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Abstract

The task of isolating a target singing voice in music videos has useful applications. In
this work, we explore the single-channel singing voice separation problem from a mul-
timodal perspective, by jointly learning from audio and visual modalities. To do so, we
present Acappella, a dataset spanning around 46 hours of a cappella solo singing videos
sourced from YouTube. We also propose an audio-visual convolutional network based
on graphs which achieves state-of-the-art singing voice separation results on our dataset
and compare it against its audio-only counterpart, U-Net, and a state-of-the-art audio-
visual speech separation model. We evaluate the models in the following challenging
setups: 1) presence of overlapping voices in the audio mixtures, ii) the target voice set
to lower volume levels in the mix, and iii) combination of i) and ii). The third one be-
ing the most challenging evaluation setup. We demonstrate that our model outperforms
the baseline models in the singing voice separation task in the most challenging evalu-
ation setup. The code, the pre-trained models, and the dataset are publicly available at
https://ipcv.github.io/Acappella/

1 Introduction

Voices form an integral part of our daily lives. In the form of speech, human voice serves as
an effective means of communication. The same voice, when vocalised in sustained tonal-
ity and/or rhythm, turns into something musical: the singing voice. The singing voice has
become a vital element in the music industry today. Apart from its usage as lead singing
voice in songs, it is also found in other diverse forms like rap music, opera singing, solfege,
scatting, humming, backing vocals and beatboxing to name a few. A cappella refers to a
musical arrangement with single or multiple singing voices without any instrumental ac-
companiment. We are interested in isolating the target voices of interest in multi-voice a
cappella videos, and in general, in music videos with singing faces.

Singing voice separation has been largely explored in the context of separating voice
from the instrumental accompaniment. The audio-only models developed for separating the
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singing voice from the instrumental accompaniment (e.g. [18, 31, 35]) largely benefit from
the differences in the timbral characteristics between the singing voice and the accompani-
ment. However, such models do not perform well in the case of separating a particular voice
from a mixture of overlapping voices or when the volume of the desired target voice is low. In
fact, a very similar problem appears in speech separation when there are overlapping speech
segments from different sources in a speech mixture. The audio-visual speech separation
methods that leverage the visual information to isolate the desired target speech have been
shown to outperform their audio-only counterparts [5, 10, 24, 39]. For an extensive review
of audio-visual speech separation works, see [21]. Likewise, we are interested in improving
upon the audio-only singing voice separation method by incorporating the visual informa-
tion. We show that using the visual features is particularly advantageous in the singing voice
separation task, especially in the aforementioned challenging cases: multi-voice mixtures
and mixtures with low volume target singing voice.

A system capable of isolating the target voice of interest in an audio mix has many
applications. Such a system could be helpful in evaluating individual singing voices in multi-
voice audio mixtures. It can also be useful for automatic karaoke generation, music unmixing
and remixing, lyrics and pitch transcription, pitch correction and melodic analysis.

While there are different audio-visual benchmark datasets for speech separation (re-
viewed in [21]), to the best of our knowledge, to date there is no public dataset available
for audio-visual singing voice. One of the contributions of the paper is a new dataset with
videos of solo performances of people singing a cappella. This dataset can be used to train
audio-visual networks for singing voice separation or for style/voice conversion.

We also propose a new audio-visual network for singing voice separation. It is based
on a U-Net that processes a complex spectrogram and it is conditioned by the motion fea-
tures extracted by a spatio-temporal graph convolutional network that receives a sequence
of face landmarks. Although there are recent works that use graph neural networks with
face landmarks for face identification [27] and emotion recognition [23], or with skeletons
for separating musical instruments [8], to our knowledge, we are the first ones to use face
landmarks processed with a graph neural network for audio-visual source separation in the
speech/singing context. The U-Net architecture has been extensively used both in audio-
only source separation methods [12, 13, 19, 34] as well as in its audio-visual counterpart
[9, 26, 40, 42, 43, 44]. We can also find works on source separation that condition the U-Net
on prior information such as the presence of certain types of musical instruments [32, 33],
phoneme activation for singing voice separation [20] or the fundamental frequency contour
of each type of voice sources in choir ensembles [28].

