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Abstract

Recognizing human actions is fundamentally a spatio-temporal reasoning problem,
and should be, at least to some extent, invariant to the appearance of the human and the
objects involved. Motivated by this hypothesis, in this work, we take an object-centric
approach to action recognition. Multiple works have studied this setting before, yet it re-
mains unclear (i) how well a carefully crafted, spatio-temporal layout-based method can
recognize human actions, and (ii) how, and when, to fuse the information from layout-
and appearance-based models. The main focus of this paper is compositional/few-shot
action recognition, where we advocate the usage of multi-head attention (proven to be
effective for spatial reasoning) over spatio-temporal layouts, i.e., configurations of object
bounding boxes. We evaluate different schemes to inject video appearance information
to the system, and benchmark our approach on background cluttered action recognition.
On the Something-Else and Action Genome datasets, we demonstrate (i) how to extend
multi-head attention for spatio-temporal layout-based action recognition, (ii) how to im-
prove the performance of appearance-based models by fusion with layout-based models,
(iii) that even on non-compositional background-cluttered video datasets, a fusion be-
tween layout- and appearance-based models improves the performance.

1 Introduction

Whether a person is "taking an apple out of a box" or "taking a screwdriver out of a box",
we can recognize the action performed with ease. In fact, even if we have never seen the
object before, we are still able to recognize the action that occurred. Moreover, for us, it
makes no difference where the action takes place (indoors, outdoors, etc.), as long as the
objects involved in the action are visible. This suggests that action recognition should be,
to a degree, invariant to the appearance of the objects, as well as the environment where
the action takes place. Yet, most state-of-the-art action recognition methods are appearance-
based 3D CNNs [7, 26, 52, 55]. These methods are indeed powerful, albeit heavily reliant on
large-scale (pre)training datasets [21]. Unfortunately, in spite of the great pre-training efforts
taken, their performance rapidly deteriorates on compositional action recognition, i.e., when

the objects encountered at test time are novel [30].
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For this reason, multiple other works [4, 15, 41, 49, 57] have advocated an object-centric
approach for video action recognition, reporting an improved robustness, interpretability, and
overall performance. To achieve object-centric reasoning, on top of the video appearance
(RGB frames), these works either use a region proposal network [4, 15, 41, 49], or leverage
an independently trained object detector, e.g., Faster R-CNN [37], to obtain object detections
for each video frame [30, 54]. Within these models, the layout module operates on object
detections, while the appearance module operates on RGB frames. In a two-branch model
the layout and appearance input follow separate pathways and are fused late, while in a
one-branch model they follow a single pathway (fused early in the model). Some of the
limitations include: (i) With a two-branch model, fusion is performed by concatenation, not
fully exploiting the complementarity of the spatio-temporal layouts and the video appearance
[4, 30, 49], and (ii) the layout module is treated as a peripheral component [20, 49], so
it remains unclear to what extent in different evaluation settings (compositional, few-shot,
background cluttered videos), a well assembled layout-based model can recognize human
actions. At the same time, a multi-head attention model [45] has been demonstrated to be
a powerful common-sense reasoning tool over sets of spatially distributed objects in images
for visual question-answering [28, 43], layout generation [36], etc. By applying multiple
heads of beyond-pairwise spatial reasoning, it encapsulates the scene’s global spatial context,
which is indicative of its semantics, to a certain extent. Just as importantly, a variety of works
specifically examine the problem of multimodal fusion [33, 34, 46], attempting to determine
how and where to fuse the different modalities.

Contributions. The main focus of this paper is compositional and few-shot action recog-
nition, where we hold on to the object-level video reasoning and (i) reveal how a multi-head
attention based method, applied purely over highly abstract concepts (no appearance infor-
mation), i.e., spatio-temporal layouts, can be extended for action recognition, (ii) investigate
how to fuse the information from the layout- and appearance-based branch for improved
action recognition, (iii) find that, even on non-compostional, background cluttered video
dataset such as Action Genome [20], reasoning over the spatio-temporal layouts significantly
improves the performance. The codebase and trained models are released here'.

