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Abstract

Although fully convolution networks (FCN) have dominated semantic segmentation
since the birth of [24], they are inherently limited in capturing long-range structured re-
lationship with the layers of local kernels. While recent Transformer-based models have
proven extremely successful in computer vision tasks by capturing global representation,
they would deteriorate semantic segmentation by over-smoothing the regions contain
fine details (e.g., boundaries and small objects). To this end, we propose a Dual-Stream
Convolution-Transformer segmentation framework, called DSCT, by taking advantage
of both the convolution and Transformer to learn a rich feature representation for seman-
tic segmentation. Specifically, DSCT extracts high resolution local feature information
from convolution layers and global feature representation across the Transformer layers.
Moreover, a feature fusion module is plugged to exchange information between spatial
stream and context stream at each stage. With the local and global context modeled ex-
plicitly in every layer, the two streams can be combined with a simple decoder to provide
a powerful segmentation model. Extensive experiments show that our model builds a
new state of the art on Cityscapes dataset (83.31% mIoU) with only 80K training iter-
ations and appealing performance (49.27% mIoU) on ADE20K, outperforming most of
the alternatives with a new perspective.

1 Introduction
As one of the basic tasks of computer vision, semantic segmentation has a strong correla-
tion with image classification. The seminal work [24] systematically discusses this relation-
ship and designs the fully convolutional networks (FCN) to perform semantic segmentation.
Since then, many FCN-based methods [6, 7, 43, 52, 53] have emerged and the convolutional
network becomes one of the mainstream methods for semantic segmentation.
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From AlexNet [20] to ResNeXt [49], the evolution of convolutional neural networks
has greatly promoted the development of semantic segmentation. While deeper networks
constantly refresh the performance boundary of semantic segmentation, the limitation of the
receptive field continuously bring difficulties to capturing global representations. To solve
this problem, dilated convolution [5, 45] is proposed and used in semantic segmentation task.
Furthermore, attention models [18, 21, 22, 50, 51] are developed to enhance the ability to
capture long-range context information.

Recently, witnessing the great success of Transformer architecture in visual tasks [11],
a series of Transformer-based methods [2, 3, 4, 11, 13, 19, 26, 36, 47, 55] have been pro-
posed and achieve state-of-the-art results. ViT [11] constructs a sequence of vectors by
splitting each image into patches and extracts visual representations by stacked Transformer
blocks. The multi-head attention mechanism and multilayer perceptron (MLP) structure
demonstrate the advanced learning ability for long-distance feature dependence and obtain
complete global representations. Unfortunately, the serialized inputs destroy part of local
features, causing the boundaries between objects to be blurred. An improved transformer-
based method [47] introduces a progressive tokenization operation to model the local struc-
ture information. LocalViT [23] bring locality to Transformer by adding depth-wise convo-
lution to Transformer blocks. Crucially, building a model that guarantees both local features
and global features remains a challenging problem.

For the semantic segmentation task, the spatial information and context information are
both important. Some hybrid methods, such as LocalViT [23] and PVT [38], incorporate
convolution to Transformer blocks to strengthen the locality. However, the segmentation
task need a high resolution output and the calculation cost for self-attention will largely
increase in these single stream methods.

In this paper, we rethink convolution operation and Transformer and propose a dual-
stream framework for semantic segmentation. This idea is originally inspired by the success
of deep dual-resolution networks (DDRNet) [16]. Deep dual-stream architecture has been
proved to be effective for semantic segmentation task. After that, inspired by the success
of Vision Transformer [11] and Conformer [29], we develop a dual-stream architecture with
convolution and Transformer streams for semantic segmentation. Our design consists of
spatial stream and context stream, following the design of ResNet [14] and ViT [11] respec-
tively. While the spatial stream using convolution operations to extract local features, the
Context Stream gains the global representation through the self-attention mechanism and
MLP blocks. There are interactions between two streams, which can continuously exchange
information to effectively fuse local features and global features. We systematically discuss
the impact of the Spatial Stream and the Context Stream on the semantic segmentation task,
and design the corresponding decoder to better fuse the feature maps of the two streams and
decode the result.