In summary, our contributions are three-fold: i) a new dataset of solo singers performing
with no accompaniment, ii) a new audio-visual deep neural network for singing voice separa-
tion that uses a spatio-temporal graph convolutional network to extract motion features from
face landmarks, and iii) an ablation of four different possibilities for the visual network in the
audio-visual architecture and two different training settings. Both the dataset and our model
are, to the best of our knowledge, the first ones presented in the literature for audio-visual
singing voice separation with publicly available code and data for reproducibility.

2 Related work

In the audio-visual speech separation works, there are multiple ways in which the visual
features are extracted, depending on the front-end representation of the visual information.
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Many of such works [1, 7, 17, 24, 39] operate directly on the mouth region of the video input
to extract the lip motion features. In [22], the motion vectors of face landmarks are used
as input to an LSTM-based network. On the other hand, [5] makes use of face embeddings
[3] extracted on the input video frames containing the whole face. These face embeddings
are invariant to illumination, pose, and facial expression. The authors show that, apart from
the region around the mouth, the facial parts like eyes and cheeks also contribute to the
speech separation performance. A very recent work [10] leverages not only the lip motion
features but also the facial appearance of the speaker since it is related to certain speech
attributes. Their network is trained in a multi-task fashion that jointly learns audio-visual
speech separation and cross-modal face-voice embeddings that assist in establishing face-
voice mappings. In [2], a single face image of the target speaker is used to condition an
audio-visual source separation model based on facial appearance. The correlation of voice
traits and facial attributes has also proven useful in speaker identification [14] and image
generation [25] tasks. Further, [6] points out that facial expressions are helpful in the visual
speech recognition task.

In a concurrent work, Li [16] explored the specific task of audio-visual singing voice
separation. Li’s audio-visual singing voice separation method particularly outperformed the
audio-only baseline methods when the input sample contained backing vocals in addition to
the target voice. Our work is along the similar lines but, in addition, we analyse the effect of
volume of the target voice on the source separation quality. Further, our approach also differs
from Li’s work in terms of the choice of baseline models, the proposed model architecture,
the experimental setup and the dataset.

3 The Dataset

In order to exploit the visual information in the singing voice separation problem, we gath-
ered a new dataset of people singing a cappella, i.e. with no music accompaniment. The
dataset, named Acappella, comprises around 46 hours of a cappella solo singing videos
(i.e. a single singer per video) sourced from YouTube, sampled across different singers and
languages. It covers four language categories: English, Spanish, Hindi and others.

The samples in our dataset are defined based on the timestamps corresponding to the
segments of interest in each of the videos. These timestamps are provided in the dataset.
They have been manually selected to exclude parts of the videos that do not satisfy any of the
following characteristics: single frontal face view without occlusions, minimal background
noise, no beatboxing, no snapping fingers, songs with lyrics.

Along with the dataset, we provide the splits for training set, validation set and test set.
The training set makes up around 80% of the total dataset. Around 7% of the dataset forms
the validation set which is used during the training to save the best checkpoint. The test set
is divided into the following subsets: seen-heard and unseen-unheard. The former consists
of samples from known singers, i.e. singers present in the training set but singing different
songs. The latter contains singers who are not a part of the training set. The unseen-unheard
test subset also contains samples from languages not heard in the training set. It presents
an approximately uniform distribution of samples across language categories and gender.
Extended statistics of the complete dataset are shown in Figure 1.

Li [16] created a similar dataset. It comprises of 491 solo singing voice YouTube videos
and 65 recorded ones, which overall sum up to 12 hours. To our knowledge, the dataset pre-
sented in this paper is the biggest dataset of audio-visual solo singing voice and, at present,


Citation
Citation
{Afouras, Chung, and Zisserman} 2018

Citation
Citation
{Gabbay, Shamir, and Peleg} 2018

Citation
Citation
{Li and Qian} 2020

Citation
Citation
{Nguyen, Sadeghi, Ricci, and Alameda-Pineda} 2020

Citation
Citation
{Wu, Xu, Zhang, Chen, Yu, Xie, and Yu} 2019

Citation
Citation
{Morrone, Bergamaschi, Pasa, Fadiga, Tikhanoff, and Badino} 2019