2 Related work

Action recognition methods are mostly 3D CNN based [7, 14, 21, 26, 39, 39, 48, 52, 55].
These methods often use a 2D CNN pre-trained on ImageNet [12], subsequently inflated
to 3D [7]. Other works explore (pre)training 3D CNNs [21] on large-scale curated datasets
[8, 32], as well as the best practices for doing so [48], reducing the computational complexity
[26, 44, 52], or propose plug-in components to improve the temporal reasoning [58].

Multi-head attention (MHA) in computer vision. The applications of MHA in com-
puter vision are rapidly expanding [22]. So far, MHA has been applied in conjunction with a
CNN [6, 15, 31, 42], as a stand-alone MHA over low level, raw image pixels [5, 10, 13, 47],
for vision + text tasks [28, 43], or tasks involving spatial reasoning [36] to name a few. In
contrast, we apply MHA: (i) over high level, abstract, spatio-temporal layouts, and (ii) to
fuse the features of two distinct modalities (layout and appearance).

Object level reasoning for action recognition (with attention). The issue with appearance-
based action recognition methods is their inherent tendency to overfit on the appearance

Thttps://github.com/gorjanradevski/revisiting-spatial-temporal-layouts
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of the environment and of the objects, deteriorating the performance on fine-grained [4]
or compositional datasets [30]. Recently, multiple works that address this issue emerged
[4, 15,20, 30, 30, 35, 41, 49, 53, 54]. Object Relation Network [4] performs spatio-temporal
reasoning over detected video objects with a GRU [9]. STAR [53] regresses the bounding
box coordinates where the action occurs and classifies the action. STRG [49] uses a graph
CNN [23] and a region proposal network (RPN) [37], applied over I3D [7] features, with a
non-local neural network (NL) [50] temporal module. Actor Centric Relation Network [41]
fuses the cropped feature map of the actors’ regions and the global video feature map. In par-
allel, multiple works leverage attention, to augment existing methods or propose new ones.
LFB [51] uses attention as a non-local block [50] to accumulate video features. SINet’s [29]
coarse- and fine-grained branch are attention-based, subsequently fused for action recog-
nition. Compared to us, SINet’s fine-grained branch applies attention over the region of
interest (Rol) pooled features from an RPN for each frame, subsequently fed to LSTM [19],
while we apply MHA over the object detections (category + bounding box) to encode the
videos’ spatio-temporal context. W3 [35] is an attention based plug-in module on top of ap-
pearance models, while SGFB [20] utilizes attention through LFB [51] over per-frame scene
graphs, combined with I3D [7] and NL [50]. The Video Action Transformer (VAT) [15] uses
I3D [7] in conjunction with RPN [37] and a transformer [45]. It (i) obtains an I3D feature
map around a center frame, (ii) generates region proposals for the center frame, (iii) applies
MHA where the 13D feature map is the memory and the center frame Rol pooled features
are the query. In our work, we also benchmark a VAT inspired fusion scheme between the
appearance and layout branch. Lastly, STIN [30] and SFI [54] demonstrate that a graph
neural network [23] layout model can surpass I3D’s [7] performance for compositional/few-
shot action recognition with ground truth object detections, and fusion with I3D improves
performance. Unlike these works, inspired by MHA-based methods for spatial reasoning,
we (i) develop a specifically tailored model for layout-based action recognition which ap-
plies attention over high-level, spatio-temporal layouts, (ii) empirically evaluate different
state-of-the-art MHA-based fusion methods, to uncover how and when the appearance- and
layout-based models should be fused.