To summarize, our contributions are: (1) We introduce a dual-stream architecture to se-
mantic segmentation combining convolution and transformer, which extracts the local spatial
information and global context information simultaneously. (2) Two different decoders are
designed to effectively fuse local features and global features from two streams. (3) The
model can achieve 83.31% mIoU on the Cityscapes validation set and 49.27% mIoU on
ADE20K dataset, exploring the potential of dual-stream structure for high performance.
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2 Related work
Semantic segmentation Semantic segmentation is a vital task in computer vision and an
extension of image classification for pixel-level prediction. FCN [24] realizes the predic-
tion of each pixel in the image by removing the fully connected layer in the convolutional
neural network, creating a precedent for the application of convolutional neural networks in
semantic segmentation tasks. Subsequently, many improved methods based on FCN emerge,
such as using encoder-decoder pairs (UNet [31], SegNet [1]), enlarging the receptive field
by using dilated convolutions (atrous convolution [45], DeepLab [5]) and spatial pyramid
pooling (PSPNet [52]), and utilizing attention to better model the long-range dependencies
(SENet [17], CBAM [39], Hierarchical [35]).

For the application of semantic segmentation in autonomous vehicles or mobile ter-
minals, the real-time performance of the model is of great concern for security reason or
user experience. Therefore, many lightweight semantic segmentation networks are pro-
posed [27, 28, 30, 42, 44, 53]. Among them, BiSeNet [42], a dual-stream network, deploying
a spatial path and a context path, can reach 68.4% mIoU at 123 FPS on the Cityscapes test-
ing set. And DDRNet [16] achieves 77.4% mIoU with the speed of 108 FPS with a similar
structure. However, the above methods tend to design lightweight models and do not give
high-precision results. In this work, we proves that the dual-stream structure is still effective
for heavyweight semantic segmentation models and can reach 83% mIoU on the Cityscapes
validation set.

Vision Transformers Transformer has dominated the field of natural language processing
with the pure attention structure that is good at capturing long-range dependencies [37].
ViT [11] is an end-to-end model using the Transformer structure for image recognition task
firstly, proving the great potential of pure attention structures in vision tasks. Specifically,
it divides the image into fixed-size patches and then applies multiple Transformer encoder
blocks to model the patches while maintaining the same resolution throughout the backbone.
The latest work has proved that the pyramid structure in the convolutional network is also ap-
plicable in Transformers and more suitable for various downstream tasks, such as PVT [38],
T2T [47], PiT [15], etc.

In addition, an obvious shortcoming of Transformer is the lack of inductive bias with a
more flexible structure [8, 10, 46]. Introducing the hard inductive bias in convolution into
Transformer is one of the solutions. It can increase the inductive bias and reduce the amount
of calculation, such as CvT [40] and LocalViT [23], CeiT [46], ConViT [10], BoTNet [33]
and LeViT [12]. The strategy used in these methods includes: replacing the original patch
embedding with convolution, replacing FFN with a deep separable convolution, and Trans-
former block is only deployed in the deeper layer, which is because that discovering through
visualization the Transformer still focuses on detailed information at the low level.

Transformers for segmentation SETR [55] originally adopts a pure attention network to
solve the semantic segmentation problem. It encodes an image to a sequence of patches and
then stacks Transformer blocks to extract features, achieving the first position at the time on
the ADE20k test set. PVT [38] is the first work that introduce pyramidal architecture with
Transformer building block. Its pyramidal structure saves memory and computational cost
compares to the single scale counterparts (e.g., ViT). It adopts the classical Semantic-FPN
to deploy the task of semantic segmentation. However, its performance is still inferior to
the methods with high resolution feature representation (e.g., SETR [55]). Segformer [41]
solves the above problem in pyramidal structure by introducing a hierarchically structured
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(a)

(b) (c)

Figure 1: Architecture of the proposed DSCT. Out backbone consists of two streams, named spatial
stream and context stream. Green block denotes the feature of spatial stream and yellow block is the
feature of context stream. Black dashed lines denote feature fusion between two streams. We also
depict the design of two decoders: (b) Stream aggregation with progressive upsampling (SAPP). (c)
Stream aggregation with concatenation (SAC).

