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Abstract

Flow fields, including velocity and pressure fields, are typically used as references for
vehicle shape design in the automotive industry to ensure steering stability and energy
conservation. Generally, flow fields are calculated using computational fluid dynamics
(CFD) simulations which is time-consuming and expensive. Therefore, a more efficient
and interactive method is desired by designers for advanced shape discussion and design.
To this end, we propose a fast estimation model using 3D convolutional neural networks.
We employ a style extractor to obtain sufficient deep features of each vehicle shape and
apply them using adaptive instance normalisation to improve the estimation performance.
In addition, a proposed loss function which mainly includes a slice-weighted loss func-
tion is used to train the estimation model. The findings show that our proposed method
outperforms previous studies, especially on flow field estimation in wake regions and re-
gions near the vehicle surface. Therefore, the proposed method allows designing vehicle
shapes while ensuring desirable aerodynamic performance within a much shorter period
than extended CFD simulations.

1 Introduction

Flow fields of a vehicle mainly include velocity and pressure fields. In the automotive in-
dustry, they are advantageous for vehicle shape design in terms of ensuring desirable aero-
dynamic performance, which is directly associated with steering stability and energy con-
servation. For instance, to reduce the air resistance of a vehicle, designers often analyse
the pressure distribution on the vehicle surface by referring to the pressure field. Generally,
flow fields are calculated using computational fluid dynamics (CFD) simulations based on
the Navier-Stokes equations [1] or the lattice Boltzmann method [2]. However, CFD simu-
lations are time and cost intensive. An accurate calculation of CFD often takes several days.
Most designers prefer discussing the aerodynamic performance of several design schemes
in a one-hour meeting. An interactive and fast method is therefore needed to generate flow
fields for evaluating aerodynamic performance.
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Unlike flow field calculations using CFD simulations, recent studies have shown the
feasibility of quickly estimating flow fields using machine learning methods. M. Mrosek
et al. [3] proposed a method based on reduced-order modeling using the Kriging model
which is similar to Gaussian process and Proper Orthogonal Decomposition plus Interpo-
lation (POD+I) to predict flow fields of vehicle. However, the method can only work on
the parameterized geometric features of a baseline vehicle shape and the pre-specific design
space [4], which limits the discussion because designers always hope to change the arbi-
trary regions and discuss a several types of design schemes. N. Umetani et al. [5] proposed a
method for encoding vehicle mesh data called PolyCube. Then, they used the encoded data
to estimate the flow fields interactively using the Gaussian process. Raissi et al. [6] proposed
a Navier-Stokes informed neural network. They employed automatic differentiation to cal-
culate the derivatives of outputs. These derivatives were used to design a loss function and
to train neural networks satisfying the Navier-Stokes equation. This consideration gradually
grew into physics-informed neural networks (PINNSs) in several studies [7, 8] which use
physical laws as a loss function to train the estimation model. Current PINNs lack general-
ization for vehicle shape, and the training is difficult to converge. Nonetheless, these studies
show the importance of designing loss functions for a better estimation performance.

Because convolutional neural networks (CNNs) have yielded successful performance in
image recognition and object detection tasks, several studies [4, 9, 10, 11, 12] have demon-
strated the potential of CNNs in the evaluation of aerodynamic performance. These studies
proposed the use of CNNss to estimate dimensionless quantities, such as lift coefficients, to
estimate 2D flow fields from a shape image or calculate 3D flow fields from simple geometric
shape data. J. Musil ef al. [13] proposed a U-net architecture [14] of residual 3D CNNs to
estimate flow fields in real time when the architectural design was modified. The aforemen-
tioned studies have garnered a significant amount of interest with regard to the application
of CNNss in contributing to aerodynamic analyses based on vehicle shape data.

In this study, we focus on estimating 3D flow fields, which include velocity and pres-
sure fields, from 3D vehicle data. We generate a dataset for estimating flow fields from the
unsigned distance function (uSDF) of a vehicle shape. Next, an estimation model based on
3D CNNs is proposed to implement our tasks, in contrast to previous studies designed for
estimating 2D flow fields or 3D flow fields in a small space of simple 3D shapes such as a
cube or cylinder. We apply adaptive instance normalisation to our estimation model to gen-
erate flow fields closely related to the vehicle shape. In addition, we proposed a novel loss
function, mainly including a slice-weighted loss function, to train the estimation model by
focusing on wake regions which is around the rear of vehicles and regions near the vehicle
surface where the previous methods are difficult to estimate. The test results show that our
proposed method outperforms the previous methods, especially on the flow field estimation
in those target regions where the previous methods are difficult to estimate. Estimating flow
fields from uSDF of a vehicle only need 0.3 seconds on Nvidia RTX2070 GPU, which makes
designers discuss the aerodynamic performance of several design schemes in a short period.

