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Abstract

The task of grading oil palm bunches by ripeness poses a number of significant chal-
lenges for computer vision. The small difference in hue between ripe and unripe bunches
means that colour-based models are susceptible to errors when presented with images
shot in novel lighting conditions. In this paper, we investigate the effectiveness and
performance characteristics of coloured edge maps when used as an input feature to a
Convolutional Neural Network (CNN) by comparing the Laplacian of Gaussian, Sobel,
Prewitt, and Kirsch edge extraction techniques. We show that under normal lighting
conditions, coloured edge maps are able to match the performance of fully-coloured im-
ages. More notably, they significantly outperform fully-coloured images when variance
to lighting is applied. When images are darkened or brightened, classification accuracy
for fully-coloured images drops by 19.89% vs only 4.97% on average for the coloured
edge map methods tested. This is of major benefit in commercial applications, where
images are often captured by a multitude of devices under different lighting conditions,
leading to potentially unreliable performance when fully-coloured images are used. The
code used for this paper will be made available at https://github.com/weiyuen.

1 Introduction
Palm oil, which is extracted from the fruits of the oil palm tree, has a variety of common
uses, including in the production of consumer edibles, pharmaceuticals, and cosmetics, and
increasingly as a biofuel. Demand has been steadily rising over the past decade, with global
consumption increasing from 41 metric tons in 2007 to 77 metric tons in 2020 [2].
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Conventionally, oil palm fresh fruit bunches (FFBs) are visually inspected to determine
ripeness. For the nigrescens variety of oil palm (which makes up the majority of oil palm
production), unripe kernels are black, and they turn dark purple just as they are about to ripen
[14]. This is not a significant visual difference, which makes the task of classifying FFB
ripeness challenging for anyone but experts. Harvesting is typically done at fixed intervals,
which results in harvests consisting of a mix of FFBs at different levels of ripeness. As
such, the sub-optimal timing of a harvest can result in significantly reduced yields, with
Mohanaraj and Donough [6] showing that a 5-day delay resulted in a 5.8% reduction in oil
yield. This poses a problem as harvesters are compensated by yield, biasing them towards
classifying their harvests in a way that maximizes yield. This results in the need for an
independent expert in classification to be present at every harvest to help grade the FFBs for
the harvesters. However, these experts are typically affiliated with downstream mill owners,
and as such their results are often contested by the plantation owners upstream. Thus, the
ability to automate the classification process could significantly streamline the harvesting
process and reduce costs for the industry.

The visual similarity that makes manual inspection challenging also poses problems for
conventional computer vision techniques. Primarily, the small difference in hue between
ripe and unripe FFB leads to models that are susceptible to changes in camera hardware
and lighting conditions. Kernels that appear black (unripe) under low light can often appear
dark purple under brighter light (ripe). A shadow cast over an image or a camera that has a
processing pipeline biased towards oversaturating images (both rather common occurences)
can thus significantly change the inferences of conventional colour-based models.

Another often overlooked feature that correlates with oil palm ripeness is the change in
textural appearance. Tan et al. [12] have shown that as the FFB ripens, changes in the num-
ber of leaves and empty fruitlet sockets results in a change to edge features. In their work,
grayscale edge maps were used. Since colour also plays an important role in FFB classifica-
tion, we have instead set out to explore the effectiveness and performance characteristics of
coloured edge maps, which preserve residual colour information around edges. We investi-
gate if the reduction in lighting information relative to fully-coloured images is able to bias
a CNN to rely less on lighting, and thus improve generalization.

2 Related Work

2.1 Oil Palm Ripeness Classification

Significant work has been done in this field, with both conventional (RGB) and non-conventional
imaging techniques employed successfully. A summary of past results is presented in Table
1.

Among the conventional imaging techniques, Fadilah et al. [3] achieved an accuracy of
86.67% by feeding extracted hue values into a 3-layer MLP (multilayer-perceptron). How-
ever, the images in their dataset were captured in a semi-controlled environment, where the
camera was placed 35cm away from each palm fruit bunch and shot under controlled light-
ing conditions. Their images also had to undergo manual segmentation to isolate parts of the
FFBs.

