increasing the number of bounding boxes by
pseudo-label based methods did not show any improvement [13, 22].

Contrary to that, we demonstrate that our approach which combines pseudo-labeling, en-
forcement of consistency in the model output regardless of the input scale and an ignore
strategy for anchors which likely contain missing annotations leads to significant gains in
performance in experiments on CityPersons [26], EuroCityPersons [1], and MS COCO [8].
Using our technique, it is possible to approach the performance of a fully labeled dataset
with only a subset of the labels and to train detectors on extremely few labels (see Fig. 1).
We believe these findings to be of immense practical importance. They make it feasible to
reduce annotation costs and allow for prototyping given very few labels. Overall, the main
contributions of our work can be summarized as follows:

* We suggest labeling only large, easy-to-spot objects given a limited budget. We argue
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that large objects are especially informative about the underlying object class and can
be labeled at a lower cost than small ones.

* We develop PCIS, a method for training object detectors if only large objects are la-
beled. This makes it possible to train detectors on extremely sparsely labeled images,
e.g. if only 1 out of 200 objects is annotated, and also to approach the performance of
a fully labeled dataset with only a subset of the labels.

* We demonstrate that PCIS works better than an oracle that knows the location of every
missing annotation and ignores anchors overlapping these regions during training. The
oracle can be seen as an upper bound on previous methods described in the literature
for dealing with missing annotations [13, 22].

* We show that PCIS outperforms data distillation [14] and unbiased teacher [11], two
semi-supervised pseudo-label generation methods if applied to images on which only
large objects are labeled.

2 Related Work

In this section, we briefly review representative methods for object detection dealing with
different types of incomplete annotations, meaning that not every object has a bounding box
label. Those can broadly be divided into three categories, namely weakly-supervised, semi-
supervised, and missing annotations. In addition, we cover few-shot object detection, which
leverages a small number of labeled images. Finally, we review previous works on rescaling
input images in object detection.

In weakly-supervised learning only image-level labels are available but no bounding boxes.
That means there is no information about the location, number, size, or aspect ratio of objects.
Most of the current methods treat it as a two-step procedure. First, Multiple Instance Learn-
ing is used to create pseudo-labels. Second, those are then used to train a fully-supervised
detector [27]. Despite recent advances in the field, the quality of the generated pseudo-labels
is still much lower than of the actual instance-level labels, resulting in inferior performance
[5, 16, 20, 24, 27].

In semi-supervised object detection, some part of the dataset contains instance-level labels,
whereas the remaining images are unlabelled. In data distillation [14], pseudo-labels are
created by bounding box voting [4] using predictions generated from a baseline model on
multiple augmentations of every image. Jeong et al. [6] directly enforce consistency in the
model output between an unlabeled image and a flipped version of it using a variant of the
Jenson-Shannon divergence. Sohn et al. [19] indirectly enforce consistency by generating
pseudo-labels on a weakly augmented image whereas a strongly augmented version of the
same image is used in training. Unbiased teacher [11] applies a teacher-student framework
in which the teacher generates pseudo-labels that are used to train the student. The teacher
is updated using an exponential moving average of the student’s weights.

Little research has been conducted on dealing with missing annotations. Thereby, existing
works only consider different forms of label sparsity independent of object size. Wu et al.
[22] propose to downweight gradients of ROIs based on their overlap with known ground
truth objects. This concept was employed by Gao et al. [3] which achieved second place on
the public leaderboard in the Openlmages competition 2018. The winning method applied
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Pseudo-Label Guided Sampling where regions that are likely to contain a missing annota-
tion were ignored during training [13]. Creating pseudo-labels from box predictions above
a confidence threshold that did not strongly overlap known annotations and using them for
training slightly degraded performance.

Few-shot object detection aims at adapting a pretrained detector to novel classes for which
only a few labeled images are available [2, 7, 23, 25]. Most algorithms follow a two-step
procedure. First, a detector is trained on a large, fully-labeled dataset (e.g. 60 out of 80
classes from COCO). Second, this pretrained detector is finetuned on a set of novel classes
(e.g. 10 or 30 labeled images for each of the remaining COCO classes).