Citation
Citation
{Ephrat, Mosseri, Lang, Dekel, Wilson, Hassidim, Freeman, and Rubinstein} 2018

Citation
Citation
{Cole, Belanger, Krishnan, Sarna, Mosseri, and Freeman} 2017

Citation
Citation
{Gao and Grauman} 2021

Citation
Citation
{Chung, Choe, Chung, and Kang} 2020

Citation
Citation
{Kim, Shin, Oh, Kaspar, Elgharib, and Matusik} 2018

Citation
Citation
{Oh, Dekel, Kim, Mosseri, Freeman, Rubinstein, and Matusik} 2019

Citation
Citation
{Fernandez-Lopez, Martinez, and Sukno} 2017

Citation
Citation
{Li} 2020

Citation
Citation
{Li} 2020


4 MONTESINOS, KADANDALE, HARO: A CAPPELLA — AV SINGING VOICE SEPARATION

the only one which is public.

We also wanted to test our models to separate voices in multi-voice videos where multiple
singing faces are put together in a single view. Since such videos do not provide us with
the individual voices for each face, it is not possible to quantitatively evaluate our models
on them. Hence, we assembled a multi-voice video ourselves. The mixture contains six
voices sung by the same person. The lead voice content is in English and Zulu, there is a
voice emulating a flute, and the rest pair up and sing in unison most of the time in Zulu.
Background accompaniment music is also included in this mixture to add to the complexity.
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Figure 1: Acappella dataset statistics.

4 Singing voice separation model

Our model architecture comprises of a multimodal convolutional neural network which takes
in a video and its corresponding mixture audio waveform and returns a complex mask. The
waveform is mapped into the time-frequency domain using a short-time Fourier transform
(STFT). The estimated mask allows to recover the separated voice of the target singer by
computing the complex product between the mask and the spectrogram.

Our network is designed to receive only the visual information of the target singer to
isolate, mainly for two reasons: i) it allows to reduce and bound the memory required for
training, and ii) it broadens the applicability of the model since it only needs to be shown
the face of the target singing voice with no additional visual information related to the other
sources. This way, the model can address mixtures of singing voice with accompaniments of
different nature: musical instruments, backing vocals, other lead voices, beatboxing, snap-
ping fingers, ambient sounds, or even different types of noise.

The architecture is a two-stream convolutional neural network for processing video and
audio. It is denoted as Y-Net and illustrated in Figure 2. The audio network consists of a
6-blocks U-Net which predicts a two-channel tensor. The U-Net [30] is an encoder-decoder
architecture with skip connections in between which allows to preserve the spatial structure
while increasing the receptive field through blocks. We have experimented with two different
number of blocks in the U-Net (see a comparison in Table 1) to ensure the best performance
without overfitting. The original U-Net design doubles the amount of channels each block
while it downsamples the spatio-temporal resolution by two. In our U-Net with six blocks,
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we keep both the temporal resolution and the amount of channels, fixed, in the last blocks (i.e.
the features are downsampled only along the frequency domain). The rationale behind this
is not to lose much temporal resolution so that the features coming from the visual modality
can be aligned to the audio ones and condition on those. We fix the temporal resolution of the
U-Net bottleneck to 16 frames; this ensures that there are no out-of-synchronisation issues
between both modalities and at the same time ensuring a fine enough temporal resolution for
the separation task. On the other hand, a recent work [15] applies a synchronisation module
between video and audio modalities but they deal with strong miss-alignments (up to 0.36s)
which is not the case in our videos.
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Figure 2: Y-Net model scheme. The system works with chunks of 4n seconds, where n € N.
The audio network takes as input a 256 x 16Tn complex spectrogram and returns a complex
mask. The visual network in case of Y-Net-m and Y-Net-mr, is the video network (in red),
which takes as input a set of 100n frames cropped around the mouth of the target singer. In
case of Y-Net-g and Y-Net-gr, the visual network is the graph network (in green) which takes
as input a sequence of 68n landmarks of the face of the target singer. The visual features are
fused with the audio network’s latent space through a FiLM layer (we use 7 = 16). The
FiLM broadcasts the 256 x 1 x T visual features into the 256 x 16 x T audio ones. The
spatial blocks of the U-Net downsample in both, the frequency and the temporal dimension,
while the frequential block downsamples along the frequency dimension only.