In 2016, Shabdin et al. [11] used hue, saturation, and intensity values as inputs to an
artificial neural network and obtained an accuracy of 70%. Their work only involved two
classes (underripe and ripe) and images were captured in a controlled environment.
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Table 1: Related work involving oil palm ripeness classification
Year Paper Image

Type
Method Classes Accuracy

2012 [3] RGB Hue values & 3-layer MLP 4 86.67%
2016 [11] RGB HSI as inputs to ANN 2 70.00%
2019 [10] RGB Extracted colour components from

individual fruitlets & SVM
3 92.50%

2020 [15] RGB Linear segmentation of mean hue 2 85.00%
2021 [12] RGB Mean RGB ratio, red-colour ratio,

Canny edge ratio
3 64.67%

2012 [4] Spectral Blue-Red Fluorescence Ratio as
input to Decision Tree

3 89.70%

2012 [9] Spectral Four-band sensor & quadratic
discriminant analysis

3 85.00%

Anindita et al. [10] then achieved 92.5% accuracy in 2019 using extracted colour features
and SVMs. However, unlike previous work, the model required input images of individual
fruitlets instead of full FFBs, which poses a problem as the fruitlets in an FFB can ripen and
change in hue at different rates, making it a less reliable indicator of overall FFB ripeness.

In 2020, Wong et al. [15] used linear segmentation to classify bunches by mean hue
value, achieving an accuracy of 85%. Unlike the previously discussed methods, their dataset
consisted of images shot outdoors under uncontrolled lighting conditions. However, predic-
tions were only made across two classes (ripe/unripe).

Most recently, Tan et al. performed classification by extracting mean RGB values as well
as colour ratios. Additionally, they were the first to explicitly use edges as a supplementary
feature to colour data through the use of Canny edge detection. This resulted in an accuracy
of 64.7% over 3 classes. Like [15], lighting in the dataset was also uncontrolled.

Among the non-conventional imaging techniques, Hazir et al. [4] showed that the Blue-
to-Red Fluorescence Ratio obtained by using UV light as an excitation light source could be
input into a Decision Tree to obtain 89.7% accuracy in 2012. That same year, Saeed et al.
[9] used a portable four-band sensor system and quadratic discriminant analysis to achieve
85% accuracy.

The drawback of these non-conventional imaging approaches is the requirement of spe-
cialized equipment and/or the need to conduct testing in controlled environments. Among
the conventional imaging techniques, high accuracies have been achieved either through
semi-controlled/controlled data gathering conditions [3, 10, 11], or by only considering two
classes for evaluation [15]. Despite this, we believe our work can most closely be compared
to that of [15] and [12] as these have been the only work to use conventional RGB images
captured in uncontrolled conditions.

2.2 Coloured Edge Maps
Extensive work has been done on extracting edges from coloured images. However, these
approaches have mostly been focused on producing grayscale edge maps by combining the
extracted edges from each (R, G, B) colour channel [7]. Relatively little work has been done
on edge extraction techniques that produce coloured edge maps, with the work done by Bora
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[1] being one of the few exceptions. In brief, their approach involves first converting an RGB
image to the HSV colourspace before performing edge detection on the V channel. The V
channel is then replaced with the edge map and the image is converted back to RGB. While
our implementation in this paper differs from that of [1], as we will discuss in the following
section, the visual characteristics of the resulting coloured edge maps are similar.

3 Input Features
As discussed in Section 2.2, edge maps are most commonly used in their grayscale form.
However, colour is an important component of oil palm ripeness classification, leading us to
investigate the effectiveness of coloured edge maps. Here, we extract coloured edge maps by
using coloured images as an input to classical edge detection techniques, where the method
is applied to each colour channel of the image. Thus, our implementation is similar to that
discussed in [7], sans the recombination of colour channels at the end (which would produce
grayscale edge maps).

To investigate the effectiveness of various extraction techniques for coloured edge maps,
the following four methods were used: Laplacian of Gaussian, Sobel, Prewitt, and Kirsch.
They were chosen as the grayscale versions of these algorithms are amongst the most com-
monly used edge extraction techniques today. As a benchmark for comparison, fully-coloured
images in the YCbCr colourspace were used. The YCbCr colourspace was chosen in partic-
ular as it was shown to be the best performing colourspace for the classification of oil palm
ripeness by Sabri et al. [8]. A sample of each input feature is shown in Figure 1, and the
conversion process for each feature is discussed in detail below.

3.1 YCbCr
The YCbCr colourspace consists of a luminance channel "Y", which denotes light intensity,
as well as two chrominance channels "Cb" and "Cr", which denote the blue-difference and
red-difference chroma components respectively. The cvtcolour function from the OpenCV
library was used for our experiments.

