
LANG, FRANCOS: DEEPUME 1

DeepUME: Learning the Universal Manifold
Embedding for Robust Point Cloud
Registration 1

Natalie Lang
langn@post.bgu.ac.il

Joseph M. Francos
francos@ee.bgu.ac.il

Ben-Gurion University
Beer-Sheva, Israel

Abstract

Registration of point clouds related by rigid transformations is one of the fundamen-
tal problems in computer vision. However, a solution to the practical scenario of aligning
sparsely and differently sampled observations in the presence of noise is still lacking. We
approach registration in this scenario with a fusion of the closed-form Universal Mani-
fold Embedding (UME) method and a deep neural network. The two are combined into a
single unified framework, named DeepUME, trained end-to-end and in an unsupervised
manner. To successfully provide a global solution in the presence of large transforma-
tions, we employ an SO(3)-invariant coordinate system to learn both a joint-resampling
strategy of the point clouds and SO(3)-invariant features. These features are then uti-
lized by the geometric UME method for transformation estimation. The parameters of
DeepUME are optimized using a metric designed to overcome an ambiguity problem
emerging in the registration of symmetric shapes, when noisy scenarios are considered.
We show that our hybrid method outperforms state-of-the-art registration methods in var-
ious scenarios, and generalizes well to unseen data sets. Our code is publicly available2.
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Figure 1: Registration results on an unseen data set, where the observations are subject to a large relative rotation and
sampling noise (zero-intersection model). While UME [11] and DCP [38] fail to align the objects, and DeepGMR [46]
results with a substantial registration error, the proposed method successfully aligns the shapes.

1This research was supported by NSF-BSF Computing and Communication Foundations (CCF) grants, CCF-
2016667, and BSF-2016667 and by the Israeli Ministry of Innovation, Science and Technology grant 3-16583.
© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2https://github.com/langnatalie/DeepUME
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1 Introduction
The massive development of 3D range sensors [9, 33] led to an intense interest in 3D data
analysis. As 3D data is commonly acquired in the form of a point cloud, many related appli-
cations have been studied in recent years for that data form. In wide range of applications,
specifically in medical imaging [18], autonomous driving [6] and robotics [10], the align-
ment of 3D objects into a coherent world model is a crucial problem. Point cloud rigid
alignment is a deep-rooted problem in computer vision and graphics, and various methods
for point cloud registration have been suggested [26].

In general, the point clouds to be registered are sampled from a physical object. When
two point clouds are sampled at two different poses of an object, and especially when sam-
pling is sparse, it is unlikely that the same set of object points is sampled in both. The dif-
ference between the sampling patterns of the object may result in model mismatch when
performing registration, and we therefore refer to it as sampling noise. Registration of
point clouds in the presence of noise has been extensively studied by both closed-form
[4, 30, 43, 48] and learning-based [1, 15, 38, 46] methods. In most of these works, the
noise is modeled as an Additive White Gaussian Noise (AWGN) on the coordinates. How-
ever, in many registration applications the point clouds are sampled differently and sparsely.
In such applications, these sampling effects are dominant and adversely affect registration
performance, yet they cannot be modeled by an AWGN.

In this work we address the global registration of 3D under-sampled point clouds, where
the point clouds are differently sampled, and the samples are subject to the presence of an
additive coordinate noise. Our strategy is to combine the closed-form Universal Manifold
Embedding (UME) registration method [11], and a learning-based framework. The UME
non-linearly maps functions related by geometric transformations of coordinates (rigid, in
our case) to matrices that are linearly related by the transformation parameters. In the UME
framework, the embedding of the orbit of possible observations on the object to the space of
matrices is based on constructing an operator that evaluates a sequence of low-order geomet-
ric moments of some function defined on the point clouds to be registered. This representa-
tion is therefore more resilient to noise than local operators, as under reasonable noise, the
geometric structure of the point cloud is preserved. Since the UME is an operator defined
on functions of the coordinates, in order to enable registration, these functions (features)
need to be invariant to the transformation. While in the original UME framework, the in-
variant features are hand-crafted functions, in this work we learn those from data using an
unsupervised deep neural network architecture.

The proposed framework is a cascade of three blocks: The first is a pre-processing step
that employs an SO(3)-invariant coordinate system, constructed using PCA, to enable esti-
mation of large transformations. The second block is the neural network, designed to imple-
ment joint-resampling and embedding of the raw point clouds. The final block implements
the UME. Our trained model is tested on both seen and unseen data sets, to demonstrate
generalization capabilities. Inference performance is evaluated for different noise scenarios
using metrics that are invariant to the ambiguity arising in symmetric shapes registration
when noisy scenarios are considered.