2 Related Works

Compared with the estimation performed using a dimensionless quantity, such as lift or
drag coefficients, the flow field considers information about the manner in which air passes
through the object and how the force is applied to the object’s surface. N. Umetani et al. [5]
estimated the velocity field and pressure distribution on a vehicle surface using Gaussian
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process. A PolyCube method was proposed to reduce the dimensions of vehicle shape rep-
resentations to develop an interactive method for implementation. The PolyCube method,
however, cannot correspond to certain parts of the vehicle, such as floor parts or door mir-
rors, which considerably influence the aerodynamic performance. In this study, we use a
simple data representation applied to all parts of a vehicle and show that the CNN model can
also perform an efficient flow field estimation.

The task of flow field estimation can be easily associated with an image style transfer,
such as pix2pix [15]. Inspired by the CNN architecture of an image style transfer, Guo
et al. [10] proposed a CNN model to estimate the velocity field in real time based on 2D
shape data and simple 3D shape data, which validated the efficacy of the proposed method.
Two types of datasets containing vehicle side-view images were used to train the model, and
average relative error rates of 9.04% and 16.53% were obtained for the datasets. Bhatnagar
et al. [12] proposed a method similar to the one mentioned above to estimate the velocity and
pressure fields of an aerofoil. They employed the gradient difference loss [16] to train the
model and showed that the estimation results significantly reduced errors in the wake region
of aerofoils. Recently, physics-informed neural networks (PINNs) [7] have been used with
increasing frequency, which train neural networks using physical laws as a part of the loss
function. O. Hennigh et al. [8] also proposed a method based on PINNs. However, they used
signed distance functions (SDF) for loss weighting, which results in a convergence speed
increase and also improved accuracy in some situations.

Although our proposed estimation model is also based on CNNs, we find that previous
methods are weak in estimating 3D flow fields, especially in the wake region or the regions
near the vehicle surface. Thus, in this study, we propose a novel estimation model to improve
the performance on 3D cases. Moreover, from the aforementioned studies, we find that the
loss function is related to the performance of estimation accuracy. In this study, we propose
a slice-weighted loss function and use continuity equation from fluid mechanics to train the
estimation model.

3 Proposed Method

In this section, we introduce our proposed flow field estimation method in detail. Because
there is no available dataset, we generate a dataset that includes the uSDF of vehicle shapes
and corresponding flow fields at first. Then, we introduce the proposed estimation model
architecture whose inputs are the uSDFs and outputs are the 3D flow fields around the vehi-
cle. An overview of the estimation model is presented in Fig.1. To improve the estimation
near the surface or in the wake region, we introduce the proposed loss function and train the
model with a physical rule.

3.1 Dataset

For the training estimation model, a dataset that includes the 3D shape information of vehi-
cles and corresponding flow fields is urgently required. Umetani ef al. [5] released a dataset.
However, this dataset cannot be directly used in the present study because the vehicle data
lacks metric information, and the calculation condition of flow fields is significantly differ-
ent from that of our practice work. Therefore, we generated a dataset from scratch. Fig.2
shows the structure of our dataset, which includes a total of 1,121 cases of vehicles from
different categories, such as sedans and SUVs. Each case in the dataset contains an uSDF
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Figure 1: An overview of flow field estimation model architecture.

uSDF
200x80x60x1

Dataset

X-component

|| Velocity Field
200x80x60x3

; ; | | Pressure Field
200x80x60x1

Mask
200x80x60x1

Figure 2: The structure of our dataset

of the vehicle shape as the input of the estimation model, a ground truth velocity field and
pressure field as the output, and a binary mask showing the existing flow fields. We selected
a 10m x 4m x 3m Cartesian space and placed the vehicle in the space. The uSDF of this
space was calculated to represent the vehicle shape, and the corresponding flow fields in the
same space were calculated using CFD software which sets the condition that vehicles drive
in the air with 120 km/h speed. We sampled the aforementioned space with a 0.05m pitch
so that the size of the uSDF is 200 x 80 x 60 x 1. The air velocity is a vector that includes
three components along the axes; hence, the size of the velocity field is 200 x 80 x 60 x 3,
whereas the size of the pressure field is 200 x 80 x 60 x 1 because the pressure is scalar. In
addition, the binary mask of each case, where one means the region that allows air to pass
through, was added into the dataset. These masks are very useful for calculating the loss that
will be introduced later.
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3.2 Architecture of the Estimation Model

We adopt an encoder-decoder architecture similar to that used in previous studies. To deal
with more complex 3D data, we design an estimation model based on 3D CNNs. Although
the estimation models in previous studies in [10] and [12] are simple, considering the ca-
pacity of the model for 3D flow field estimation, we need to increase the complexity of the
model. The estimation model includes four parts: an encoder, several residual blocks, a style
extractor and four generators of each flow field component.