Overall, annotating only large, easy-to-spot objects has not been covered in previous re-
search. For comparison with our approach, we use three methods from related areas: First,
an oracle that confidently ensures that anchors overlapping missing annotations are ignored
during training. This can be seen as an upper bound on previous methods dealing with miss-
ing annotations [13, 22]. Second, data distillation [14] and unbiased teacher [11], which are
pseudo-label methods originally developed for semi-supervised learning. We do not compare
our method to few-shot learning algorithms because they address a very different problem.
In our case, no large, labeled dataset is available for pretraining. Instead, we have plenty of
images, but only a fraction of the largest objects is labeled. This means that a large num-
ber of images is unlabeled, whereas the remaining ones are only partially labeled. Standard
few-shot learning algorithms do not leverage unlabeled data. If such an algorithm would be
applied only on the partially-labeled subset, it would erroneously take up unlabeled objects
as negative examples.

Rescaling images for training object detectors has been investigated in various publications
[17, 18]. In addition, algorithms for multi-scale inference have been developed [12]. We
use downscaling for the specific case of training a detector to find small objects even if only
large ones are labeled.

3 Method

3.1 Motivation and Overview

In this section, we propose PCIS, a method specifically designed for training object detectors
if only large objects are labeled. The setup is very flexible and can be included in any anchor-
based object detector. It contains two main components: First, generating pseudo-labels for
missing annotations. These are used for enforcing consistency in the model output across
varying input scales. Second, an ignore strategy for anchors, which are likely to overlap
missing annotations.

3.2 Pseudo-Labels for Enforcing Consistency in the Model Output

During training, pseudo-labels are generated on the fly by making a prediction on a given
training image x using the current model F. The output is post-processed via non-maximum
suppression (NMS) and detections above confidence threshold y, which do not strongly over-
lap one of the known annotations with class label p* and coordinates ¢* are kept as pseudo-
labels. The combination of ground truth annotations and pseudo-labels generated on the
image x constitutes the new training targets Y (p*,#*,x). A downscaled version of the image
Xscaleq 18 then used in training (see Fig. 2). This has two effects: First, consistency in the
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model output is enforced as the network is trained to detect the pseudo-labeled objects on a
smaller version of the same image. This can be seen as a form of consistency regularization.
Second, by downsizing known annotations, it is possible to teach the model to detect small
objects although they are not annotated in the dataset. While in the beginning of training
the network only detects large objects, it gradually learns to find smaller and smaller ones.
Pseudo-labels are generated for objects of decreasing size in the process. The combination
of pseudo-labels with consistency regularization addresses the aforementioned three main
challenges of labeling only large objects. The number of positive examples for each class
increases. Assisted by consistency regularization their size gets smaller and smaller. Further-
more, by pseudo-labeling missing annotations, their negative impact on training decreases.

Large object labeled Small object pseudo-labeled

Pseudo-label
generation ‘
—_—

Downscaled image

Figure 2: Using pseudo-labels for enforcing consistency in the model output regardless of
the input scale. At each point in training, the current model is used to generate pseudo-labels
(in orange color) in addition to the available ground truth (in black color). These are then
used as training targets for a downscaled and augmented version of the same image. The
setup can be seen as a form of consistency regularization.

3.3 Ignore Strategy for Anchors

Previous methods [13] ignore anchors in the loss function based on predictions by a pre-
trained model, i.e. at locations where the model predicts the presence of an object when
there is no corresponding annotation. This has two main downsides. First, if data is very
sparsely labeled, the pretrained model performs poorly and hence the regions suggested for
ignoring are of little use. Second, difficult background that the pretrained model mistakenly
classifies as a missing object gets ignored in training.

To mitigate the negative effect of missing annotations, we take advantage of the usual anchor
assignment strategy of anchor-based object detectors. By default, large anchors get matched
to large objects and small anchors to small objects. Therefore, each anchor can be seen as an
expert for detecting objects of a given size and aspect ratio.