Our main contributions are as follows:
• We integrate, for the first time, the closed-form UME registration methodology and a

data-driven approach by both adapting the UME method to the DNN framework and
designing the DNN architecture to optimize the UME performance. We address the
highly practical yet less studied case of registering point clouds that are sparsely and
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randomly sampled in the presence of large transformations (full range of rotations).
Our hybrid model is trained end-to-end, labels free and results with substantial perfor-
mance gains compared to competing state-of-the-art methods.

• To enhance the DeepUME performance in the presence of large deformations and
since the point clouds are sparsely and differently sampled, we present a learned joint
resampling of both point clouds to be registered, using a novel approach for integrat-
ing a PCA module, a Transformer module and a DGCNN module. By mapping the
input data to an SO(3)-invariant coordinates system, we overcome DGCNN inability
to learn invariant features for registration in the case of large rotations. The Trans-
former is used for implementing a joint-resampling strategy of both point clouds to
be registered. However, while learned joint-resampling procedures are usually applied
in a high-dimensional feature space, in our framework, the joint-resampling is aimed
at "equalizing" the differences in the sampling patterns of the observations, and is
therefore implemented in the coordinate low-dimensional space.

2 Related Work
There are many approaches to 3D point cloud registration. One of the commonly practiced
approaches is to extract and match spatially local features e.g., [16, 21, 31, 42, 44, 45].
Many of the existing methods are 3D adaptations of 2D image processing solutions, such as
variants of 3D-SIFT [24] and the 3D Harris key-point detector [32]. In 3D, with the absence
of a regular sampling grid, artifacts, and sampling noise, key-point matching is prone to
high outlier rates and localization errors. Hence, global alignment estimated by key-point
matching usually employs outlier rejection methods such as RANSAC [13] followed by a
refinement stage using local optimization algorithms [3, 25, 27, 47]. DGR [8] follows a
similar paradigm, but inlier detection is learnable. Numerous works have been proposed
for handling outliers and noise [7], formulating robust minimizers [14], or proposing more
suitable distance metrics. The standard algorithm in the category of refinement algorithms,
also known as local registration, is the Iterative Closest Point algorithm (ICP) [3, 47]. It
constructs point correspondences based on spatial proximity followed by a transformation
estimation step. Over the years, many variants of the ICP algorithm have been proposed in
attempt to improve the convergence rate, robustness, and accuracy of the algorithm.

Registration methods are not restricted only to methods based on the extraction and
matching of key-points. In [20], for example, an initial alignment is found by employing
a matched filter in the frequency space of local orientation histograms. In [12] an initial
alignment is found by clustering the orientations of local point cloud descriptors followed
by estimating the relative rotation between clusters. In this work, a global closed-form so-
lution that employs the UME [11] representation of the shapes to be registered, is being
integrated. As a result, an efficient and accurate registration scheme is achieved where no
initial alignment is required.

Other types of registration methods adopt learning-based techniques. Pioneered by Point-
Net [28] and subsequently by DGCNN [40], point cloud representations are learned from
data in a task-specific manner. These can, in turn, be leveraged for robust point cloud
registration e.g., [29, 35, 38, 39]. PointNetLK [1] minimizes learned feature distance by
a differentiable Lucas-Kanade algorithm [23]. DCP [38] addressed feature matching via
attention-based module and differentiable SVD modules for point-to-point registration. The
recently proposed RGM [15] transforms point clouds into graphs and perform deep graph
matching for extracting deep features soft correspondence matrix. In section 5 we show that
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registration performance using the aforementioned architectures deteriorates when observa-
tions are related by large rotations. We relax that limitation by employing an SO-(3)invariant
coordinate system, and therefore provide a global registration solution. DeepGMR [46] also
addresses this limitation by extracting pose-invariant correspondences between raw point
clouds and Gaussian mixture model (GMM) parameters, and recovers the transformation
from the matched mixtures. However, its performance deteriorates in the presence of sam-
pling noise.