Transformer encoder and a multilayer perceptron decoder that combines the features from
different layers.

In this paper, we deploy the dual-stream structure, combined with convolution and Trans-
former to extract spatial detail information and global semantic information in the original
image simultaneously. This method can use high resolution in spatial stream and use rel-
atively low resolution in context stream, which is more efficient for the segmentation task.
Through an effective feature fusion strategy, information exchange between the two streams
is realized. In addition, a lightweight decoder is designed to fuse the feature from two streams
and obtain the segmentation results.

3 Method

In this section, we introduce our Dual Stream Convolution-Transformer (DSCT) framework.
As depicted in Figure 1, DSCT consists of two main modules: (1) A dual-stream encoder
to capture both local features and global representations; and (2) a lightweight decoder to
aggregate the features from two streams and produce the final semantic segmentation mask.

3.1 Dual-Stream Convolution-Transformer (DSCT)

Our encoder follows [29] and consists of two streams: the spatial and the context streams.
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(a) (b)

Figure 2: The details of feature fusion between spatial stream and context stream. (a) is the fusion
from Convolution to Transformer; and (b) is the fusion from Transformer to Convolution.

Spatial stream In the previous work, the design of some modules such as skip connec-
tion [24], large-resolution input and maintaining a high-resolution path [34], illustrates that
the importance of detailed information in semantic segmentation task. We use traditional
convolution network [14] as the spatial stream to preserve spatial detail information by main-
taining a higher resolution. Our spatial stream is divided into 4 stages, only the output of
the first stage is 1/4 of the original image, and the last three stages maintain 1/8 resolution.
Concretely, each stage consists of N blocks of the convolution-based structure. The design of
the CNN block follows the structure of ResNet, including convolutional layers followed by
batch normalization and ReLU activation layer. In the end, the feature map obtained by the
spatial stream is 1/8 of the original image, which contains rich spatial detail information but
lacks an understanding of the global semantics of the image. The process of spatial stream
can be formulated as:

X ′
l−1 =C3×3(C1×1(Xl−1)) (1)

X̂l−1 = Xl−1 +C1×1(X ′
l−1) (2)

Xl−1 = X̂l−1 +C1×1(C3×3(C1×1(X̂l−1)+FT 2C(Tl))) (3)

C3×3 denotes 3×3 convolution and C1×1 means 1×1 convolution. Each is followed by
a batch normalization and a ReLU activation layer. FT 2C is the feature fusion from context
stream to spatial stream. Xl−1means the output of the previous convolution block. Tl is the
output of parallel Transformer block.

Context stream While the spatial stream can extract features containing rich spatial infor-
mation, the context stream is designed to obtain more global information to perceive the
image from a high-level perspective. We adopt Transformer as the context stream, which has
a global receptive field in the calculation of each layer. The context stream is also divided
into 4 stages, which is the same as the spatial stream. The difference is that a projection
layer is added at the beginning to divide the image into 4× 4 patches and map each patch
into a one-dimensional vector. We designed that each stage has the same number of blocks
as the spatial stream. For the design of the Transformer block, we follow the structure of the
original ViT [11], consisting of a multi-head self-attention block and a MLP block. Layer
normalization and residual connection are added in each self-attention layer and each MLP
block. The process of context stream can be formulated as:

T̂l−1 = Tl−1 +FC2T (X ′
l−1) (4)

T̂l−1 = T̂l−1 +MHSA(LN(T̂l−1)) (5)

Tl = T̂l−1 +MLP(LN(T̂l−1)) (6)

MHSA and LN is the multi-head self-attention and layer normalization respectively.
FC2T represents the feature fusion from spatial stream to context stream. Tl−1means the
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output of the previous Transformer block. X ′
l−1 is an intermediate output of the parallel

convolution block.

