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Abstract

Human action recognition (HAR) is an essential task in computer vision, which still
faces the critical challenge of reducing the data redundancy of decompressed video
frames and extracting identification information. To address this challenge, we pro-
pose a novel faster frequency-domain compressed video action recognition framework
(termed Faster-FCoViAR), which consists of a frequency-domain partial decompression
method (FPDec), a frequency-domain channel selection strategy (FCS), and a spatial-
to-frequency domain student-teacher network (S2FNet). The FPDec obtains frequency-
domain DCT coefficients of compressed videos directly without inverse discrete cosine
transform (IDCT) for decompression. The FCS down-samples frequency-domain data to
enhance the saliency of input. The S2FNet transfers spatial semantic knowledge from a
spatial teacher network to a light-weight student network in the frequency domain, and
it thus improves the spatial feature extraction ability of the frequency-domain network.
Experiments on datasets UCF-101, HMDB-51, and Kinetics-400 show that our Faster-
FCoViAR is 12.3 times faster than the frame-based methods and 6.7 times faster than
other compressed domain methods based on competitive recognition accuracy compared
with the state-of-the-art action recognition methods.

1 Introduction
Human action recognition (HAR) plays a vital role in many applications such as intelli-
gent video understanding [17, 43], video surveillance [25], human-computer interaction [2].
Current HAR methods are facing the loss of long-range temporal information and the spatio-
temporal aggregation problem, especially for the high computational complexity.
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Figure 1: The structure of Faster-FCoViAR. The FPDec gets frequency-domain data from
compressed videos. The FCS selects salient channels of frequency-domain data to reduce
data redundancy. The S2FNet leverages spatial information of the teacher network in the
spatial domain to improve the performance of the student network in the frequency domain.

Most existing HAR methods are based on 2D-CNN [26, 30, 31, 32], 3D-CNN [1, 7, 20,
34, 41] or RNN [3, 18]. However, these methods generally need to completely decode the
video into RGB frames, which usually take up huge computing resources. At the same time,
the simple down-sampling in the spatial domain ignores the salient information of the video,
which can result in accuracy degradation.

Recently, HAR methods based on the compressed domain have received a lot of attention
[8, 13, 22, 33, 38]. CoViAR [33] is proposed for partially decoding compressed videos into
the RGB domain. The compressed video is decoded into I-frames (I), residuals (R), and
motion vectors (MV). Then, the following developed CoViAR methods are presented, such
as DMC-Net [22], IP-TSN [13], and IF-TTN [38]. However, this decompression method
requires Inverse Discrete Cosine Transform (IDCT), which takes up about 80% of video
decompression time [21].

To improve the computational efficiency, some studies focus on using the frequency-
domain DCT coefficients instead of RGB pixels [4, 5, 9, 29, 37]. The frequency-domain
data expresses the importance distribution of different frequency components. The low-
frequency components contain the most spatial and motion information of the video, and the
Y channel of YCbCr contains more spatial and motion information than the others [37].

In this paper, we propose a novel faster frequency-domain compressed video action
recognition framework (Faster-FCoViAR) as shown in Figure 1, which can efficiently de-
scribe the action discrimination information. Firstly, a frequency-domain partial decom-
pression method (FPDec) is proposed, consisting of entropy decoding, zigzag reordering,
and inverse quantization to obtain DCT coefficients of compressed videos. Then, we de-
sign a frequency-domain channel selection strategy (FCS) to down-sample the salient fre-
quency components. Thirdly, we build a spatial-to-frequency domain student-teacher net-
work (S2FNet) to improve the classification performance of our frequency-domain I-network.
Finally, we adopt the late fusion of I, R, and MV networks, achieving comparable accuracy
on UCF-101[24], HMDB-51 [16], and Kinetics-400 [15] with high efficiency.
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The contributions of this paper are summarized as follows: (1) We propose a frequency-
domain partial decompression method (FPDec) which can reduce the data redundancy and
make spatial and motion information more prominent by obtaining frequency-domain data
and motion vectors directly from the compressed video stream. (2) We propose a spatial-
to-frequency domain student-teacher network (S2FNet) to extract identification information
in the spatial and frequency domain simultaneously with a small computational complex-
ity. During training, the light-weight I-network in the frequency domain learns discriminant
spatio-temporal features from the complex I-network in the RGB domain. (3) We conduct
experiments on UCF-101, HMDB-51, and Kinetics-400. The results show that our method
can achieve competitive accuracy compared with state-of-art methods with high efficiency.