3 Problem Definition
A point cloud P is a finite set of points in R3. Usually, these points are samples from a phys-
ical object, O ⊆ R3 (we may think of it as a surface or a manifold). Viewing point clouds
as sets of samples, the registration problem may be formulated as follows: Let O ⊆ R3 be a
physical object and T (x) = Rx+ t a rigid map (R ∈ SO(3) is a rotation matrix and t ∈ R3

is translation vector). We consider the transformed object T (O) := {T (x) : x ∈O}. Let P1
and P2 be two point clouds sampled from the object O and the transformed object T (O),
respectively. In the registration problem, the objective is to estimate the transformation pa-
rameters R and t given only P1 and P2.

Since point clouds are generated by a sampling procedure, the effects of sampling must
be addressed, when solving the registration problem. Ideally, the relation between the two
sampled point clouds P1 and P2 (sampled from O and T (O), respectively) satisfies the
relation P2 = T (P1). Unfortunately, when point clouds are sparsely sampled at two different
poses of some object, it is unlikely that the same set of object points is sampled, in both: If
we assume a uniformly distributed sampling pattern on a continuous surface, it may be easily
proved that the probability of having such a relation is null. As we show in our experiments,
once sparse and differently-sampled point clouds are considered, the sampling differences
result in substantial registration errors, having different characteristics from those of AWGN
on the coordinates.

Under-sampled point cloud registration is considered in the following scenarios:
• Full intersection (Vanilla model) - where P2 = T (P1).

• Sampling noise - Two cases are considered: Partial intersection, where P2 and T (P1)
may intersect, but are not identical; Zero intersection, where P2 and T (P1) have no
samples in common.

• Gaussian noise - P2 = T (P1)+N , where P2 is a result of a rigid transformation of
P1 with its coordinates perturbed by AWGN.

4 DeepUME
Following the strategy of integrating the UME registration methodology into a deep neural
network, we both adjust the UME method [11] adapting it to a DNN framework and design
our architecture to optimize the UME performance. The proposed framework is a cascade of
three blocks: The first is a pre-processing step that employs an SO(3)-invariant coordinate
system, constructed using PCA, that enables estimation of large transformations. The second
block is the neural network, designed to implement joint-resampling and embedding of the
raw point clouds aimed at "equalizing" the differences in the sampling patterns of the obser-
vations, and consequently boost the performance of the third block, implementing the UME.
The framework is illustrated in Figure 2 (see supplementary for detailed illustrations). The
details about its building blocks, and in particular the Transformer and DGCNN architectures
adaptations into the UME framework are provided in the following.
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Figure 2: DeepUME network architecture.

In the UME registration framework the input is composed of two point clouds satisfying
the relation P2 = R ·P1 + t, and an invariant feature (that is, a function F defined on a point
cloud P such that F(p) = F(R ·p+ t) for any p ∈ P). Applying the UME operator on each
of the point clouds, two matrices MP1 and MP2 are obtained, such that MP2 = R ·MP1 . The
geometric nature of the UME motivates us to use it as a basis for our framework. While
many registration methods find corresponding points in the reference and the transformed
point clouds in order to solve the registration problem, in the UME methodology a new set
of "corresponding points" is constructed by evaluating low order geometric moments of the
invariant feature. This is a significant advantage in noisy scenarios, where point correspon-
dences between the reference and transformed point clouds, may not exist at all. The use of
moments allows us to exploit the geometric structure of the objects to be registered, which
is invariant under sampling (as long as the sampling is reliable) resulting in an improved
immunity to sampling noise.

The goal of the deep neural network in our framework is to construct multiple high-
quality invariant features, in order to maximize the performance of the UME in various
noisy scenarios. We adopt the joint usage of DGCNN and Transformer blocks [38], which
has been proven to be very efficient in creating high-dimensional embedding for point clouds,
and adapt it to the UME framework in order to learn multiple high-quality SO(3) invariant
features.

UME registration The UME framework [11, 17] is designed for registering two func-
tions f ,g : Rn → R, with compact supports related by a geometric transformation (rigid,
affine) parameterized by A. Zero and first order moments (integrals) are evaluated in con-
structing the UME matrix of dimension (n+1)×D (where D > n+1). The UME matrices
of f and g satisfy the relation: UME f = A ·UMEg. Following the principles of the UME, we
derive a new discrete closed-form implementation of the UME for the registration of point
clouds undergoing rigid transformations.