For the video network, we experiment with four different options:

1) Y-Net-g: This network extracts motion features from a sequence of aligned face land-
marks (more details in Section 4.1). The reasons for using landmarks instead of raw frames
are: 1) a sequence of face landmarks contains motion information of the face, ii) appearance
information and video background are removed, making the system less prone to overfitting,
and iii) the computation cost is much less compared to processing of the video frames. To
make profit of the landmarks, we use a variation of the spatio-temporal graph convolutional
neural network from [41], denoted as ST-GCN. Graph CNNs are a generalisation of tradi-
tional convolutions. Akin to the traditional convolutions, given a root node, ST-GCN works
on a neighbour set of nodes as shown in Figure 2. We treat the face landmarks as undirected
graphs, where nodes encode the cartesian position of each landmark on the image.

2) Y-Net-m: A sequence of video frames cropped around the mouth (more details in
Section 4.1) are fed to a 3-block 3D-ResNet-like network, where the first block is 3D convo-
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lutional and the last two blocks are 2D convolutional. The 3D convolutional block processes
motion information. This design turns into a network with 3M parameters (M stands for mil-
lion). In contrast, a traditional 3D-ResNet18 has 33.4M and the 2D-ResNet18 has 11.4M.
This way, the visual network keeps the capacity to model spatio-temporal information, as
suggested in Tran et al. [36], while having a contained amount of parameters not to overfit.

3) Y-Net-e: We consider the visual network used in Ephrat et al. [5]. The input to this
visual network are the face embeddings extracted from the video frames cropped around the
face, just like in [5]. The visual network comprises of six 1D dilated convolutional blocks.

We also experiment with the following additional configuration for the video network:

4) Y-Net-f: While the Y-Net-m ingests a sequence of video frames cropped around the
mouth, Y-Net-f takes in a sequence of video frames cropped around the entire face. More
details in Section 4.1.

The visual features are fused with the audio networks’ latent features via FILM condi-
tioning [4]. Note that since both the audio and visual features are processed with convolu-
tions, the time-frequency and spatio-temporal structures are kept, allowing to fuse them after
an alignment in the temporal dimension. We apply a spatio-temporal average pooling to the
video features to get the same number of features in the temporal dimension as the audio
ones. At inference time, the model can work with chunks larger than 4s, only limited by
the available memory, enabling a fast processing in contrast to processing chunks of 4s and
concatenating the resulting masks which could introduce artifacts.

4.1 Pre-processing

Video processing. Videos are resampled to 25 fps to maintain uniform sampling rate across
all the samples. We pre-processed the video stream of the target singer using a face detector!
to extract 68 face landmarks, cropping around the face and aligning the face along all the
frames in the video. In case of Y-Net-m, each frame is cropped around the mouth region and
then resized to 96 x 96. Whereas, for Y-Net-f, each frame is cropped around the full face
region and then resized to 128 x 96.Then, we feed the visual network with a sequence of 100
RGB frames, corresponding to 4s of video. In case of Y-Net-g, we feed the spatio-temporal
graph network with the aligned sequence of face landmarks.

Audio processing. The audio signal is resampled to 16384 Hz. We consider a 4s-audio
excerpt and compute its STFT using a Hanning window of size 1022 and a hop length of 256
(asin[9, 42]) which leads to a 512256 spectrogram. This specific shape is useful to achieve
a perfect alignment between the downconvolutional and the upconvolutional blocks of the
U-Net, which are connected through the skip connections. For computational efficiency, we
downsample the spectrogram in the frequency dimension and use a 256 x256 spectrogram.

4.2 Training strategy, training target and loss

We train the networks in a self-supervised way by generating the audio mixtures artificially.
Given a set of N waveforms, s1, ..., Sy, we generate an artificial mixture by taking the average,
i.e.sy = %Zsi. This way we can ensure the resulting mixture is bounded between -1 and 1.
The network is trained to optimise an L, loss on bounded complex ratio masks [38].

Let S;(f,t) be the STFT of a generic waveform s;. Note that S;(f,7) is a complex matrix.