The encoder is designed based on the VGGNet [17] structure. Considering that our
input uSDF and output flow fields are 200 x 80 x 60, we applies instance normalisation
[18] because the training batch size cannot set a large value. The input should be rescaled
from the uSDF data into the range of [0, 1] using the exponential function exp(—uSDF).
The output feature of the encoder is 4 x 2 x 1 x 256. In contrast to previous studies, we
avoid using a fully connected layer, which causes redundant calculations. Next, several
residual blocks are used to extract deeper features. These blocks benefit from a residual
neural network (ResNet) [19], such that the shortcut connection can help in training the
estimation model well with more layers. The output feature of the final residual block is sent
into four generators, which output three components of the velocity and pressure fields. All
the generators have the same structure. Inspired by StyleGAN [20], we assume that it is
possible to control generators using the style feature of a vehicle so that the generated flow
fields can be in accordance with the vehicle shape features. Therefore, we design a style
extractor to extract the style of each vehicle shape. The output of each residual block should
be converted to a one-dimensional feature by calculating the mean of each channel. To keep
the scale of each input one-dimensional feature, we normalise the feature before sending it
into the dense layer or being added to the intermediate feature. The normalisation we use is
based on the local response normalisation in [21] and [22], which makes all elements into a
unit length. Because each component of the flow fields has four generators, the style features
are also calculated separately.

We follow the methods outlined in [20] to apply adaptive instance normalisation (AdaIN)
[23] to integrate the style feature into the generator. We use 3D deconvolution layers to grad-
ually enlarge the size and applied 3D convolution layers to refine the generation. Similar to
the encoder, we adopt instance normalisation in the generator. One generator will output one
component of the flow field with a size of 200 x 80 x 60 x 1. Finally, the output multiplies
the binary mask of the vehicle element-wise to make the value inside the vehicle and on the
surface zero because air cannot reach these regions.

3.3 Loss Function

The loss function is shown in equation (1), where Lossg;.. is the slice-weighted L1 loss,
LosSgradient 18 the gradient difference loss and div U is the divergence of the velocity field.

Lossiora = LosSgiice + M LOSSgradient + A, divU (D

Although L1/L2 loss is widely used for training CNN:ss, it is necessary to modify these
basic loss functions. The value of the velocity and pressure fields should be zero on the
surface or inside the vehicle. In these regions, the estimated results are equal to the ground
truth data because of the element-wise multiplication with the mask. For this reason, calcu-
lating the loss by subtracting them directly leads to a small mean value of the total space.
We hope to use the larger loss and calculate only in the region where air can pass through
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by using a mask. Therefore, we propose a slice-weighted loss function defined in equation
(2), where ¥ is a estimated component of the flow field and x is the ground truth. The loss
function regards L x W x H (Here is 200 x 80 x 60) 3D data as a series of images, such as
being sliced from different viewpoints. We found that it was difficult to accurately estimate
the flow fields near the vehicle surface and wake regions. In our case, the slices, including
the boundary of the vehicle surface, are the regions where only small air passes. Calculating
each loss in the slice and then obtaining the average where mask value equals one lead to an
increase in the weight of loss, which is included in the flow field region of this slice. This
means that the loss can be weighted by the slices, increasing the weight if slice includes the
vehicle boundary. Because those target regions where we hope to improve estimation accu-
racy are always around boundary, the loss in the regions can be enhanced by the weighted
method described in equation (2). Consequently, the proposed slice-weighted loss function
makes estimation model training focus on improving estimation in both the regions near the
vehicles and wake regions.

Lossgjice(x,%,mask) =

Bhatnagar et al. [12] reported that using gradient difference loss, which calculates the
average difference of spatial gradient between the ground truth and estimated flow fields,
can significantly reduce the estimation error. Accordingly, this method is deemed applicable
to our task in training a more accurate model.

Moreover, the flow around the vehicle can be regarded as an incompressible flow in
which the density is constant. For this condition, the divergence of the velocity field should
be zero and can be derived from the continuity equation. We add this physical constraint into
the loss function to train the estimation model of the velocity field.