Multimodal fusion attempts to extract the relevant, complementary information from
multimodal input, resulting in a better joint model, compared to training separate models
on the individual modalities. The literature is extensive [2, 24, 33, 46], without a universal
approach that generalizes across different modalities and tasks. Many works [28, 43] that
use MHA have demonstrated remarkable results on multimodal tasks, e.g., VQA [1], when
fusing image and text features. In action recognition, late fusion by concatenation works
well [30], also confirmed in our work. We demonstrate that multimodal fusion with cross-
attention [43], based on the CentralNet approach [46], further improves the performance.

3 Methodology

Next, we introduce the necessary multi-head attention background (Sec. 3.1), describe how
it is extended for modelling spatio-temporal layouts, i.e., object detections (Sec. 3.2), and
discuss the appearance models and schemes to fuse them with the layout model (Sec. 3.3).
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Figure 1: STLT overview. Left: Spatial Transformer. The inputs are the object categories,
and their [x{,y1,x2,y2] frame location normalized by the frame size. We select the special
class embedding as the module output. Right: Temporal Transformer. The inputs are
the Spatial Transformer outputs, summed with trainable position embeddings. We select the
temporal class embedding as the module output, and add a classifier for action recognition.

3.1 Multi-head attention revisited

The core Transformer model component [45] is the multi-head attention module, defined
T

as: Attention(Q,K,V) = SoftmaX(Q'—IZ) -V, where Q, K, V are the queries, keys and values
k

respectively, and d is the per-attention head hidden size. With self-attention, Q, K and V
come from the same and only modality (in our case, the layout modality), and with cross-
attention, Q originates from the target, while K and V from the source modality we attend
on. Due to MHA’s permutation invariance, the input should include positional information.
In this work, we rely on (i) bidirectional and causal attention, (ii) self- and cross-attention,
and (iii) different variants of position embeddings. Refer to [45] for details.

3.2 Layout branch: Spatial-Temporal Transformer

The input to the layout model (Fig. 1) is a frame sequence S = (fy, f1, ..., fa—1) of length n.
Each frame f; is composed of m objects, f; = {09,01,...,0m—1}, Where o j consists of the
object category c; and location in the frame /; = [x,y1,x2,y2]. Note that this is all the infor-
mation required and used by the layout branch: no appearance information, just bound-
ing boxes and category labels. Two separate fully-connected layers yield the category
embedding ¢; and the frame location embedding ] j» which we subsequently sum together
and apply layer-normalization [3] and dropout [40] to obtain the final object embedding:
6; = Dropout(LayerNorm(¢; +1;)).

With the layout model, dubbed as Spatial-Temporal Layout Transformer, henceforth ab-
breviated as STLT, we decouple the spatial (per-frame) reasoning from the temporal (across-
video) reasoning. To that end, to model the per-frame spatial relations, given a set of frame
objects f; = {00,01,...,0m—1}, we firstly prepend an o.1,ss object, with cc14ss (special
class category) and /1455 equal to the frame size. Then, we obtain the embedding 6; for
each frame object, f, = {0c1ass,00,01,..,0m—1}, and use a bidirectional transformer (each
object embedding can attend on all others). We denote this module as Spatial-Transformer
(Fig. 1, left), which we apply on the set of object embeddings for each frame f; separately.
Subsequently we select the output hidden state corresponding to the class category as a
global representation of a single frame: §; = Spatial-Transformer( f;).
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Figure 2: Fusion schemes. Top: One-branch. Bottom: Two-branch fusion methods.

To model the temporal evolution of the spatial relations, we use a causal transformer
(each frame embedding can attend on the past ones), denoted as Temporal-Transformer
(Fig. 1, right). We firstly append another special class embedding §.15s5 to the outputs
of the Spatial-Transformer. Then, for each frame, with a fully-connected layer, we obtain
frame-position-in-the-video embedding p;. This is summed with the frame spatial embed-
ding §;, followed by layer-normalization and dropout: #; = Dropout(LayerNorm(§; + p;)).
Finally, we forward propagate the sequence of frame embeddings 7' = (7,71, ...5y_1,7c1a55)
through the Temporal Transformer: H = Temporal-Transformer(7"), where A are the output
hidden states. If we use STLT as a standalone action recognizer, i.e., given spatio-temporal
layouts as input we want to infer the action, we select the hidden state corresponding to the
class embedding, and add a classifier on top: y = Linear(fzclass), where y are the logits.