3.2 Laplacian of Gaussian
As its name implies, the Laplacian of Gaussian (LoG) operator involves taking the Laplacian
of an image that has been smoothed by a Gaussian filter (to reduce sensitivity to noise). The
Laplacian operation computes the second spatial derivative of an image, highlighting regions
where this derivative changes rapidly, as is common in edges. In our work, we use the filter
f (eq. 1) as a discrete approximation of the Laplacian operator. A Gaussian kernel size of
5x5 was used for smoothing.

f =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (1)

3.3 Sobel
The Sobel operator computes the first derivatives of an image in the horizontal and vertical
axes by convolving the input image AAA with two kernels GGGx and GGGy (equation 2). The gradient

Citation
Citation
{Bora} 2017

Citation
Citation
{Bora} 2017

Citation
Citation
{O.Sadiq, Sani, and Garba} 2015

Citation
Citation
{Sabri, Ibrahim, and Isa} 2018



TEH, TAN: COLOURED EDGE MAPS FOR OIL PALM RIPENESS CLASSIFICATION 5

Figure 2: CNN training process

magnitude can then be calculated using Pythagoras’ Theorem.

GGGx =

1 0 −1
2 0 −2
1 0 −1

∗AAA , GGGy =

 1 2 1
0 0 0
−1 −2 −1

∗AAA (2)

3.4 Prewitt
The Prewitt operator utilizes different GGGx and GGGy kernels when compared to the Sobel op-
erator, where the 2 and -2 values are replaced by 1 and -1 respectively, thus giving equal
emphasis to both corner and edge pixels. The two processes are otherwise identical.

3.5 Kirsch
Kirsch edge detection computes first order derivatives and is typically implemented with 8
convolution kernels, formed by rotating a single kernel across the 8 compass directions as
shown below. The complete edge map is then obtained by taking the maximum magnitude
of each point across all 8 directional edge maps.

GGG1 =

 5 5 5
−3 0 −3
−3 −3 −3

∗AAA . . . GGG8 =

 5 5 −3
5 0 −3
−3 −3 −3

∗AAA (3)

4 Methodology
In this section we describe the dataset and process used to train the EfficientNetB0 CNNs. A
flowchart summarizing the main training steps is shown in Figure 2.

4.1 Dataset
The dataset consists of 328 RGB images of palm fruit bunches at various resolutions and is an
expanded version of that used by Tan et al. (containing additional images) [12]. The images
are in JPEG format and taken with multiple devices under various lighting conditions. All
images contain one harvested palm fruit bunch, laid upon backgrounds that vary in colour
and texture across the dataset. The dataset is split into 3 classes: Unripe, Underripe, and
Ripe, and all images were labeled by experts. One sample from each class is shown in
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(a) Unripe (b) Underripe (c) Ripe

Figure 3: Sample from each class in the dataset

Table 2: Image augmentation parameters
Parameter Value

Rotation Range (°) 30
Shear Range (°) 15

Vertical Mirroring
Horizontal Mirroring

Figure 3. We split the dataset into training, validation, and test sets, with 246, 32, and 50
images in each set respectively.

4.2 Image Augmentation & Preprocessing

Apart from applying the feature conversions described in Section 3, additional preprocessing
was also performed in the form of image augmentation to help improve performance and
mitigate the impacts of the small dataset size. This involved applying random degrees of
affine transformations such as rotation, mirroring, and shear to each image at each epoch of
training. Parameters used for image augmentation are listed in Table 2. Images were then
resized to a 500x500 resolution before being input to the model.

4.3 Modeling

The EfficientNetB0 [13] CNN architecture was used as a base model to evaluate the effec-
tiveness of the various input features. This particular architecture was chosen as it was the
smallest network among the EfficientNet series of networks (5.3M parameters), and was
best suited to the (small) size and complexity of our dataset. A total of 5 of these models
were trained, one for each input feature. Due to the size of our dataset, we opted to perform
transfer learning by fine-tuning the weights of an EfficientNet pre-trained on the ImageNet
dataset, allowing us to take advantage of the pre-trained feature extraction filters. Note that
while we have taken multiple mitigative measures, overfitting is still a concern with our
method given the small size of our dataset by deep learning standards.

To adapt the base model to our task, a few minor changes were made. First, the top layer
of the pre-trained EfficientNetB0 was removed to account for the difference in the number of
output classes. The top of the network was then rebuilt with a global average pooling layer,
and an output layer with 3 neurons (one for each class). The softmax activation function was
used for the output layer.
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4.4 Transfer Learning

Transfer learning was performed in two stages: Frozen and Unfrozen.
Frozen: All layers except the batch normalization layers in the base model were frozen

(set to not trainable) and training was performed over 25 epochs at a learning rate of 1×10−4.
The Adam optimizer [5] was used and loss was calculated using categorical crossentropy.
This phase of training allows the rebuilt top layers to undergo a few rounds of training with-
out disrupting the weights of the base model.