We define the ideal complex ratio mask as follows: M(f,t) = %

Thttps://github.com/DinoMan/face-processor
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Since the mask M is not bounded, we apply a hyperbolic tangent on the real and imagi-
nary parts, M" and M*, respectively, to obtain a bounded complex mask:

My (f,1) = My(f,1) +My(f,1)'i = tanh(M (f,1)) + tanh(M' (1)) i. (1)

Let M, be the bounded mask estimated by the network. The loss function is defined as:
1 o r 2 1 i i 2
L=G?©My—Mp)|, +G> © (M — M), 2

where ® denotes the element-wise product and G is a gradient penalty so that the points of
the mixture spectrogram S, with higher energy contribute more to the loss, it is defined as:

G(f,t) = max(min(log(1+|S,.(f,1)]),10),1073). 3)

A very common problem with multimodal networks is how to force the model to pay at-
tention to one modality when the task is easy to solve from the other modality alone. When
the patterns of each sound source are clearly different, the source separation is easier from the
audio modality. Thus, we artificially create mixtures with different types of accompaniments,
including human voices. Since we only need the face of the target singer, we mix samples
from Acappella together with samples from Audio Set [11]. Audio Set is an in-the-wild
large-scale dataset of audio events across more than 600 categories. We gathered the cate-
gories related to the human voice and some typical accompaniments. These categories are:
acappella, background music, beatboxing, choir, drum, lullaby, rapping, theremin, whistling
and yodelling. We also include pop and rock music accompaniment from MUSDB18 dataset
[29]. While creating artificial mixtures, we ensure that all the samples from Acappella are
used in each epoch. Those are mixed with a random sample from Audio Set or MUSDB18.
We uniformly sample from all the accompaniment set categories. Including Audio Set in the
training strategy increases the robustness of the model and addresses overfitting.

We consider different variants of our model: Y-Net-g, Y-Net-m, Y-Net-e and Y-Net-f.
Note that these models, when referred to, without any additional suffix, indicate that they
have been trained with mixtures that only contain one lead singing voice which is sourced
from Acappella dataset and mixed with an accompaniment sample sourced from Audio Set or
MUSDBI18. On the other hand, we further append the suffix ‘r’ to the model name to indicate
that it has been trained with mixtures in which, 50% of the time, the mixture contains an
additional lead singing voice sourced from Acappella dataset. In this work, the experiments
with model Y-Net-f are limited to its respective ‘r’ variant, Y-Net-fr, only.

5 Experiments

We conduct a set of experiments comparing the different Y-Net versions against their audio-
only counterpart, the U-Net (i.e. our Y-Net without the visual network), and a state-of-the-art
model for speech separation, the model of Ephrat et al. [5], that we denote as LLCP*(more
details in the supplementary material). Results are expressed in terms of Signal-to-Distortion
Ratio (SDR) and Signal-to-Interference Ratio (SIR), both defined in [37].

We are interested in analysing the role of different types of visual information in different
kind of mixtures. For that, we evaluate the models in two different setups: mixing a single
singing voice with accompaniment (one lead voice setup) and mixing two singing voices

2we use an existing code available at https:/github.com/vitrioil/Speech-Separation
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with accompaniment (two lead voices setup). Note that the singing voice(s) in both these
setups are always sourced from Acappella dataset. Experiments are conducted both for seen-
heard and unseen-unheard singers in heard languages and unseen-unheard singers in unheard
languages (i.e. new languages) to check how the different networks generalise.

Models 4-blocks U-Net | 6-blocks U-Net
SDR SIR SDR SIR

U-Net -1.92 1216 | -1.97 12.64
Y-Net-e -1.50  12.50 - -
Y-Net-m 2.49 14.04 291 15.71
Y-Net-g 1.85 14.42 2.07 15.49
Y-Net-fr - - 4.54 15.39
Y-Net-mr | 3.38 13.81 5.03 15.80
Y-Net-gr | 4.71 15.67 6.41 17.38
Table 1: Ablation study on the unseen-unheard test set in the two lead voices setup.