According to our labeling protocol, only large objects are annotated. We call S the size
of the anchor that matches the smallest of these labeled objects. As a consequence of the
labeling protocol, we know that anchors larger than S do not match missing annotations.
Conversely, small objects are not annotated. This means that anchors smaller than S might
match a missing annotation. Based on this information, we ignore an individual anchor a in
the loss (I, = 0) if its size is smaller than S. Otherwise, we include the respective anchor in
the loss (I, = 1). The concept is visualized in Fig. 3. It has the effect that a large fraction of
missing annotations is not included in the loss whereas all labeled objects, as well as a large
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Early stage in training; only large objects labeled | Later stage in training; small object pseudo-labeled
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Figure 3: Visualization of the ignore strategy. Anchors are ignored in the loss (in red color)
if no anchor of the same size matches a ground truth object (in black color) or pseudo-label
(in orange color) and no smaller anchor has a match in the respective image. This reduces
the negative effect of missing labels while still keeping a substantial amount of difficult
background. By resizing the input image, it is ensured that all anchors are used in training,
even if only large objects are labeled. As the model improves during training, more and more
pseudo-labels are generated and an increasing share of anchors are included in the loss.

part of difficult background, are kept. In the course of training, an increasing number of
pseudo-labels is generated. Therefore, more and more anchor sizes and hence a greater part
of the data get included. Overall, this means that in early training, a small but relatively clean
subset of the data is used and in later stages, this subset gets gradually larger as pseudo-labels
are created.

We develop our formulation using the loss function of the region proposal network head as
described in Faster R-CNN [15] for a single image and a single class (see equation 1). The
underlying concept can easily be applied to other loss functions used in object detection.

A
ZLcls (pjn Pa (x))

L(x,p*,t*)le
cls g

. )
A _—

+N7 ZpaLWg(ta ’ta(x))
reg g

Ncis and Ny normalize the classification and regression loss terms L. and L., by the num-
ber of positive anchors and A weights them relative to each other. The class and coordinate
predictions p,(x) and 7,(x) are generated using the image x. A denotes the collection of
anchors. Equation 2 summarizes the modifications of the loss function made by PCIS.

A
L(x, Xscated, P 51") = N ZIaLcls(Ypa(p*at*7x)7pa(xscaled))
cls g (2)
A A
+N7ZIaYpa(p*7t*ax)Lreg(Yl‘a(p*at*ax)vta(xscaled))
reg ‘g4

Fixed training targets p* and ¢* are replaced by a combination of ground truth annotations
and pseudo-labels Y, (p*,1*,x) and ¥;(p*,t*,x) generated on the input image x. The image is
then downscaled (x,.4.4) to ensure consistency in the model output independent of the image
scale. I, outputs a binary label whether or not to include an anchor in the loss to mitigate the
negative effect of missing labels.
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4 Experiments

4.1 Datasets

CityPersons is a pedestrian detection dataset. The main evaluation metrics on CityPersons
only consider pedestrians above 50 pixels such as the log-average miss rate on the reasonable
subset (size > 50 pixels, occlusion ratio < 0.35) which we denote as MR. Therefore, state-
of-the-art methods on CityPersons only use pedestrians of size 50 pixels or greater during
training and keep the remaining annotations (e.g. small pedestrians, class ignored) as ignore
regions [10, 21]. We also follow this convention for computing the upper bound (named
100% largest + Ign.). For the remaining experiments, we discard the ignore regions. This
was done because it seemed more plausible that if only limited resources are available for
annotating, objects that we want to detect should be labeled first and no effort should be
put in annotating ignore regions. This means that in our investigations, 10% of annotations
correspond to 10% of pedestrians above 50 pixels and only 4.5% of all annotations.
EuroCityPersons is a diverse pedestrian detection dataset. Like for CityPersons, we only
use pedestrians above 50 pixels and discard the remaining annotations. For evaluation, we
report log-average miss rate on the reasonable subset.

MS COCO is an object detection dataset. The training split train2017 contains around 115k
labeled images and 80 different classes of objects. For evaluation, we report mean average
precision (mAP) on the test-dev split.

4.2 Methods for Comparison

We contrast PCIS with four different methods described below. In all experiments, we use a
RetinaNet [9] with a ResNet-50 backbone. To ensure a fair comparison, the training settings
of PCIS and all competing methods are identical unless specified otherwise.

Supervised baseline: A supervised training protocol is followed and the existence of miss-
ing annotations is not taken into account.

Oracle ignore: It is assumed that an oracle is available which confidently detects every
missing annotation in the dataset. The corresponding regions of the image are then ignored
in the loss function. This can be seen as an upper bound on previous methods for sparsely
labeled images [13, 22].