2 Related Work
Action Recognition: Representative methods of HAR include Two-stream models [17, 23,
30] and 3D Convolution models [1, 7, 10, 20, 41]. The Two-stream model uses two indepen-
dent 2D-CNNs to obtain spatial and temporal information, but the complexity of optical flow
calculation is high that leads to the difficulty of training in an end-to-end way. To alleviate
the problem, several studies [14, 27] exploit CNNs to estimate optical flows directly from
RGB sequences. Several attempts [28, 36] simulate 3D convolutions with the combination
of 2D spatial and 1D temporal convolutions to reduce the high computational cost. However,
the 3D convolutions adopted by these methods still require huge computing resources.

Action Recognition in Compressed Videos: Compressed video action recognition ap-
proaches make use of motion vectors to capture dynamic information. Zhang et al. [39]
first replace the optical flow stream with a motion vector stream, but it still needs to de-
code RGB images for P-frames and ignores other motion-encoding modalities such as the
residuals. CoViAR [33] uses compressed video data, namely I-frames, motion vectors and
residuals with three independent networks respectively, which achieves a high efficiency for
action recognition. However, the performance is worse than traditional Two-stream methods.
DMC-Net [22] improves CoViAR and achieves state-of-the-art results by adding an optical
flow generation network, but both models [22, 33] employ the large Resnet-152 [11] as the
backbone with high computational cost. More recently, Zhou et al. [42] use the motion vector
information to select key information sequences for recognition and further to formulate the
representation of the selected sequences. Wu et al. [35] propose a multi-teacher knowledge
distillation framework, to compress the model by transferring the knowledge from multiple
teachers to a small student model. All the above works require decoding videos to RGB
image sequences, which increases the preprocessing time.

Learning in the frequency domain: Frequency-domain data contains motion cues and
appearance changes. When decoding the compressed data to the frequency domain, it only
needs to obtain DCT coefficients from Huffman code without complete decompression,
which can shorten the decompression time. Matej et al. [29] first use CNN to directly learn
image classification in the frequency domain instead of spatial domain. Lionel et al. [9] train
the CNN classifier directly on the DCT coefficients computed by the JPEG codec. Ehrlich et
al. [6] propose a model conversion algorithm to convert the spatial domain CNN models to
the frequency domain. Xu et al. [37] propose a learning-based frequency channel selection
method to replace the traditional spatial down-sampling method. In this paper, we introduces
a method for transferring frequency-domain learning into compressed domain action recog-
nition, obtaining DCT coefficients by partially decoding videos into the frequency domain.
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Figure 2: The process of FPDec: (a) the steps of FPDec; (b) visualized image of four mac-
roblocks in the frequency domain.

3 Methods
Our Faster-FCoViAR is an efficient compressed video HAR framework in the frequency do-
main. First, DCT coefficients of the compressed video are obtained by the frequency-domain
partial decompression (FPDec) with high efficiency. Second, we use a frequency-domain
channel selection (FCS) strategy to down-sampling the frequency-domain data. Third, to
fully learn spatial and frequency semantics, we propose a spatial-to-frequency domain student-
teacher network (S2FNet) for the frequency-domain I-network.

3.1 Frequency-domain Partial Decompression Method (FPDec)
In our FPDec, compressed videos are decoded into the frequency domain by entropy decod-
ing, zigzag reordering, and inverse quantization, as shown in Figure 2. For frequency-domain
I-frames and residuals, first, the entropy decoding decodes the bitstream to frequency-domain
data. Second, the zigzag reordering restores the sorting of DCT coefficients. Finally, the
inverse quantization regains the DCT coefficients according to the quantizer scale parame-
ter without IDCT. The compression standard we use in this paper is MPEG-4 Simple Pro-
file/Level 1 [21], which performs DCT and IDCT on macroblocks of 8× 8 pixels in the
YCbCr color space, thus the frequency-domain data is in a unit of 8× 8 block, as shown
in Figure 2(b). Noting that our method can be also applicable for other compression stan-
dards such as H.264, with the same encode and decode processes consisting of the entropy
decoding, zigzag reordering, inverse quantization, and IDCT [21]. DC, low-frequency, and
high-frequency components are sorted inside the macroblocks from top to bottom and left
to right. The DC and low-frequency areas contain the salient information, while most high-
frequency areas are zeros which represent redundant and non-salient information. The order-
ing of frequency components indicates the different significance of frequency components.
For videos with a resolution of H ×W , the size of frequency-domain I-frames and residuals
is H ×W ×3.