3.3 Appearance branch and multimodal fusion

As an appearance model, we deem a neural network, usually a CNN [25], applied over
pixels of the video frame(s). In this work, we use four types of appearance features, each
tightly coupled with the corresponding fusion approaches: (i) 2D Resnet152 (R2D-152)
[17], pre-trained on ImageNet [12], applied over individual frames; (ii) 2D Resnet50 (R2D-
50) backbone, from a COCO [27] pre-trained Faster R-CNN [37]. Given class-agnostic
bounding boxes from a video frame, we extract Rol align [18] features from each; (iii) An
inflated 3D Resnet50 (R3D) [21], pre-trained on [8, 32, 56]; (iv) R3D, same as (iii), with a
Transformer encoder to enable multimodal fusion with cross-attention.

Due to the specific nature of the appearance features, we devise different ways to fuse
them with the layout model (Fig. 2). We evaluate different configurations where each has
its weaknesses, while we gradually build the ultimate, empirically superior fusion approach
(for details see supplementary): (a) Per-Frame Fusion (PFF) — We sum the R2D-152 and
the Spatial Transformer features for each frame individually, and feed the obtained embed-
ding as input to the Temporal Transformer; (b) Per-Box Fusion (PBF) — We sum the Rol
aligned R2D-50 features with the bounding box and the category embeddings, and feed the
fused embedding as input to the Spatial Transformer; (c) Early Fusion (EF) — We feed the
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R3D video features as a first token to the Temporal Transformer, essentially allowing each
spatial frame embedding to attend on the entire video; (d) Video Action Transformer Fu-
sion (VATF) — A fusion approach which is an adapted Video Action Transformer (VAT)
model [15] for our task. We use the R3D as a trunk, and leverage the externally obtained
bounding boxes to extract Rol align features from the temporally central frame as a query,
and the trunk features as a memory to a transformer model which predicts the action (for de-
tails refer to [15]); (e) Late Concatenation Fusion (LCF) — The R3D video embedding is
concatenated with the STLT embedding right before the classifier, commonly used as a stan-
dard baseline for multimodal fusion; (f) Cross-Attention Fusion (CAF) — A multimodal
fusion with cross-attention [43] to fuse the layout (STLT) and appearance (R3D) branch em-
beddings; (g) Cross-Attention CentralNet Fusion (CACNF) — A CentralNet [46] based
CAF implementation. Despite performing end-to-end training by minimizing the loss from
the cross-attention fusion module (CAF) output, we additionally minimize the loss for each
branch (layout and appearance) independently. To that end, by using the CentralNet fu-
sion approach, we achieve multimodal fusion on a two-branch model, where the individual
branches are enforced to preserve their individual abilities.

4 Evaluation and discussion

We perform experiments on the Something-

. Something-Else: Compositional settin; Something-Somethin
Something [16] / Else [30] and the Ot predictions T O e e
ACthIl Genome dataSCtS [20] Dur_ Method  Top 1ace. Top5acc. Topl.acc. TopSacc. Toplace. Top 5 ace.
. L. : GNN-NL 333 58.9 50.7 78.6 47.1 763
ing training, we randomly sample 16 S&TLT 406 66.9 577 84.7 55.6 843

. STLT 41.6 67.7 594 85.8 57.0 85.2

frames (each represented as spatio- O EEE 786 513 786 522 507
1 PFF 473 73.7 625 87.5 629 88.0

temporal layouts) for STLT, and uni- peoms mr @l s @9 80
EF 52.8 79.3 63.8 88.1 64.4 89.4

formly Sample 32 RGB frames for mOd- VATF 49.1 78.0 53.0 79.6 549 82.8
els using R3D, subsequently rescaled LCF sl 798 66.1 88.8 644 893
. CAF 52.3 78.9 64.4 88.6 64.5 89.1

to 112 x 112 (complete experimental CACNE 569 825 7.1 904 668 90.6

setup in supplementary).