Feature fusion To effectively fuse the features between the spatial stream and the context
stream, we add two connections between each convolution block and Transformer block. To
bridge the semantic gap between these two streams, we use a transform module in each con-
nection to perform the feature alignment. To be specific, for connection from convolution
to Transformer, we use 1× 1 Conv + Average Pooling + LayerNorm. For connection from
Transformer to convolution, we use Upsampling + 1×1 Conv + BatchNorm. The 1×1 Conv
can transform the dimensions of two features that are inconsistent. Average pooling and up-
sampling are used to unify the resolution of output features. LayerNorm and BatchNorm are
used respectively to alleviate the misalignment problem brought by different normalization
in the two streams. Figure 2 shows how the feature fusion is implemented.

3.2 Decoder designs
To perform semantic segmentation, we propose two decoders to fuse the local feature and
the global feature from spatial stream and context stream. The context stream considers 2D
images (H ×W ×C) as 1D sequences (N ×C), so we first transform the output of context
stream back to 2D image space for following feature fusion. Next, we briefly introduce the
following two decoders.
Stream Aggregation with Progressive uPsampling (SAPP) With SAPP head illustrated in
Figure 1, we first unify the dimensions of the features from two streams and then fuse them
together. Next, we progressively upsample the fused feature. Inspired by SETR [55], we use
similar progressively upsampling strategy, which we repeat conv + upsample for 3 times to
get the mask prediction with the original size of the image. The progressively upsampling
strategy can gradually restore the details for segmentation.
Stream Aggregation with Concatenation (SAC) With SAC head illustrated in Figure 1, we
first upsampling the features of both streams to H

4 × W
4 , where H and W denote the original

height and width of the input image. Then we concatenate the two features and fuse the
features by 1× 1 Conv + BN + ReLU. Finally, we predict the segmentation mask with the
size of H

4 × W
4 by a 1× 1 Conv. For this head, the concatenation operation maintains their

own information of the two streams, and the convolution after that fuse their features in the
channel dimension.

4 Experiments
In this section, we use extensive experiments to show the performance of our DSCT method,
which outperforms most of the contemporaneous works.

4.1 Datasets
Cityscapes [9] is an urban scene dataset with 19 categories. It contains 5000 fine annotated
images for training and validation. The fine annotated images are split into 2975, 500 and
1525 for training, validation and testing, respectively. It also provides extra 19988 coarse
annotated images for training.
ADE20K [56] is a semantic segmentation dataset with 150 categories. It consists of 20210,
2000 and 3352 annotated images for training, validation and testing, respectively.
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Method Backbone iterations mIoU (SS/MS)
DSCT (SAPP head) Base 40K 81.43 / 82.60
DSCT (SAC head) Base 40K 81.23 / 82.73
DSCT (SAPP head) Base 80K 81.85 / 83.31
DSCT (SAC head) Base 80K 81.28 / 82.58

Table 1: Comparison with 40,000 and 80,000 iterations on Cityscapes validation set. All the models
are trained on Cityscapes training set with batchsize 8 and evaluated on validation. "SS" denotes single
scale testing and "MS" denotes multi scale testing.

Method Backbone Params (M) FLOPs (G) mIoU (SS/MS)
DSCT (SAPP head) Tiny 26.3 289.9 76.74 / 78.95
DSCT (SAC head) Tiny 23.4 179.4 76.95 / 78.74
DSCT (SAPP head) Small 40.3 432.8 79.72 / 80.79
DSCT (SAC head) Small 37.4 338.7 80.04 / 81.50
DSCT (SAPP head) Base 85.8 732.4 81.43 / 82.60
DSCT (SAC head) Base 82.8 654.8 81.23 / 82.73

Table 2: Comparison with three backbone variants on Cityscapes validation set. All the models are
trained on Cityscapes training set with batchsize 8 for 40,000 iterations and evaluated on validation set.