For motion vectors, we obtain them by entropy decoding. According to the MPEG-
4 Simple Profile/Level 1, the motion vector is in a unit of 16× 16 with the same value.
For videos with a resolution of H ×W , the size of MV is H ×W × 2. In the following
experiments, we choose H =W = 448.

3.2 Frequency-domain Channel Selection (FCS)
To alleviate the non-salient high-frequency data, we develop the frequency-domain channel
selection (FCS). For frequency-domain I-frames and residuals of 448× 448× 3, we first
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Figure 3: Visualization of raw Y channel and channels after FCS. The columns are raw Y
channel, the first DC channel, the 8th channel and the 16th channel.

group all components in 8× 8 blocks of the same frequency into one channel, maintaining
the spatial relationships. Therefore, Y, Cb, and Cr have 8× 8 = 64 channels separately.
The size of frequency-domain I-frames and residuals is 56×56×192. Secondly, we down-
sample the channels in upper left corner out of 8× 8 channels [37]. Finally, the input size
of frequency-domain I-frames and residuals is 56× 56×K, where K means the number of
selected channels. The visualization of the DC channel is similar to the raw Y channel,
as demonstrated in Figure 3, because the DC channel contains the salient information of
raw data. The FCS of I-frames and residuals remains the most important information with
a smaller size compared with the common input size of 224 × 224 × 3 by spatial down-
sampling. Thus, the FCS reduces the computing complexity of networks.

For MV of 448×448×2, we down-sample it to 224×224×2 without loss of information
because the values inside a 16× 16 block of MV are the same. Our MV input keeps the
common size of 224×224×2 while contains more motion cues of high-resolution videos.

3.3 Spatial-to-frequency Domain Student-teacher Network (S2FNet)
Our frequency-domain I-network takes DCT coefficients as input after FCS processing,
which ensures that useful low-frequency information is learned by the network. In addition,
frequency-domain and spatial information are complementary to their different representa-
tions of videos. To learn the spatial and frequency semantics simultaneously, we design a
spatial-to-frequency domain student-teacher network (S2FNet) as shown in Figure 4. A spa-
tial domain frame-based I-network of Resnet-152 [33] is built as the teacher network and a
frequency-domain I-network of Resnet-50 [11] is built as the student network. To accom-
modate the input size of I-network, we skip its first convolution layer and the subsequent
max-pooling layer. We first train the teacher I-network in the spatial domain, then freeze its
weights, and take its output logits as the soft labels. Secondly, we train the student I-network
in the frequency domain. The loss function is composed of two parts. The first part is the
classification loss function of the student I-network,

L1(W ) =− 1
NC

N

∑
i=1

C

∑
c=1

(ytrue)
c
i ln(qs)

c
i (1)
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Figure 4: The structure of S2FNet.

where qs is the output logit of the student I-network, (ytrue) is the hard label of ground truth.
The second part is shown as follows,

L2(W ) =− 1
NC

N

∑
i=1

C

∑
c=1

(qT
t )

c
i ln(qT

s )
c
i (2)

where (qT
s )

c
i is the output soft logit of the student I-network,

(qT
s )

c
i =

exp((zs)
c
i /T )

∑k exp((zs)
k
i )/T )

, f or c = 1, ...,C (3)

and (qT
t )

c
i is the soft label of the teacher I-network,

(qT
t )

c
i =

exp((zt)
c
i /T )

∑k exp((zt)
k
i )/T )

, f or c = 1, ...,C (4)

where zs and zt are the logits vector produced by the student network and the teacher net-
work respectively. T is a temperature that a higher value for T produces a softer probability
distribution over classes [12]. The total loss function can be written as,

L = λL1 +(1−λ )L2 (5)

where λ is the weighted parameter. The S2FNet can transfer the spatial knowledge from
the teacher network to the student network while retaining the frequency-domain learning
ability, so the S2FNet can aggregate the spatial and frequency semantic information.

The architecture of Faster-FCoViAR is shown in Figure 1. For our frequency-domain R-
network, Resnet-50 the same as our frequency-domain I-network is adopted as the backbone
network, as I and R data both consist of DCT coefficients. For the motion vectors, we use
Resnet-18 [11] as the backbone network. Finally, we adopt the late fusion of I, R, and MV-
networks and get the recognition results.