More specifically, let P1 and P2 be two point clouds related by a rigid transformation
T. Then, an invariant feature (function) F on P1 and P2 is a function that assigns any point
p∈P1 and the transformed point T(p)∈P2 with the same value. A simple example for such
an invariant feature is the one that assigns each point with its distance from the point cloud
center of mass. Since for finite support objects, it is straightforward to reduce the problem of
computing the rigid transformation T(p) = Rp+ t to a rotation-only problem, i.e., t = 0, we
next show that the moment integral calculations involved in evaluating the UME operator,
may be replaced by computing moments of the invariant functions using summations:
Theorem 4.1 Let R be a rotation matrix and P1 and P2 be two point clouds satisfying the
relation P2 = R ·P1. Let F be an SO(3) invariant function on P1 and P2. Then,
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MP2(F) = R ·MP1(F), where MPi(F) =
1
|Pi|

∑p∈Pi p1F(p)
∑p∈Pi p2F(p)
∑p∈Pi p3F(p)

 , p =

p1
p2
p3

 . (1)

(See the supplementary material for the proof). We call MPi the moment vector of the
transformation invariant function F defined on Pi.

Given two sets of points in R3, {vi}k
i=1 and {ui}k

i=1 k≥ 3, satisfying the relation vi = R ·
ui for all i, we may find R by a standard procedure proposed by Horn et al. [19]. Hence, we
conclude from (1) that in the absence of noise, finding a set of invariant functions F1, . . . ,Fk,
such that k ≥ 3, yields a closed-form solution to the registration problem. However, in
the presence of noise (sampling or additive) (1) no longer holds as P2 and R · P1 are not
identical anymore and in fact, with a high probability they do not share any point in common.
Therefore, the estimated rotation matrix is noisy.

This is the point where a deep neural network comes into play. The registration error
obviously depends on the difference between MP2 and R ·MP1 , and on the function F
being rigid transformation invariant despite the noise. To that extent, we employ a deep
neural network in order to learn how to construct good transformation-invariant functions.
These invariant functions are designed to exploit the geometry of the point cloud so that their
invariance to the transformation is minimally affected by the noise, resulting in a smaller
registration error.

Feature Extraction Towards obtaining noise resilient SO(3)-invariant functions for ef-
fectively evaluating the UME moments, we aim at learning features capturing the geometric
structure of the point cloud. This structure is determined by the point cloud coordinates
(global information) and the neighborhood of each point (local information). We adopt the
joint usage of DGCNN and Transformer blocks [38], which has been proven to be very ef-
ficient in creating high-dimensional embedding for point clouds, and adapt it to the UME
framework in order to learn multiple high-quality SO(3) invariant features.

The DGCNN block is designed to preform a per-point embedding, such that information
on neighboring points is well incorporated. Each input point in the cloud is characterized
by the coordinates of points in its neighborhood in addition to its own coordinates. This
approach results in a new representation for each point using a 6×k matrix. Each column of
that matrix represents one of the k nearest neighbors and consists of the coordinates of the
observed point stacked on top of the coordinated of the neighbor point. DGCNN processes
one point cloud at a time, sharing its weights between the two clouds. Ideally, our embedding
network should result in identical feature (function value) for two corresponding points in
the reference point cloud and in its transformed version.

SO(3)-invariant coordinate system followed by joint-resampling Since DGCNN weights
are shared, when the coordinates of corresponding points between two point clouds are sig-
nificantly different, the learning process fails. Clearly, this situation occurs when transfor-
mations of large magnitude, e.g. large rotations, are considered (demonstrated in Section
5). Therefore DGCNN architecture in its original design, cannot be employed towards con-
structing invariant features when rotations by large angles are considered.

We overcome this inherent difficulty by mapping the input point clouds to an alternative
coordinates system, which is SO(3) invariant: Given a point cloud P , the cloud center of
mass (denoted by mP ) is subtracted from each point coordinates, to obtain a centered rep-
resentation P ′. We then construct a new coordinate system for the point cloud using PCA.
That is, the axes of the new coordinate system are the principle vectors of the point cloud
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covariance matrix given by
HP ′ = ∑

p∈P ′
ppT (2)

The principle vectors form the axes of the new coordinate system, and the new coordinates
of each point are the projection coefficients on these axes. Formally, for a point p ∈ P ′, the
new coordinates of p are defined to be cp = DT p where D is the matrix whose columns are
the principle vectors. The resulting point cloud new coordinates are denoted by C.

It is easy to verify (see supplementary) that the new axes (columns of the PCA matrix) are
co-variant under a rigid transformation. Therefore if P2 is obtained by a rigid transformation
of P1, it holds that C1 = C2. Furthermore, since the change of coordinate system is invertible,
the original point cloud can be reconstructed.