Data distillation [14]: First, the network is trained following the supervised baseline pro-
tocol. Pseudo-labels are generated by bounding box voting [4] using multiple scaled and
flipped versions of every image in the training set. Finally, the model is retrained using both
ground truth annotations and pseudo-labels.

Unbiased teacher [11]: In the burn-in stage, the network is trained following the super-
vised baseline protocol using the available labels. Afterwards, we follow the mutual teacher-
student learning schedule of generating pseudo-labels, retraining the student, and updating
the teacher using an exponential moving average of the student’s weights.

4.3 Implementation Details

Most of the hyperparameters were chosen according to Lin et al. [9]. During training for
PCIS and all the baselines, we used scale jitter in the range 608-1024 for CityPersons and
EuroCityPersons as well as 608-800 for MS COCO. For pseudo-label generation in PCIS,
we kept the input image size at 1024 for CityPersons and EuroCityPersons and scaled it to
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800 for MS COCO. We applied NMS with a threshold A,,,,; of 0.3 and kept predictions above
a confidence y of 0.5. Pseudo-labels with an IOU of at least 0.6 with a known annotation
were removed. Regarding the oracle, we ignored anchors which overlap a missing annota-
tion with an intersection over foreground of 0.3 or more. For pseudo-label generation in data
distillation, we scaled the images in the range 842-1323 for Citypersons and EuroCityPer-
sons and well as 400-1200 in MS COCO. The confidence threshold y was set to 0.5. For
unbiased teacher, the confidence threshold y was set to 0.5 and the EMA rate o to 0.9996.

4.4 Results on CityPersons

Annotations | Supervised | Datadist. | Oracle ign. | Unbiased teacher PCIS
0.5% 94.0 £2.5 - 925+23 712+ 1.7 61.2 +1.5
1% 91.8+24 - 902+ 1.9 46.5 £ 1.5 413+1.2
5% 89.1 = 1.8 - 740+ 14 28.6 £ 1.1 243+ 0.9
10% 814+£1.7 | 727+£1.6 | 633+ 1.1 23.0 £ 0.7 19.9 + 0.7
25% 61.0+£13 | 51612 | 41.5+09 20.1 £0.7 17.8 £ 0.7
50% 372+ 1.1 | 31.54+£08 | 21.7+0.5 163+ 0.6 13.8 £ 0.5
100% 184+ 0.6 - - - -
100% + Ign. 11.7+£0.3 - - - -
Training time 13h 33h 14 h 23 h \ 16 h

Table 1: Miss rate on CityPersons for PCIS and all competing methods. The percentage
values in the first column denote the share of large objects that are annotated. *Ign.” indicates
that also ignore labels were available. The standard deviation of experiments was computed
based on five independent runs. Training time was measured on a single Nvidia Titan RTX
when using 50% of the CityPersons annotations.

We evaluated PCIS and the competing methods on CityPersons if only a certain percentage
of the largest objects were labeled (see Table 1). The oracle ignore and data distillation
improved upon the supervised baseline. Unbiased teacher showed even more promising per-
formance, yet it was outperformed by PCIS for all levels of label sparsity. Using PCIS,
a model with a moderate miss rate could be trained if only 0.5% of objects, equivalent to
64 bounding boxes, were annotated. Given just half of the labels, performance close to the
lower bound of using 100% of annotations and ignore labels could be achieved. Furthermore,
training time was measured on a single Nvidia Titan RTX when using 50% of CityPersons
annotations. Data distillation takes the longest among pseudo-label methods because it con-
sists of two trainings as well as computing an offline ensemble for pseudo-label generation.
Training unbiased teacher requires more time than PCIS because it uses a moving average
of the student’s weights for the teacher which only gradually evolves.

4.5 Ablations on CityPersons

Table 2 shows the effect that different components of our method have on performance. As
can be seen, not using downscaling is quite detrimental. Without it, generating pseudo-labels
has almost no positive effect. If downscaling is applied, the ignore strategy and pseudo-labels
independently lead to improvements. Combining them further optimizes results. Table 3
analyses the miss rate of the supervised baseline and PCIS for different object sizes. As can



POTOTZKY ET AL.: TRAINING OBJECT DETECTORS 9

Method PL | IS | SC | MR
Supervised | - | - | / | 372
- - - - ] 491
- VoI - | - | 485
- VoIV - | 45T
- - V| V| 342
- -y 157
PCIS NARVAIRVAIR KX

Table 2: Intermediate variants between supervised training and PCIS in case of using the
largest 50% of annotations from CityPersons. PL is short for pseudo-label, IS an abbreviation
for ignore strategy, SC for (down-)scaling the input image.