3.4 Training Conditions

We train the estimation model using four Adam optimisers for each component of the flow
field. Each optimiser is applied to the feature extractor, residual block, corresponding style
extractor and generator to update their parameters. The proposed loss function is used by
setting A; to 0.1 and A, to 0.01 when training the estimation of velocity fields. A, was set to
0 when training the estimation of the pressure field because the divergence of velocity cannot
influence it. We set the batch size to 4 and train the estimation model for 1,000 epochs with
the initial learning rate, which is set to 1073, and then exponentially decay to 10~* during
the first 500 epochs. We implement all the estimation models using TensorFlow 2.x and train
them on one Nvidia Tesla V100 GPU with 32GB of GPU memory.


Citation
Citation
{Bhatnagar, Afshar, Pan, Duraisamy, and Kaushik} 2019


2

CHEN ET AL: 3D FLOW FIELD ESTIMATION AROUND A VEHICLE

W= | o= | o | .» §
o | = | = |~ ]

Sedan Mini Van Pickup Truck Suv

Ground Truth

Estimation

° Velocity Magnitude °

Figure 3: Estimated velocity field of several vehicles in test set
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Figure 4: Estimated pressure field of several vehicles in test set

4 Evaluation

To evaluate the proposed method, we split the dataset into a training set and a test set, in-
cluding 1,098 cases and 113 cases, respectively. Part of the test data were randomly selected,
and the remaining cases included some special designs, which were selected by domain ex-
perts. Furthermore, we randomly split the training set into nine groups on average, each of
which included 122 cases, which were employed for cross-validation. We used eight groups
for the training model and the remaining one group for validation. All the evaluations were
performed on a notebook computer which includes a Nvidia RTX2070 GPU.

4.1 Results of Flow Field Estimation

The estimated flow fields of several typical vehicle cases from the test set are shown in Fig. 3
and Fig. 4 '. We found that the proposed estimation model can be applied to different cate-
gories of vehicles. Compared to the ground truth data, the estimated flow fields were close
to them. Velocity magnitude of both ground truth and estimated on L x H slice are shown in
Fig. 3. It can be seen that the velocity field peculiar to vehicle, such as the stagnation area
where the flow velocity is slow at the front of vehicle and the wake region with slow velocity
around the rear of the vehicle, can be reproduced by the proposed estimation model. Fig.4
shows the slices of pressure scalar on the same locations. The typical regions of pressure
field, such as the high pressure at the front of the vehicle and the negative pressure on the top
of the roof, can be reproduced by the proposed estimation model.

Velocity Field (m/s) .
Types of MAE X-Component | Y-Component | Z-Component Pressure Field (Pa)
Average 0.494 0.252 0.230 3.738
Minimum 0.482 0.248 0.227 3.616
Maximum 0.509 0.256 0.234 3.897

Table 1: Mean absolute errors for each estimated component of flow fields in test set.

IPlease note that we used the scaled unit-less ranges shown in the colorbars for velocity magnitude and pressure
because of the data provider’s confidentiality policy. However, the differences are allowed to show the actual range.
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Figure 5: Estimation results and differences from ground truth using different methods.

Velocity Field (m/s) .
Methods X-Component | Y-Component | Z-Component Pressure Field (Pa)
[10] 2.842 1.330 1.027 48.578
[12] 0.653 0.415 0.340 9.236
Proposed w/o style extractor 0.501 0.255 0.230 3.673
Proposed 0.482 0.248 0.229 3.616

Table 2: Comparisons against previous studies.

To evaluate the accuracy of the model, we calculated the mean absolute error (MAE)
of the estimated velocity field and pressure field on the test set, in contrast to their ground
truth, for each cross-validation. Table | shows the average, minimum and maximum MAE
results of nine runs on the test set using different trained models with cross-validation. The
average MAE:s of the three components of the velocity field are 0.495, 0.252 and 0.230 m/s,
and the MAE of pressure field is 3.758 Pa. In addition, the minimum and maximum MAEs
are shown in Table 1, we found that the MAEs do not change significantly using different
trained models. These results show the effectiveness of the proposed method which is able
to provide a robust estimation performance. Likewise, these results show the reasons why a
significant difference was not observed between the estimated flow fields and ground truth.

Using the proposed method, we can obtain the results of estimated flow fields from mesh
data within 20 seconds, which include 10 ~ 15 seconds for converting a vehicle mesh to
uSDF data and 0.3 seconds for estimating the flow fields. The method can accelerate the
vehicle shape design discussion with aerodynamic performance because the current process
in practice usually requires at least one day. It becomes possible for designers to interactively
revise the vehicle shape and know a rough aerodynamic performance in a short period.