Something-Something V2 [16] con-
sists of egocentric videos of people per-
forming actions with their hands, with
174 unique actions. To deal with the en-
vironment bias, videos recorded by the
same person can be in either the train-
ing or validation set. Nevertheless, the objects the person interacts with might still overlap
between training and test time, indicating that appearance-based models can overfit on the
objects’ appearance.

Something-Else [30] proposes two data splits according to the objects’ distribution at
training and test time. In the compositional split, to validate the compositional generaliza-
tion, the data is divided such that the models encounter distinct objects during training and
testing. The training and validation set contain ~55k and ~58k videos respectively, with 174
actions. In the few-shot split, there are ~112k pre-training videos (with 88 base actions), 5
x 86 and 10 x 86 videos in the 5-shot and 10-shot setup respectively for fine-tuning, and
~49k testing videos (with 86 novel actions)”. On the compositional and few-shot splits, we

Table 1: Comparison between the different model
configurations. From top to bottom: Layout-
based methods, R3D, one-branch fusion methods,
two branch fusion methods. Best method within
group in bold, overall best method in red.

2When fine-tuning, we freeze the backbone’s weights and only train the action classifier following [30].
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perform experiments with Faster R-CNN [37] object detections (object predictions setting),
and with ground truth object detections (oracle setting), both released by [30]. The input ob-
ject categories in STLT are either “hand” or “object”. We measure performance using top-1
and top-5 accuracy (acc.), and perform training with cross-entropy loss.

Action Genome [20], built on top of Charades [38], has ~10k videos of people doing
daily activities. Multiple object-specific actions simultaneously occur in each video out of
157 unique ones. The frames where the action occurs, i.e., the person interacts with the
objects, are annotated with bounding boxes and categories. We train a Faster R-CNN [37]
on these frames and obtain object detections (for details see supplementary). We perform
experiments on the Charades train/validation split with our object detections (obj. predictions
setting), as well as the ground truth object detections (oracle setting) released by [20]. We
measure performance using mean average precision (mAP), and perform training with binary
cross-entropy loss.

4.1 Ablation studies and main findings

We ablate our models to gain insights in

why one should leverage spatio-temporal o
layouts for action recognition, and how to w00%
come up with the best approach for it. We .
do an ablation study on the Something- A

p 1 ac

Else compositional dataset, while we also £ woo% -

verify our findings on the Something- L R
. .. . 35.0% ~»— R3D

Something (non-compositional) valida- "/" g

. . . . CACNF

tion set, albeit only in an oracle setting. B T JE OO

Training epochs

Layout branch: How to model the

spatio-temporal layouts? In Table 1 Figure 3: Top-1 validation acc. (epoch 3 to 20)
(Top), we measure STLT’s performance  of STLT and R3D trained individually, trained in

against: (i) A baseline model [30] with  conjunction with CACNF, CAF and CACNF.
a spatial reasoning graph neural network

(GNN) and temporal reasoning non-local block (NL); (ii)) An STLT variant performing joint
spatial-temporal reasoning (S&TLT) on unrolled frames’ bounding boxes (for details see
supplementary). Across different settings and layout types (obj. predictions or oracle), we
observe that a decoupled spatio-temporal reasoning is preferable. Furthermore, STLT and
S&TLT significantly outperform GNN-NL, suggesting the appropriateness of MHA-based
methods for modelling spatio-temporal layouts.