In Table 1, we show an ablation study of our model in the unseen-unheard test set in
the two lead voices setup. We analyse four different aspects: i) the number of blocks in
the U-Net, ii) audio-only versus audio-visual models, iii) the type of visual network, and
iv) the training setting. First thing to notice is that the audio-only model, U-Net, performs
much worse than the audio-visual ones and is the only model that does not get benefited
from an increase of the number of blocks, since two lead voices are harder to separate from
audio alone (actually, in the one lead voice setup U-Net does improve with more blocks).
Thus, an increase in the U-Net blocks in the Y-Net models implies a gain in performance
since the visual information is added to the network, which is indeed a crucial information
to get a proper separation in the two lead voices setup. Second, both Y-Net-m and Y-Net-
g perform better than Y-Net-e; from that, we hypothesise that visual embeddings do not
sufficiently encode motion information. This follows the observations of [3], which explains
that visual embeddings ignore factors of variation related to aspects such as lighting, pose
and expression (the latter being more related to the face motion). The Table | results also
show how a boost in performance can be achieved if we train our models with mixtures in
which 50% of the time two lead voices are present (‘r’ variants). This boost is particularly
high (+2.86 dB and +4.34 dB in SDR, in 4-blocks and 6-blocks respectively) in the graph-
based model, Y-Net-g, compared to the video-based model, Y-Net-m (+0.89 dB and +2.12
dB). Finally, we explore further (with the ‘t’ variants), which among the full face and the
cropped mouth, works best as input to the video network; for that we include the results of
the Y-Net-fr variant. Y-Net-fr relies on the same network as Y-Net-mr but the input to the
video network are crops of the frames containing the full face rather than the lips region
alone as in Y-Net-mr. Both the SDR and SIR values indicate that a better separation with the
video network is achieved by limiting the visual information only to the lips region As it can
be observed, the best model is Y-Net-gr with 6-blocks U-Net. From here on, all our model
variants use a 6-blocks U-Net.

Table 2 presents a comparison of our best models, Y-Net with video network or with
graph network, with respect to the U-Net and LLCP models in both the seen-heard and
unseen-unheard test sets in the two lead voices setup, as well as in the multi-voice recording
with ground truth sources (singer not present in the training set). The SDR metrics are shown
for different languages. We can observe that across models, the general tendency is that the
performance increases for the languages more represented in the training set. Again, U-Net
performs the worst. LLCP outperforms U-Net but not our models. Models that have been
trained with 50% of the samples containing two lead voices (‘r’ variants) have a boost in
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Model Seen-Heard Unseen-Unheard Multi-voice
English  Spanish  Hindi  Others | English Spanish Hindi New Languages | English + Zulu
U-Net -1.89 -2.25 272 -1.42 -1.86 -2.34 -1.92 -2.15 5.18
LLCP[5] | -0.55 -0.57 -1.08  -0.58 -0.9 -1.18 -0.73 -1.27 5.63
Y-Net-m 4.17 3.60 3.50 3.19 3.28 3.33 2.11 231 7.24
Y-Net-g 2.98 2.30 1.79 2.18 2.47 2.74 1.53 1.74 6.72
Y-Net-mr 7.78 5.42 532 5.82 5.33 5.14 435 4.07 6.51
Y-Net-gr 8.61 6.62 591 7.45 6.73 6.72 5.76 5.27 7.21

Table 2: SDR results in the two lead voices setup for different methods across languages,
both in seen-heard and unseen-unheard test sets. SDR results also for the multi-voice case.

performance. Overall, it seems that the graph-based network can better exploit the motion
information if the network is trained with the proper mixtures (two lead voices). The boost
in performance with the Y-Net-gr is considerably and consistently higher than the boost with
the Y-Net-mr, with an average boost of +1.89 dB for Y-Net-m and +3.98 dB for Y-Net-g.