4.2 Comparison

For comparison with previous studies, we faithfully reimplemented two estimation models
based on [10] and [12]. However, because these models were designed mainly for images,
we revised them to fit our data size and to support the training of 3D data. The details
of these estimation models are provided in the supplementary material. We trained these
models using the first group of training data as a validation set and the remaining training
data as a training set.

Table 2 shows the MAEs of each estimation model running on test set. The results ob-
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Velocity Field (m/s)

Loss Functions X-Component [ Y-Component [ Z-Component Pressure Field (Pa)
L1 Loss 0.882 0.261 0.251 4.887
L2 Loss 1.376 0.869 1.016 9.701
SDF Weighted L1 Loss [8] 1.125 0.304 0.347 6.745
Exponential SDF Weighted L1 Loss 1.355 0.267 0.290 7.808
L2 Slice-weighted Loss 0.651 0.506 0.469 5.361
Proposed (w/o velocity divergence) 0.499 0.255 0.230 3.877
Proposed 0.482 0.248 0.229 3.616

Table 3: Mean absolute errors for each estimated component of flow fields on test set with
training by different loss functions.

viously show that our proposed estimation model is able to provide a more accurate flow
field estimation. Fig.5 shows the flow fields of a sedan case in the test set estimated by
these models. The differences between the estimated flow field and ground truth are also
shown in this figure. As mentioned before, these models were designed for estimating the
2D flow fields or the 3D flow fields of simple 3D shapes. It is difficult to apply them to our
task by just revising to fit our data size. The first row in Fig.5 shows that the estimation
model does not have enough capability to estimate 3D flow fields. Although the outputs in
the second row look more like flow fields, the differences from the ground truth show that
the large errors occur in the regions near the vehicle surface and wake region. Comparing
with these previous methods, our proposed estimation model is more suitable for estimating
the flow fields in these regions benefiting from the architecture which extracts the style fea-
tures of vehicle shape from residual blocks and applies them to control generation of flow
fields. Table 2 also shows the results of the estimation model without style extractor module,
which verify the effectiveness of the proposed estimation model architecture. Furthermore,
our proposed loss function makes the model concentrate on learning the flow fields in those
target regions which is difficult to estimate. This also leads to a more accurate estimation.
We will introduce the effectiveness of the loss function in the next section.

4.3 Ablation Study of Loss Function

We consider that the proposed loss function plays an important role in training a more ac-
curate estimation model. To verify its effectiveness, we trained the estimation model with
different loss functions, including L1/L2 loss functions, and the slice-weighted L2 function.
We also implemented the losses both described in [8] using SDF and inversely using the ex-
ponential function of SDF by e~ ISDF| 1o weigh the L1 loss function. We replaced the Lossgjice
in equation (1) with the aforementioned loss functions respectively and kept the remaining
components. Moreover, the estimation model without velocity divergence was trained to ver-
ify the effectiveness of this component in loss function. We split training data into training
set and validation set, which is the same as the previous section, to train the models.

Fig. 6 shows the estimated velocity fields of the same sedan vehicle used in the previous
section and the differences from the ground truth using the estimation model which was
trained on different loss functions. We found that all the estimated velocity fields are close to
the ground truth. However, the differences in Fig. 6 show that using L1/L.2 loss functions or
using SDF-weighted loss functions can produce the larger difference in the region near the
vehicle surface or wake region. Training estimation model by slice-weighted loss makes the
estimation with the less error. The MAEs of the each component of flow fields on the test set
are shown in Table 3. The table clearly shows that using slice-weighted loss can improve the
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Figure 6: Estimation results by the proposed models trained with different loss functions and
the differences from ground truth.

estimation accuracy. As explained in section 3.3, the proposed slice loss can obtain the larger
loss to train the estimation model focusing on those target region. The table also shows that
using velocity divergence as a part of loss function can contribute to estimation accuracy.
Moreover, the result shows the reasons why we chose L1 loss rather than L2 loss: the L2
loss always decreases very early, making training a more accurate estimation model difficult.

5 Conclusions

In this paper, we proposed a 3D flow field estimation model based on 3D CNNs, which
estimate the velocity and pressure fields around a vehicle in a 3D space from uSDF vehicle
shape data. We employed a style extractor to obtain sufficient deep features of vehicle and
applied them through AdalN to improve the estimation. We trained the estimation model
with a proposed slice-weighted loss function. The estimated results were very close to the
ground truth, and a significant difference is difficult to be observed. We showed that the
proposed estimation method outperformed previous methods and verified effectiveness of
the proposed loss function by comparing it with other normal loss functions. This method
makes it possible to discuss various vehicle design schemes with aerodynamic performance
analysis in a short period.
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