Unfrozen: All layers were unfrozen and training was performed over 120 epochs at
a reduced learning rate of 1×10−5. As before, the Adam optimizer was used and loss
was calculated with categorical crossentropy. A lower learning rate was used to prevent
disruption of the pre-trained weights, and validation loss was observed to converge after
around 100 epochs. A batch size of 16 was used for both stages.

5 Experiments & Results
To determine the performance characteristics of coloured edge maps, we conducted 3 exper-
iments. In Section 5.1, we compare performance of the four edge map extraction techniques
to the fully-coloured YCbCr benchmark. The experiments are carried out under unaltered
lighting and thus act as a measure of baseline performance.

In Section 5.2, we then compare the performance of coloured edge maps to their grayscale
counterparts to determine if the residual colour information in the former plays a significant
role in classification performance.

Finally, we conduct tests with synthetically altered lighting conditions in Section 5.3 to
determine if the reduced colour information in coloured edge maps relative to fully coloured
images helps improve generalization.

5.1 Baseline Performance

All models were evaluated by their classification accuracy, defined as the number of cor-
rect predictions over the total number of predictions made. To obtain a more representative
measure of accuracy, 25 batches of the 50-image test set were created, with image augmen-
tation applied to each batch. Image augmentation parameters were identical to those used
for training (Table 2). Each model received input features matching those it was trained on.

Figure 4 shows the distribution of results (across 25 batches) for all models. The Sobel
model performs similarly to the YCbCr model, with the former achieving a mean accuracy
of 91.4% and the latter 91.5%. The other edge map models performed slightly worse, with
mean accuracies ranging from 85.5% (LoG) to 90.8% (Kirsch). There was no significant
difference between the distribution of results across the models as illustrated by the shape and
length of the violin plots, showing that all models performed at similar levels of consistency.
However, the LoG model did perform noticeably worse than its peers.

All the models outperformed the approach used in [15] despite the introduction of an
additional Underripe class. While from an absolute accuracy perspective our best performing
models still slightly underperform those of [10], we believe our approach allows for more
streamlined and practical data collection due to the use of full FFBs vs individual kernels,
and that this approach results in a more reliable measure of ripeness for reasons discussed in
Section 2.1.
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Figure 4: Violin plot of baseline model performance

Figure 5: Performance comparison between coloured and grayscale edge maps

5.2 Grayscale Edge Maps
To determine if the colour content present in coloured edge maps is significant to classi-
fication performance, we next train 4 models on the grayscale versions of the four edge
map techniques used. This is done by first converting the RGB images to grayscale using
OpenCV’s cvtcolour function before applying the edge extraction algorithms as described in
Section 3. The test setup is otherwise identical to that of Section 5.1.

Figure 5 shows the mean accuracies of the coloured and grayscale versions for each edge
extraction method used. In all cases, the use of grayscale edge maps produced a significant
negative impact on performance, showing that the residual colour content present in coloured
edge maps does contribute to classification performance.

5.3 Tolerance to Variances in Lighting
As coloured edge maps remove most colour and lighting information present in the original
image, we hypothesize that the resulting models would be less reliant on said features. To
test this hypothesis, we synthetically apply brightness augmentation (in addition to the previ-
ously described affine transformations in Table 2) to determine if variances in lighting affect
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(a) 50% brightness (b) 150% brightness

Figure 6: Darkened and brightened versions of Figure 3c

Figure 7: Model performance across range of synthetically modified lighting conditions

the models’ performance. For each test run, the brightness of each image was multiplied by
a constant factor, ranging from 50% to 150% at 10% increments. Figure 6 shows the dark-
ened and brightened versions of Figure 3c. The change in accuracy of each model in these
conditions is shown in Figure 7.

In general, the results align with our hypothesis, with the fully-coloured YCbCr model
performing the worst at both extremes of the graph. An interesting asymmetrical trend can
be observed in all the edge map models, where darkening the images did not cause any
observable drop in performance, but brightening the images caused reductions in accuracy
of between 5% to 15% at a 50% increase.

6 Conclusion
Our results show that colored edge maps are able to match or surpass the performance of
fully colored images when used as an input feature to a convolutional neural network for the
task of oil palm ripeness classification. Specifically, the Sobel model matched the baseline
accuracy of the benchmark YCbCr model, and all colored edge map models significantly
outperformed the benchmark model in the synthetic lighting variance tests.

More generally, we showed that the residual color information left in colored edge maps
plays a significant role in model performance, but that the removal of most of the color from
the images allows the models to generalize more effectively over novel lighting conditions,
outperforming models trained on fully colored images. This property could be of signif-
icance to various other applications of computer vision where uncontrolled lighting condi-
tions are common. However, further work will be required to determine if these performance
characteristics extend to larger and more generalized datasets.
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