Multimodal fusion: How and where to fuse? In Table 1 (middle, bottom) we re-
port action recognition results with the fusion methods we consider in this work. We com-
pare among the fusion methods plus a fine-tuned R3D [21], and succinctly summarize our
empirical findings as: (i) 2D fusion methods (PFF, PBF) exhibit good performance on non-
compositional datasets (Something-Something), where object appearance matters, while their
performance deteriorates on compositional datasets; (ii) Early fusion (EF) yields a compet-
itive performance across different datasets and is superior to the other one-branch fusion
methods; (iii) The Video Action Transformer [15] fusion type (VATF), does not fully ex-
ploit the spatial-temporal layout and video-context specific to the action (it only performs
Rol align on the temporally central frame), thus it yields consistently lower results on these
types of data; (iv) One-branch methods only marginally outperform R3D without oracle lay-
outs; (v) Late fusion by concatenation (LCF) remains a strong baseline, as reported by others
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[33, 46]; (vi) Cross-Attention Fusion (CAF) is consistently weaker than LCF and CACNF,
while CACNF (CAF with CentralNet [46]) outperforms other methods regardless of the data
type (compositional, non-compositional) and type of layouts (obj. predictions or oracle).
Why is CACNF superior to CAF

despite the conceptual similarity? In ran (©) smr

Fig. 3, we observe the top 1 acc. on the ' :
Something-Else compositional split, in
the obj. predictions setting, of: (i) STLT
trained individually; (ii) STLT trained
within the CACNF model (F. STLT);
(iii) R3D trained individually; (iv) R3D
trained within the CACNF model (F.
R3D); (v) CAF; (vi) CACNEFE. We see that
the performance of STLT and F. STLT,
and, R3D and F. R3D, is remarkably sim-
ilar, indicating that with CACNF the lay-
out and appearance branch preserve their

e o e Figure 4: Top: R3D mispredicts, STLT predicts
individual capabilities. What is interest- . ctly. Middle: STLT mispredicts, R3D pre-

ing is that this phenomenon results in dicts correctly. Bottom: STLT and R3D mispre-
better overall performance of the cross- dict, CACNF predicts correctly
attention fusion module (CACNF), com- ’ ’

pared to training it without CentralNet [46] — CAF.

How does it look visually? We are interested in visually inspecting three error types:
(i) R3D predicts wrong, STLT predicts correct action; (ii) STLT predicts wrong, R3D pre-
dicts correct action; (iii) STLT and R3D predict wrong, CACNF predicts correct action. In
Fig. 4 (top), we observe the action “Dropping smth. into smth.”, suitable for layout-based
methods, e.g., STLT, as they directly model the spatial properties of the objects (location,
movement, size, etc.). On the contrary, STLT is unable to recognize the action “Turning the
camera upwards while filming smth.”, Fig. 4 (middle), due its spatial ambiguity, while R3D
recognizes the change in appearance, indicative of the action. Lastly, the action “Holding
smth. over smth.” in Fig. 4 (bottom), requires modelling both the temporal consistency of
the layout and appearance, which STLT and R3D individually fail, while CACNF recog-
nizes the correct action. Furthermore, in Fig. 5, we compare the performance of R3D and
STLT with CACNEF, on five actions from Something-Else, where the difference between the
averaged R3D and STLT accuracy, and CACNF accuracy for each action is most prominent.
We observe a consistent pattern across all five actions, i.e., CACNF successfully fuses the
appearance (R3D) and layout branch (STLT), and it yields superior performance compared
to the unimodal (layout or appearance) methods.

4.2 Something-Else: State-of-the-art comparisons

We compare against the following methods: (i) I3D [7]: An inflated Resnet50 [17] based 3D
CNN as in [49], pre-trained on ImageNet [12], subsequently fine-tuned on the Something-
Else dataset; (ii)) STRG [49]: A multimodal method, with a GNN [23] applied over region
proposals, combined with I3D using late fusion; (iii) STIN [30]: A GNN [23] for spatial, and
a non-local neural network [50] for temporal reasoning; (iv) STIN + I3D: STIN combined
with I3D in a late-fusion manner; (v) SFI [54]: A layout-appearance fusion method, trained
with an auxiliary task of predicting the future state of the video objects.