4 Experiments
To validate our method, we conduct experiments on UCF-101 [24], HMDB-51 [16], and
Kinetics-400 [15]. We have also done the ablation studies of FCS, FPDec, and S2FNet, the
speed and efficiency of our Faster-FCoViAR and the comparison with state-of-art methods.
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Net Backbone Input LR Steps Epochs Batch Views Pretrain

I-net (S) Res152/Res50 RGB 0.0003 [55, 110, 160] 220 16 - RGB
I-net (F) Res50 DCT 0.0006 [55, 110] 150 16 25 DCT
I-netLite (F) Res18 DCT 0.01 [150, 270, 350] 380 16 25 DCT
R-net Rse50 DCT 0.0003 [55, 110, 160] 220 16 25 DCT
R-netLite Rse18 DCT 0.01 [150, 270, 350] 380 16 25 DCT
MV-net Res18 - 0.01 [150, 270, 390] 510 256 25 RGB

Table 1: Training and testing details. "LR" means the learning rate; "Steps" means epochs
to decay learning rate; "Epochs" means the number of training epochs; "S" means networks
in the spatial domain; "F" means networks in the frequency domain; "Lite" means I and R
networks that take Resnet-18 as their backbone.

In addition, we also evaluate I and R networks that use Resnet-18 as their backbones to get
a more light-weight model, named Faster-FCoViARLite.

Video data augmentation. To increase the variations of the data while avoiding com-
plete decompression, we propose a new video data augmentation strategy for compressed
videos. Without decompression, we randomly flips and crops the videos following the ratio
of CoViAR [33].

Training and testing details. The training and testing schedule is shown in Table 1. The
teacher I-network is trained first, then, its weights are frozen to train the student I-network.
The R and MV networks are trained separately. Finally, we take the weighted average of
the scores of I, MV, and R-network as the final classification result. For the S2FNet of
Kinetics-400, we use the I-network of CoViAR as the teacher network, but the backbone of
which is Resnet-50 rather than Resnet-152 for higher computational efficiency in training.
Expriments of preprocessing time and VPS are all evaluated on an NVIDIA RTX-2080Ti
GPU with Intel Xeon E5-2620 v4 CPU. Other experiments of UCF-101 and HMDB-51 are
conducted on four NVIDIA RTX-2080Ti GPUs with Intel Xeon E5-2620 v4 CPU, while
other experiments of Kinetics-400 are conducted on eight NVIDIA RTX-3090 GPUs with
Intel Xeon Silver 4216 CPU.

4.1 Ablation Study

We first conduct experiments of hyperparameter K in FCS on UCF-101. As shown in Table
2, when we select K = 24 channels out of 192 channels, the frequency-domain network
achieves the best performance. Thus, K is set to 24 in the following experiments.

K Dataset I-net

16 UCF-101 68.0
24 UCF-101 73.9
32 UCF-101 69.3
64 UCF-101 66.7
192 UCF-101 59.2

Table 2: Analysis for the hyperparameter
K in FCS.

T λ Dataset I-net

1.0 0.2 UCF-101 72.6
2.0 0.2 UCF-101 75.4
2.0 0.1 UCF-101 77.8
5.0 0.1 UCF-101 77.2
1.0 0.2 HMDB-51 41.3
2.0 0.2 HMDB-51 42.2
2.0 0.1 HMDB-51 44.7
5.0 0.1 HMDB-51 42.5

Table 3: Analysis for the hyperparame-
ters T and λ in S2FNet.

We also conduct ablation experiments to evaluate the performance of FCS, DCT pre-
trained model, and video data augmentation on UCF-101 and HMDB51. They can improve
the accuracy of both frequency-domain I and R networks, as shown in Table 4. Among them,
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Dataset Pretrain Data aug FCS I-net R-net

UCF-101

# ! # 57.6 58.0
# ! ! 62.0 72.6
! # ! 60.8 61.9
! ! # 59.2 55.4
! ! ! 73.9 75.4

HMDB-51

# ! # 27.9 16.1
# ! ! 38.1 43.6
! # ! 24.6 25.1
! ! # 26.5 19.2
! ! ! 40.0 45.9

Table 4: Ablation studies on pretrained model, FCS, and video data augmentation.
Input Pre I-net MV-net R-net I+MV I+R I+MV+R

Frames 9.55 83.2 67.1 80.2 87.6 86.3 88.6
DCT 775 77.7 73.1 67.2 85.7 81.0 86.3
Partial 4.71 73.9 81.6 75.4 85.6 80.9 87.8

Table 5: The validation of our frequency-domain data obtained by FPDec on UCF-101.
"Pre" means preprocessing time(ms) for decoding videos; "Frames" means RGB frames
obtaining by complete decompression; "DCT" means frequency-domain data obtained by
DCT; "Partial" means frequency-domain data obtained by FPDec.