Range of object sizes in evaluation
Method MR | 50-105 | 105-166 | 166-260 | >260
50% largest 372 | 633 9.4 5.0 7.5
50% largest + PCIS | 13.8 | 16.6 6.3 2.5 6.0
25% largest 61.0 | 979 46.0 54 5.6
25% largest + PCIS | 17.8 | 21.3 8.9 4.3 5.5
10% largest 81.4 | 100.0 98.4 40.9 8.6
10% largest + PCIS | 19.9 | 23.9 11.6 4.1 7.3

Table 3: Miss rate on CityPersons for different object sizes if the largest 50%, 25% or 10% of
pedestrians (height > 105 pixels; height > 166 pixels; height > 260 pixels) are labeled. The
top row in each section shows results of the supervised baseline, the bottom row of PCIS.

be seen, in the supervised baseline the detector only learns to find large objects but com-
pletely fails to detect small ones. Contrary to that, PCIS learns to detect small items quite
well, although they are not labeled in the training set.

Overall, the combination of three main components allows PCIS to train powerful object
detectors even if only large objects are labeled. Pseudo-labeling unlabeled objects increases
the pool of instances to learn from while reducing the number of missing annotations. En-
forcing output consistency across scales teaches the model to detect small objects although
only large ones are labeled. The anchor scale-dependent ignore strategy mitigates the harm-
ful effect of missing annotations. If just one of these components is missing, performance
drops substantially.

4.6 Results on EuroCityPersons

We evaluated PCIS on EuroCityPersons given a varying number of labeled objects. As can
be seen in figure 4, PCIS outperformed all other methods. Notably, the gap between PCIS
and unbiased teacher was larger than on CityPersons.

4.7 Results on MS COCO

Furthermore, we generated results on MS COCO if only a certain percentage of the largest
objects were labeled (see Table 4). PCIS improved upon the supervised baseline, data distil-



10 POTOTZKY ET AL.: TRAINING OBJECT DETECTORS

4 ® Supervised
100 e [} @ Data distillation
° ° ® Oracle ignore
2 804 ° ® Unbiased teacher
2 ° ° ® PCIS (ours)
& ) ° ——- Lower bound
2z (]
O 60 A
<)
5 ° ®
m
L °
[J]
£ 401 R
o ]
= °
201 [ ]
[ ]
0.5% 1% 5% 10% 25% 50%

Share of used annotations

Figure 4: Miss rate on EuroCityPersons by PCIS compared to a supervised baseline, data
distillation [14], an oracle ignore, and unbiased teacher [11] if only large objects are labeled.

lation, unbiased teacher, and an oracle ignore. Although the dataset characteristics of COCO
are quite different from CityPersons and EuroCityPersons, results for PCIS are robust. The
relative performance of the methods was quite similar on all three datasets.

Method 10% | 25% | 50% | 100%
Supervised 48 | 134 | 249 | 358
Data distillation 57 | 158 | 26.2 -
Oracle ignore 73 | 174 | 27.2 -
Unbiased teacher | 9.3 | 18.6 | 27.3 -
PCIS 10.1 | 21.3 | 27.8 -

Table 4: Mean average precision (mAP) on MS COCO test-dev by PCIS compared to a
supervised baseline, data distillation, an oracle ignore, and unbiased teacher if only large
objects are labeled. The percentage at the top row indicates the share of annotated objects.

5 Conclusion

In this work, we propose to rethink labeling strategies for object detection given a limited
budget. Specifically, we suggest labeling only large, easy-to-spot objects, which contain
more pixels and therefore usually more information about the underlying object class than
small ones. To leverage such a dataset, we propose PCIS, a novel combination of pseudo-
labels, output consistency across scales, and an anchor scale-dependent ignore strategy. In
experiments on CityPersons, EuroCityPersons, and MS COCO, we show that PCIS outper-
forms an oracle ignoring overlapping anchors as well as competitive pseudo-label generation
methods. In summary, PCIS makes it possible to approach the performance of a fully labeled
dataset with only a subset of the annotations and to train detectors on extremely sparsely la-
beled images.
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