Citation
Citation
{Neverova, Wolf, Taylor, and Nebout} 2015

Citation
Citation
{Vielzeuf, Lechervy, Pateux, and Jurie} 2018

Citation
Citation
{Vielzeuf, Lechervy, Pateux, and Jurie} 2018

Citation
Citation
{Vielzeuf, Lechervy, Pateux, and Jurie} 2018

Citation
Citation
{Carreira and Zisserman} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Wang and Gupta} 2018

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Wang and Gupta} 2018

Citation
Citation
{Kipf and Welling} 2017

Citation
Citation
{Materzynska, Xiao, Herzig, Xu, Wang, and Darrell} 2020

Citation
Citation
{Kipf and Welling} 2017

Citation
Citation
{Wang, Girshick, Gupta, and He} 2018

Citation
Citation
{Yan, Xie, Shu, and Tang} 2020


RADEVSKI ET AL.: REVISITING SPATIO-TEMPORAL LAYOUTS 9

Compositional setting Few-shot setting
Obj. predictions Oracle Obj. predictions Oracle

Method Top lacc. TopSacc. Topl.acc. TopSacc. Top1acc. (5-shot) Top 1. acc. (10-shot) Top 1 acc. (5-shot)  Top I acc. (10-shot)
STIN [30] 372 624 514 79.3 177 20.8 277 335
SFI [54] — — 44.1 74.0 — — 243 29.8
STLT (Ours) 41.6 679 59.0 86.0 18.8 24.8 314 38.6
13D [7] 46.8 72.2 46.8 722 21.8 26.7 21.8 26.7
STIN [30] + 13D [7] 482 72.6 54.6 794 23.7 27.0 28.1 33.6
STRG [49] 523 78.3 — — 24.8 29.9 — —
SFI [54] — — 59.6 85.8 — — 30.7 36.2
CACNF (Ours) 56.9 825 67.1 90.4 27.1 339 371 455

Table 2: Something-Else SOTA comparisons. Left: Compositional setting, Right: Few-shot
setting. Top: Layout-based methods, Bottom: 13D and Multimodal methods.

Compositional action recognition. —
We report results in Table 2 (Left). In % i
both the obj. predictions and oracle set-
ting, we observe that STLT outperforms
STIN and the other methods, with a more

Accuracy

prominent difference in performance in 0

the oracle setting. We also observe 0%

that STLT’s performance is remarkably 10%

close to the best multimodal concurrent o -

method in the oracle setting — SFI, an in- I o e e
dication that, if perfect object detections R COl oee

are available, MHA captures finer inter-

actions between the objects compared to  Figure 5: Five Something-Else actions where the
a (convolutional) GNN, 1D convolution, performance difference between R3D and STLT
etc. In the multimodal section — Ta- (averaged) with CACNF is most prominent.

ble 2 (bottom), obj. predictions setting,

CACNEF outperforms the other methods significantly, suggesting a noteable improvement in
robustness w.r.t. compositional data (a likely real-life scenario).

Few-shot action recognition. We report results in Table 2 (Right). We observe that in
the obj. predictions setting, STLT outperforms STIN in both the 5-shot and 10-shot setup.
In the oracle setting, STLT significantly outperforms the other methods as per the top-1 ac-
curacy, allowing a significant gap for improvement as object detectors continue to improve
[11]. Furthermore, CACNF outperforms the other multimodal methods in the obj. predic-
tions setting, with a bigger difference in top-1 acc. in the 10-shot setup. We interpret the
performance improvement as evidence that STLT and CACNF can successfully generalize
in a low-data regime, a valuable observation considering the cost of acquiring curated video
data.