However, in our setting, where the point clouds to be registered are sparse, differently
sampled and noisy, the relation C1 = C2 does not hold anymore. The loss of information
caused by low sampling rate makes the resulting representations of the clouds significantly
different yielding axes that are no longer co-variant and thus projections that are no longer
invariant. Nonetheless, employing the SO(3) invariant representation of the point clouds, the
difference between C1 and C2 is sufficiently small to enable a learning process of multiple
invariant features using a DGCNN block.

While DCP strategy,[38], is to jointly-resample the embedded point clouds in a high-
dimensional feature space via a Transformer [37]. In DeepUME we adopt the joint-resampling
strategy, but DeepUME resamples the low-dimensional coordinate space, rather than the
high-dimensional feature space. We note that resampling point clouds in the coordinate
space has a complexity advantage since the dimension of the coordinate space is 3, while
the dimension of the embedding space is much higher (512 in [38] and 32 in our case). In
terms of architecture blocks, with this sampling approach the Transformer is leading the
embedding network (and not the other way around, as in [38]).

We therefore employ the Transformer for learning a resampling strategy of the projected
samples in C1 such that the resampling depends on the sampling of C2, and vice versa. De-
noting the asymmetric function of the Transformer by φ , we have

CTransformer
1 = C1 +φ(C1,C2), CTransformer

2 = C2 +φ(C2,C1). (3)

The additive terms, φ(C1,C2) and φ(C2,C1) are optimized to improve registration, by jointly
"equalizing" the sampling patterns of both point clouds.

The resampled point clouds produced using the Transformer are employed for evaluating
the UME moments, by re-projecting them on the corresponding principle axes to obtain

P̂1 = D1 · CTransformer
1 +mP1 , P̂2 = D2 · CTransformer

2 +mP2 . (4)

The point clouds, P̂1 and P̂2, are re-sampled versions of the original points clouds, related
by the same rigid transformation that relates P1 and P2. We therefore apply the UME reg-
istration to the resampled point clouds P̂1 and P̂2, using the DGCNN generated functions
designed to be SO(3)-invariant for differently and sparsely sampled point clouds corrupted
by noise. As demonstrated by the experimental results, applying UME registration on the
re-projected re-sampled point clouds, provides with an improved performance.

Loss In order to overcome the ambiguity problem in registering symmetric objects, dis-
cussed in Section 5, we adopt the Chamfer distance [2] as our loss function. That is, if T̂ is
the estimated transformation,

L(T̂) = dC(T̂(P1),P2). (5)
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Using this loss, ambiguous symmetric objects do not damage the learning process, as even
if an ambiguity exists and the registration is successful, the Chamfer distance will be small.
The Chamfer loss function has another advantage as no labels are required for the learning
process, which makes it unsupervised.

5 Experiments
We conduct experiments on three data sets: ModelNet40 [41], FAUST [5] and Stanford
3D Scanning Repository [34] where the latter two are used only for testing. We train our
network using ModelNet40, which consists of 12,311 CAD models in 40 categories where
80% samples are used for training and the rest for testing.

Following previous works experimental settings, we uniformly sample 1,024 points from
each model’s outer surface and further center and rescale the model into the unit sphere. In
our training and testing procedure, for each point cloud, we choose a rotation drawn uni-
formly from the full range of Euler angles and a translation vector in [−0.5,0.5] in each axis.
We apply the rigid transformation obtained from the resulting parameters on P1, followed
by a random shuffling of the points order, and get P2. In noisy scenarios, a suitable noise is
applied to P2. We train our framework in the scenario of Bernoulli noise (see bellow), in the
specific case where p1 = p2 = 0.5, and test all scenarios using the trained configuration.

Each experiment is evaluated using four metrics: The RMSE metric, both for the rotation
and the translation as well as the Chamfer distance and the Hausdorff distance [22, 36], pro-
posed next as alternative metrics to resolve ambiguity issues. We compare our performances
with the basic implementation of the UME method (coded by ourselves), ICP (implemented
in Intel Open3D [49]), and four learned methods; PointNetLK and DCP (benchmarks point
cloud registration networks) as well as the recently proposed DeepGMR, [46] and RGM,
[15]. We retrain the baselines, adapting the code released by the authors. The experimental
results are detailed below and summarized in Tables 1, 2; further experimental results are
provided in the supplementary.