4.2 Implementation details

Following the default setting (e.g., data augmentation and training schedual) of public code-
base mmsegmentation, we use random cropping (769× 769 for Cityscapes and 512× 512
for ADE20K), random resize with ratio between 0.5 and 2, and random horizontal flipping
during training for all the experiments; We set the batch size 8 with a number of training
schedules reported in Table 1, 2, 3 and 4 for the experiments on Cityscapes. We set the batch
size 16 and the total iteration to 160,000 for the experiments on ADE20K. We use optimizer
AdamW [25] with initial learning rate 1×10−4 and adopt a polynomial learning rate decay
schedule for all the experiments.

We use the pre-trained weights provided by [29] to initialize the encoder of our model.
We use two different decoder heads (Figure 1) for the task of semantic segmentation after
pretraining. Two decoder heads are random initialized during segmentation training. We use
stride convolution to downsample the spatial stream to resolution of 1/32 in pretraining and
keep the last three stages to 1/8 in segmentation task training [52].

To evaluate our models, we report the mean Intersection over Union (mIoU) on both
validation and test set. For the experiments evaluated on validation set, only training set is
used for training. For the experiments evaluated on test set, we follow the common practise,
training our models on both training set and validation set. For the evaluation on test set, we
submit the result to Cityscapes or ADE20K test server.

Both single-scale and multi-scale testing are used in our experiments, which are denoted
as "SS" and "MS" respectively. For multi-scale testing, we follow the setting of SETR [55].
Specifically, we use random horizontal flipping and random resize with the ratio of [0.5,
0.75, 1.0, 1.25, 1.5, 1.75]. We do not adopt the widely-used tricks such as OHEM [32] loss
in model training.
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Method Backbone Params (M) FLOPs (G) mIoU (SS/MS)
FCN [24] ResNet-101 68.6 2203.3 73.93 / 75.14
CCNet [18] ResNet-101 68.9 2224.8 80.20 / -
PSPNet [52] ResNet-101 68.1 2048.9 78.50 / -
DeeplabV3+ [7] ResNet-101 62.7 2032.3 80.90 / -
OCRNet [48] HRNet-W48 70.5 1296.8 81.10 / -
SETR-PUP (40K) [55] ViT-Large 318.3 1340.1 78.39 / 81.57
SETR-PUP (80K) [55] ViT-Large 318.3 1340.1 79.34 / 82.15
SETR-PUP-DeiT (40K) [55] ViT-Base 97.6 - 78.79 / 80.30
SETR-PUP-DeiT (80K) [55] ViT-Base 97.6 - 79.45 / 80.00
DSCT (SAPP head, 40K) Base 85.8 732.4 81.43 / 82.60
DSCT (SAC head, 40K) Base 82.8 654.8 81.23 / 82.73
DSCT (SAPP head, 80K) Base 85.8 732.4 81.85 / 83.31
DSCT (SAC head, 80K) Base 82.8 654.8 81.28 / 82.58

Table 3: Comparison with state-of-the-art methods on Cityscapes validation set. All the models are
trained on Cityscapes training set and evaluated on validation set.

Method Backbone mIoU
PSPNet [52] ResNet-101 78.40
BiSeNet [42] ResNet-101 78.90
PSANet [54] ResNet-101 80.10
CCNet [18] ResNet-101 81.90
SETR-PUP [55] ViT-Large 81.08
DSCT (SAPP head) Base 82.25
DSCT (SAC head) Base 82.41

Table 4: Comparison with state-of-the-art methods on Cityscapes test set.

4.3 Experiments on Cityscapes

We first show the results of ablation study, which show the performance using different
training schedules. Then we show the impact of encoder variants of different scales. Finally,
we compare our methods with other state-of-the-art methods on Cityscapes validation set
and test set.
Ablation study All ablation studies are performed on Cityscapes validation set. We first
study the impact of training iterations on the performance of our model. We train our models
with different training schedules including 40,000 and 80,000 iterations. The results are
shown in Table 1. With the increase of iterations, the mIoU of our models can be further
improved. Concretely, when using SAC head, we can obtain 81.23% mIoU and 81.28%
mIoU respectively.