In order to evaluate how sensitive are the different models to the volume of the target
singer, we use different volume levels in the singing voice, so that experiments range from
predominant singing voice to non-dominant one. To do so, each source s; in the mixture is
normalised by its root mean square value and then the singing voice is further multiplied
by a factor a, where o € {0.25,0.5,1,1.25}. Lastly, we rescale all the sources with the
same value to ensure they are bounded between -1 and 1 while respecting the relative preset
volumes (we divide by the maximum of absolute values of all sources). Figure 3 shows
metrics for different volume levels and different methods in the unseen-unheard test set in
two different setups: one lead voice (left) and two lead voices (right). For the one lead voice
setup, LLCP performs the best in all volume levels. The second best for volume level factors
of 1.25 and 1 is Y-Net-g, while for lower volume factors, 0.5 and 0.25, the second best is
Y-Net-gr. Y-Net-gr exploits the motion information more than Y-Net-g and Y-Net-m since it
has been trained with mixtures containing two lead voices, where motion is a key factor. This
result shows that motion is also important in the case of one singing voice with a low volume,
where the audio information alone is not enough to perform a good separation. Actually, we
can observe how the In case of two lead voices, the Y-Net-gr is the best model for all volume
levels (except for SIR in the lowest volume case, where it is the second best). The rest of
our models are better than LLCP for volume levels of 1.25 and 1 (both in SDR and SIR) and
better than LLCP in terms of SDR for volume level of 0.5. Overall, we can conclude that
LLCP is a good choice for the one lead voice case and the Y-Net-gr is the best model for two
lead voices, where the motion features become crucial to get good separation results.

Y-Net-gr | One lead voice in test | Two lead voices in test Average
Remix % | SDR SIR SDR SIR SDR  SIR
0% | 12.47 19.71 2.07 15.49 7.27 17.6
50% | 11.29 19.43 6.41 17.38 885 1841
75% | 11.08 18.78 6.42 17.09 875 1793
100% | 9.98 17.73 6.40 16.68 8.19 1721

Table 3: Ablation study on the percentage of mixtures containing two lead voices in the
training of the Y-Net-gr model (note that 0% corresponds to the Y-Net-g model). Results on
the unseen-unheard test set.

Finally, Table 3 shows an ablation on the percentage of mixtures with two lead voices in
the training set in the case of our best model, Y-Net-gr. The table shows the performance of
these models both in the one lead voice and two lead voices setup in the unseen-unheard test
set. The increase in the percentage of two lead voice mixtures while training degrades the test
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Figure 3: Results in the unseen-unheard test set: left, one lead voice setup; right, two lead
voices setup. Different symbols are assigned to the different models and different colours to
the different volume levels of the target voice.

results in the one lead voice setup when the volume of the singing voice is reasonable (@ =1,
as it is the case both in the training and test sets of this ablation). However, as seen in Figure
3 (left), when the volume of the target singing voice is low, training the network with two
lead voices helps as well — note that Y-Net-gr performs better than Y-Net-g also for one lead
voice. When we evaluate the models with mixtures containing two lead voices, we observe
a boost in performance of the different Y-Net-gr models (with different percentages of two
lead voice mixtures) with respect to that of the Y-Net-g. By considering the average results
of the one lead and two lead voices setups in the unseen-unheard test set (two rightmost
columns in Table 3), we infer that the best model is the one trained with 50% of the mixtures
containing two lead voices. Thus, we consider Y-Net-gr model trained with 50% of mixtures
containing two lead voices, as our proposed model as it achieves a good compromise in both
scenarios and also in the case of a target voice with a low volume.

For demos, please visit the project page: https://ipcv.github.io/Acappella/.

6 Conclusions

This paper explores the singing voice separation problem from a new perspective, by exploiting both
the audio and visual information. We introduce a new dataset of video recordings of a cappella solo
performances. We also propose a new audio-visual singing voice separation model, based on a U-Net
conditioned on the motion of the face landmarks of the target singer. Those landmarks are processed
with a spatio-temporal graph convolutional network. Moreover, we present a thorough ablation study
of our model, with different variants of the visual network and show how the performance can be
boosted in multi-voice cases by adding mixtures with two lead singing voices in the training set. The
experiments show how audio-visual methods improve upon audio-only ones in challenging scenarios
when there are multiple overlapping voices or when the target voice has a low volume. The presented
model is compared to a state-of-the-art audio-visual speech separation model trained in the new dataset.
Our model better exploits the face motion and thus outperforms the baseline models in singing voice
separation in the most challenging evaluation setup.


https://ipcv.github.io/Acappella/
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