The ambiguity problem in the registration of symmetric objects An ambiguity prob-
lem arises in point cloud registration whenever symmetric objects are considered, as more
than a single rigid transformation (depending on the degree of symmetry of the object) can
correctly align the two point clouds. In the noise free scenario such an ambiguity is trivially
handled since a fixed point constellation undergoes a rigid transformation which in the case
of nonuniform sampling guarantees the uniqueness of the solution. However, when observa-
tions are noisy, the ambiguity is harder to resolve as the constellation structure breaks. In that
scenario, P2 is a noisy version of T(P1), and possibly no rigid transformation can perfectly
align the point clouds. In that case, if the point clouds to be aligned represent a symmetric
shape, there are multiple transformations that approximately align the two clouds together.

For symmetric shapes, which are very common in man-made objects, the rotation angles
RMSE metric may assign large errors to successful registrations. To resolve this ambiguity
we replace this metric by the Chamfer and Hausdorff distances defined by

dC(P1,P2) =
1
|P1| ∑

p∈P1

min
p′∈P2

‖p−p′‖2 +
1
|P2| ∑

p′∈P2

min
p∈P1
‖p′−p‖2

dH(P1,P2) = max
p∈P1

min
p′∈P2

‖p−p′‖2 + max
p′∈P2

min
p∈P1
‖p′−p‖2.

(6)

Using ModelNet40, we test performance in four scenarios: noise free model, sampling
noise (Bernoulli noise and zero-intersection noise) and AWGN noise. We note that in the
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Figure 3: Sampling-noise vs. AWGN. Red point clouds are noisy observations of the blue ones, for zero-intersection (left) and
AWGN with variance 0.09 (right) noise models. While both achieve the same registration error under DeepUME, the former
preserves well the original shape and the latter sever distortion makes it barely recognizable.

presence of sampling noise we indeed observe large errors in RMSE(R) due to the symme-
try of objects, although the symmetric shapes are well aligned. Moreover, in the unseen data
sets, where real world data is used, which is naturally asymmetric, the rotation RMSE is
indeed small and indicates successful registration. Therefore we consider the Chamfer and
Hausdorff distances to be more reliable metrics for registration in the presence of symme-
tries.

ModelNet40: Noise free model We examine the case where no noise is applied to the
measurements. In that case, we see that the estimation error is practically null. DeepGMR
is shown to be the second best learned method, while all other tested methods yield large
errors, meaning that the registration fails when large range of rotation angles is considered.

ModelNet40: Bernoulli noise The Bernoulli noise case is related to the scenario of
sampling noise, in which the point clouds contain different number of points. In that case,
we choose randomly (uniformly) two numbers p1 and p2 in [0.2,1]. Then, each point in
Pi is removed with probability 1− pi, independently of the rest of the points. We perform
registration on the resulting point clouds PB

1 and PB
2 . We note that the number of points

in PB
i averages to pi · 2048, and is likely to be different in the two clouds. The number of

corresponding points between the resulting clouds averages to p1 p2 ·2048 (as the probability
for the two point clouds to share a specific point is p1 p2). We note that we were not able to
evaluate RGM performance in that scenario.

ModelNet40: Zero-intersection noise Zero intersection noise is the extreme (and most
realistic) case of sampling noise. In that case, we randomly choose 1024 points from P1 to
be removed. Next, we remove the 1024 points from P2 that correspond to the points in P1.
Thus, by construction, no point in one cloud is the result of applying a rigid transformation
to a point in the other cloud. This scenario is visualized in Figure 1 that shows registration
results of several baseline methods and our proposed method on a representative example
from the unseen data set FAUST.

ModelNet40: AWGN In these set of experiments each coordinate of every point in P2
is perturbed by an additive white Gaussian random variable drawn fromN (0,σ) where σ is
chosen randomly in [0,0.04]. All noise components are independent and no value clipping
is performed. The results in Table 1 indicate that since the UME is an integral (summation)
operator the registration error of both the UME and the DeepUME is lower than the error of
the other tested methods. We find that for sufficiently large additive noise variance, the ro-
tation RMSE in both AWGN and sampling-noise models are comparable, yet these different
types of noise have very different impact on registration, as illustrated in Figure 3. In order
to have the same registration error as in the zero-intersection model on the Stanford data set,
an AWGN with variance of approximately 0.09 is required. As shown in Figure 3, such a
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Noise free Bernoulli noise Gaussian noise