We also train our models using three encoder variants of different scales: Tiny, Small
and Base. Their architecture are detailed in Supplementary material. The single scale testing
and multi scale testing results of all three variants are shown in Table 2. With Tiny encoder
and SAC head, we achieve 76.95% mIoU using single testing with only 23.4M parameters.
Comparison with state-of-the-art methods We compare our method with existing ap-
proaches on Cityscapes. Experiments show that our method can outperform most of previous
methods on Cityscapes dataset.

Table 3 shows our method can achieve superior performance on semantic segmentation
task. Our DSCT (SAPP head) can achieve 81.43% mIoU, outperforming SETR-PUP by
3.04% with much fewer parameters. When compared with convolution-based method, our
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Method Backbone Params (M) FLOPs (G) mIoU
FCN [24] ResNet-101 68.6 275.7 39.91
CCNet [18] ResNet-101 68.9 278.4 45.22
PSPNet [52] ResNet-101 68.1 256.4 44.40
DeeplabV3+ [7] ResNet-101 62.7 255.1 46.40
OCRNet [48] HRNet-W48 70.5 164.8 45.70
PVT (Semantic FPN) [38] PVT-Large 65.1 132.6 42.10
SETR-PUP-DeiT (SS) [55] ViT-Base 97.6 - 46.34
SETR-PUP-DeiT (MS) [55] ViT-Base 97.6 - 47.30
DSCT (SAPP head, SS) Base 86.0 288.2 48.18
DSCT (SAC head, SS) Base 82.9 253.2 48.66
DSCT (SAPP head, MS) Base 86.0 288.2 49.11
DSCT (SAC head, MS) Base 82.9 253.2 49.27

Table 5: Comparison with state-of-the-art methods on ADE20K validation set. All the models are
trained on ADE20K training set with batchsize 16 for 160,000 iterations and evaluated on validation
set.
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Figure 3: Comparison of qualitative results on Cityscapes validation set. The first line is predicted
by SETR and the second line is predicted by our DSCT.

DSCT (SAPP head) outperforms OCRNet by 0.33%.
Table 4 shows the Cityscapes test set performance. We follow the standard protocol [48]

to evaluate on Cityscapes test set. Specifically, we first train our model with training set and
validation set for 100,000 iterations. Next, we fine-tune the model with Cityscapes coarse
set for 50,000 iterations. Finally, we fine-tune the model with training set and validation set
for 20,000 iterations. With SAC head, we can achieve 82.41% mIoU, outperforming most
existing segmentation methods.

4.4 Experiments on ADE20K
Comparison with state-of-the-art methods As shown in Table 5, our method achieves
high performance on ADE20K validation set. With SAC head, we achieve 49.27% mIoU,
surpassing SETR by a clear margin.

4.5 Qualitative results
We compare the qualitative results on Cityscapes validation set, which is shown in Figure 3.
The two lines from top to bottom in the figure are predicted by SETR [55] and our DSCT
respectively. All these results are predicted on Cityscapes validation set using the model
trained for 40,000 iterations with batch-size of 8. Compared with SETR [55], our method has
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Figure 4: Visualization of the output feature of the last three stages. The upper three features are the
output of the spatial stream, and the lower three are the features of context stream. The right one shows
the fused feature.

better results in small object segmentation. This shows that the Spatial Stream of our network
plays an important role in segmenting small objects. We also visualize the output features
of the last three stages and the output feature after the fusion of two streams. The results are
shown in Figure 4. It demonstrates our method can extracts long-range correspondence from
the context stream and local detail from the spatial stream.

5 Conclusion
In this paper, we introduce a Dual-Stream Convolution-Transformer segmentation frame-
work (DSCT), a clean yet powerful architecture that takes advantage of both convolution and
Transformer. Our model explores the high-precision potential of the dual-stream architecture
coupling local and global representations for semantic segmentation. Extensive experiments
show that DSCT achieves competitive results on Cityscapes dataset and ADE20K dataset,
outperforming most of the contemporaneous works.
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