FCS and video data augmentation can significantly improve the accuracy on both datasets,
in which FCS can improve the accuracy of the R-network by more than 20% on HMDB-51.

To validate the effectiveness of frequency-domain data by FPDec, we compare our method
with CoViAR [33] and DCT coefficients converted by manual DCT. The frequency-domain
data obtained by either FPDec or DCT is effective input for action recognition, but the former
is 165 times faster, as shown in Table 5. Compared with CoViAR, our method has higher
accuracy, and the preprocessing speed is 1.5 times faster. The accuracy of our MV-network
is higher than CoViAR, because even though our MV-network has the same size input of
224× 224 as frame-based networks, our FCS down-samples the 16× 16 blocks to 8× 8 of
high-resolution videos which contain more motion cues. Moreover, the fusion of I, R and
MV networks can improve the final accuracy.

The analysis for the hyperparameters T and λ in S2FNet is shown in Table 3. It shows
that when T is set to 2 and λ is set to 0.1, the S2FNet achieves the best performance. We fol-
low these settings in the subsequent experiments. Experiments showing the effectiveness of
S2FNet are conducted in Table 6. For Resnet-50 as backbone (I-net), frequency-domain
I-network is improved by 3.9% and 4.7% on UCF-101 and HMDB-51, and the Faster-
FCoViAR is improved by 3.4% and 5.3% on UCF-101 and HMDB-51; for Resnet-18 as
backbone (I-netLite), frequency-domain I-network is improved by 6.2% and 3.5% on UCF-
101 and HMDB-51, and the Faster-FCoViARLite is improved by 3.8% and 7.1% on UCF-101
and HMDB-51. It indicates that the joint learning of spatial and frequency-domain semantics
can improve the results.

4.2 Speed and Efficiency
We compare the efficiency and accuracy of our method with TSN-based methods, including
CoViAR [33], Fast-CoViAR [4], Multi-teacher [35], and TSN [30] in Table 7. Our method
has few parameters and small GFLOPs×Views while reaching a higher accuracy of 91.2%
and 63.2% on UCF-101 and HMDB-51. For the preprocessing time and VPS, our method
is also much faster. As shown in Table 7, Faster-FCoViAR achieves higher accuracy than
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Dataset S2FNet Backbone I Fusion

UCF-101

# Res50 73.9 87.8
! Res50 77.8 91.2
# Res18 64.1 86.0
! Res18 70.3 89.8

HMDB-51

# Res50 40.0 56.9
! Res50 44.7 63.2
# Res18 34.3 51.3
! Res18 37.8 58.4

Table 6: Ablation study of S2FNet. When the backbone of student I-network is Resnet-50,
"Fusion" means Faster-FCoViAR; when the backbone of student I-network is Resnet-18,
"Fusion" means Faster-FCoViARLite.

Method G×V Params Pre VPS I MV R Fusion

TSN (RGB-only) [30] 33.0×25 58.3 24.5 2.2 - - - 87.7
TSN (OF) [30] 66.2×25 116.6 >100 <0.1 - - - 94.0
CoViAR [33] (our impl.) 15.1×25 80.8 7.23 4.0 84.8 67.1 77.6 89.6
Multi-teacher [35] 5.5×25 35.0 7.23 7.5 84.2 70.8 83.9 88.5
Fast-CoViAR [4] 5.7×250 37.4 - - 78.8 67.6 - 85.5
Faster-FCoViARLite 4.7×25 33.6 4.71 42.4 70.3 81.6 63.7 89.8
Faster-FCoViAR (I+MV) 5.8×25 34.9 3.16 37.6 77.8 81.6 - 90.2
Faster-FCoViAR (I+MV+R) 9.6×25 58.6 4.71 26.9 77.8 81.6 75.4 91.2

Table 7: Comparison of speed and accuracy with TSN-based methods on UCF-101. "G×V "
means GFLOPs×Views; "Params" means the number of trainable parameters(M); "Pre"
means preprocessing time (ms) for decoding videos; VPS means videos per second in infer-
ence. For the approaches in this table except Fast-CoViAR, we consider one crop per sample
to calculate preprocessing time and VPS. The results of CoViAR are the reproduced results
on our device and the results of other methods are reported by their papers.