Model dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t)

UME [11] <1e-04 <7e-04 0.193 <1e-05 0.0581 0.394 74.164 0.015 0.019 0.151 27.684 0.002
ICP [4] 0.275 1.446 83.039 0.276 0.297 1.480 86.381 0.286 0.266 1.436 83.073 0.277

PointNetLK [1] 0.027 0.142 80.360 1.0105 0.029 0.157 83.280 1.073 0.026 0.153 81.843 1.037
DCP [38] 0.059 0.470 92.285 0.014 0.067 0.483 92.818 0.020 0.055 0.456 90.715 0.014
DeepGMR [46] <7e-06 <9e-05 0.193 <5e-05 0.033 0.224 72.447 0.018 0.011 0.085 42.515 0.004
RGM [15] 0.255 1.333 99.937 0.388 N/A N/A N/A N/A 0.254 1.331 100.117 0.389

DeepUME (ours) <1e-07 <1e-07 <3e-04 <1e-07 0.010 0.083 40.357 0.015 0.002 0.012 2.425 0.001

Table 1: ModelNet40 experimental results. Our method achieves substantial performance gains compared to the competing tech-
niques for all metrics in all the examined scenarios. dC and dH stand for Chamfer and Hausdorff distances respectively. The best
results are bold and the second best are underlined.

ModelNet40 [41] FAUST [5] Stanford 3D Scanning Repository [34]

Model dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t)

UME [11] 0.051 0.373 80.331 0.010 0.007 0.085 35.983 0.044 0.033 0.267 48.716 0.010
ICP [4] 0.276 1.448 82.948 0.277 0.376 1.643 84.544 0.279 0.288 1.337 87.292 0.277

PointNetLK [1] 0.028 0.147 80.858 1.023 0.018 0.170 90.512 1.120 0.040 0.289 84.520 1.147
DCP [38] 0.059 0.475 93.221 0.014 0.046 0.516 94.315 0.137 0.072 0.522 99.328 0.011
DeepGMR [46] 0.026 0.117 67.282 0.010 0.003 0.027 27.941 0.020 0.005 0.119 39.402 0.012
RGM [15] 0.254 1.335 100.970 0.388 0.385 1.677 114.496 0.418 0.278 1.257 104.872 0.368

DeepUME (ours) 0.011 0.094 70.818 0.009 0.002 0.024 8.630 0.019 0.002 0.110 5.625 0.010

Table 2: Zero-intersection noise results on seen (ModelNet40) and unseen data sets (FAUST and Stanford 3D Scanning Repository).
Our method outperforms the competing techniques in all scenarios for all metrics, only except RMSE(R) for ModelNet40.

noise causes a sever distortion, which practically makes the original shape unrecognizable.
On the other hand, the original shape of the bunny in the sampling noise scenario, is well
preserved.

Unseen data sets The generalization ability of a model to unseen data is an important
aspect for any learning based framework. In order to demonstrate that our framework indeed
generalizes well, we test it on two unseen datasets. The first is the FAUST data set that
contains human scans of 10 different subjects in 30 different poses each with about 80,000
points per shape, and the other is the Stanford 3D Scanning Repository. We generate the
objects to be registered using a similar methodology to that employed for the ModelNet40
data set. Our framework achieves accurate registration results in all scenarios checked, and
shows superior performance over the compared methods.

6 Conclusions
We derived a novel solution to the highly practical problem of aligning sparsely and differ-
ently sampled point clouds in the presence of noise and large transformations. Our model,
named DeepUME, integrates the closed-form UME registration method into a DNN frame-
work. The two are combined into a single unified framework, trained end-to-end and in an
unsupervised manner. DeepUME employs an SO(3)-invariant coordinate system to learn
both a joint-resampling strategy of the point clouds and SO(3)-invariant features. The re-
sampling is performed in the low-dimensional coordinate space (rather than in the high-
dimensional feature space), to minimize the effect of the sampling noise on the registration
performance. The constructed features are utilized by the geometric UME method for trans-
formation estimation. The parameters of DeepUME are optimized using a metric designed
to overcome the ambiguity emerging in the registration of symmetric shapes, when noisy
scenarios are considered. We show that our hybrid method outperforms state-of-the-art reg-
istration methods in various scenarios, and generalizes well to unseen datasets. Future work
will extend the proposed method for registration of sub-parts and key-points, incorporating
both local and global information to allow the registration of partially overlapping scenes.
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