4.3 Action Genome: Coping with background-cluttered videos

Object-centric layout-based models appear to be unsuited for dealing with background-
cluttered videos. To address such concerns, we use Action Genome [20], as it consists of
videos (i) of people performing actions at home, where it is hard to isolate the objects spe-
cific to the action, (ii) with objects presence overlapping between training and testing. We
measure action recognition mAP, as well as mAP relative improvement on top of trained 13D
[7], by ensembling it with STLT. We conduct experiments in a setup where we replace all
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specific categories, e.g., book, broom, phone, etc., except for person, with a generic “object”
category, therefore having only 2 object categories (person, object), and the default setup,
where we utilize all 38 categories as input to STLT. We compare against: (i) LFB [51]:
Long-term feature bank model, which performs well when video features are aggregated
over time; (ii) SGFB [20]: Method which predicts (or uses ground truth in oracle setting)
symbolic scene graph, further encoded and combined with LFB [51].

In Table 3, when only 2 object cat- etod

Num. categories_ Obj. predictions mAP_ Oracle mAP
. . . LFB [51] i — 25 25
egories (perSOn, ObJ eCt) are reglstered SGFB [20] Scene Gra 38 443018) 603 (17.8)
. . 13D (Ours) 7] 335 335
m STLT, we observe that STLT yle]dS STLT (Ours) 2 T6.1
. STLT + 13D (Qurs) _ Obj. detecti 2 33803) 365 (3.0)
significantly weaker performance com- FgR, o B i 3 xt0  adtw

pared to a standard appearance method,

e.g., I3D. Interestingly, despite the neg- Table 3: Action Genome results. From top to
atively biased setup, i.e., the actions bottom: Baselines, I3D, STLT and STLT + 13D
in Action Genome are object-specific, ensemble with 2 generic obj. categories (person,
e.g., opening a book, while the in- obj.), STLT and STLT + I3D ensemble with all 38
put categories are object-agnostic — per- obj. categories (person, book, phone, etc.). Rel-
son/object, STLT still boosts I3D’s per- ative mAP improvement over appearance method
formance by 3.0 mAP points in the or- in parenthesis.

acle setting. When all 38 object cate-

gories are registered in STLT, we observe that STLT performs well even in the obj. predic-
tions setting, considering the Faster R-CNN’s ~ 11.5 average precision (AP) on the valida-
tion set. In the oracle setting the performance increases drastically, being on par with SGFB
(which relies on ground truth scene graph), indicating a high upper bound, considering that
object detection is merely a subset of scene graph generation. In the obj. predictions set-
ting, we observe a solid relative improvement over I3D by ensembling STLT with I3D, even
larger compared to SGFB and LFB?, concluding that STLT reasonably copes with back-
ground clutter, and successfully boosts the performance of an appearance model — I3D.

5 Conclusion

In this paper we shed light on the problem of compositional and few-show action recog-
nition. We advocated the use of multi-head attention over spatio-temporal layouts, and at-
tempted to reach a conclusion how layout- and appearance-based models should be fused.
Our main empirical findings suggest that (i) a layout-based model is robust w.r.t. composi-
tional data, and generalizes from a few samples, (ii) when fusing a layout- and appearance-
based model, it is crucial for the individual models to preserve their capabilities, (iii) even
on non-compositional, background cluttered video datasets, a layout-based model can rea-
sonably recognize human actions, and boosts the performance of appearance-based models.

A limitation which remains is that layout-based models are highly dependent on the
object detections quality. Notice, however, the high upper bound (oracle setting), combined
with the fact that for compositional action recognition, the requirement is class-agnostic
object detections. Lastly, by relying on an object detector the overall model complexity
increases, which is detrimental to the speed. Ideally, an off-the-shelf appearance based model
should exhibit object-centric reasoning abilities, which we leave for future work.

3The appearance model performance and the relative improvement are most likely inversely proportional.
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