CoViAR trained in the spatial domain, illustrating its effectiveness in learning spatial and
frequency semantics.

4.3 Compare with State-of-art
We finally compare our Faster-FCoViAR network with state-of-the-art methods. To make
a fair comparison, we compare the efficiency at the video level by VPS. Table 8 compares
our method with RGB frame-based methods without explicit optical flow, RGB frame-based
methods with explicit optical flow, and compressed domain methods. Our method achieves
a comparable accuracy of 91.2% and 63.2% on UCF-101 and HMDB-51 with a high VPS

Figure 5: Comparison of the classification accuracy (%) and VPS for Faster-FCoViAR and
other state-of-art methods on UCF-101. Node size denotes the GFLOPs.
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Methods VPS GFLOPs UCF-101 HMDB-51 Kinetics-400

RGB frame-based methods (without explicit optical flow)
TSN (RGB-only) [30] 2.2 33.0 87.7 51.0 69.1
I3D (RGB-only) [1] 0.2 107.9 95.6 74.8 72.1
Res3D [10] 0.2 36.7 85.8 54.9 65.1
ECOen [43] 3.6 - 94.8 72.4 70.0
TSM[19] 2.1 33.0 95.9 73.5 72.5
TEA[17] 2.0 35.0 96.9 73.3 75.0
RGB frame-based methods (with explicit optical flow)
Two-Stream (OF) [23] <0.1 - 88.0 59.4 -
TSN (OF) [30] <0.1 66.2 94.0 68.5 73.9
R(2+1)D [28] <0.1 65.5 97.3 78.7 74.9
I3D (OF) [1] <0.1 215.8 98.0 80.7 74.3
Compressed domain methods
EMV-CNN [39] 2.3 - 86.4 51.2 -
DTMV-CNN [40] 2.3 - 87.5 55.3 -
CoViAR [33] (our impl.) 4.0 15.1 89.6 59.1 -
DMC-Net [22] 3.1 15.3 90.9 61.8 -
IP-TSN [13] 0.4 34.0 93.4 69.1 -
Multi-teacher [35] 7.5 5.5 88.9 56.2 -
MVR-AR [42] 2.5 - 92.1 - -
Fast-CoViAR [4] - 5.7 85.5 55.8 -
Faster-FCoViARLite 42.4 4.7 89.8 58.4 -
Faster-FCoViAR (I+MV) 37.6 5.8 90.2 57.6 -
Faster-FCoViAR (I+MV+R) 26.9 9.6 91.2 63.2 69.3

Table 8: Compare with state-of-art. "OF" means optical flow.

of 26.9, which is 6.7 times faster than CoViAR. For Kinetics-400, our Faster-FCoViAR
achieve a preliminary accuracy of 69.3% with the highest speed, and there are no reports
of other compressed domain method on Kinetics-400. Moreover, Our Faster-FCoViARLite
reaches a VPS of 42.4, which is 5.7 times faster than Multi-teacher (its backbones of I, R,
and MV are Resnet-18, the same with our Faster-FCoViARLite) and have a higher accuracy.
As shown in Table 8, methods with explicit optical flow have the highest accuracy, but their
speed is rather slow. In other RGB frame-based methods, 3D network methods have high
accuracy, but the inference speed is also slow. In the compressed domain methods, our
Faster-FCoViAR achieves a competitive accuracy with the highest speed. Figure 5 compares
the classification accuracy, GFLOPs, and VPS of our Faster-FCoViAR with other methods.

5 Conclusion

In this paper, a faster frequency-domain compressed video action recognition framework is
proposed (Faster-FCoViAR). In particular, the proposed frequency-domain partial decom-
pression method (FPDec) can directly obtain the frequency-domain DCT coefficients from
compressed videos. Then, we design a frequency-domain channel selection strategy (FCS),
to enhance the saliency of input. To further improve the learning of spatial-frequency seman-
tic for the frequency-domain network, we propose a spatial-to-frequency-domain student-
teacher network (S2FNet). Experiments show that our Faster-FCoViAR framework is 12.3
times faster than the RGB frame-based methods and 6.7 times faster than the compressed
domain methods. Our Faster-FCoViAR achieves a comparable accuracy of 91.2%, 63.2%,
and 69.3% on UCF-101, HMDB-51, and Kinetics-400 respectively and higher efficiency
than any other state-of-the-art methods.
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