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Abstract
Due to the difficulty of obtaining ground-truth labels, learning from virtual-world

datasets is of great interest for real-world applications like semantic segmentation. From
domain adaptation perspective, the key challenge is to learn domain-agnostic representa-
tion of the inputs in order to benefit from virtual data.

In this paper, we propose a novel trident-like architecture that enforces a shared fea-
ture encoder to satisfy confrontational source and target constraints simultaneously, thus
learning a domain-invariant feature space. Moreover, we also introduce a novel train-
ing pipeline enabling self-induced cross-domain data augmentation during the forward
pass. This contributes to a further reduction of the domain gap. Combined with a self-
training process, we obtain state-of-the-art results on benchmark datasets (e.g. GTA5
or Synthia to Cityscapes adaptation). Code and pre-trained models are available at
https://github.com/HMRC-AEL/TridentAdapt

1 Introduction
Deep neural networks have shown tremendous potential in dealing with computer vision
challenges such as semantic segmentation [4, 5, 28, 49], image recognition [11, 14, 16, 39,
40], etc. Semantic segmentation, a fundamental building block in autonomous driving sys-
tems, refers to the task of classifying each pixel in an image belonging to a certain semantic
class. Unfortunately, the creation of datasets with pixel-wise labels is notably a laborious
and high-cost procedure.

Benefiting from the development of modern computer graphics technology such as game
simulators [10, 35, 37], the appearances of real-world objects can be well imitated via virtual
imagery. Moreover, fine-grained semantic image labels can be acquired in large-scale for free
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Figure 1: Algorithmic Overview. For any given input data (source or target domain),
we leverage the source and target modules to put confrontational constraints to the shared
module simultaneously, forcing it to produce a domain invariant representation of the feature
map. The novel augmented views induced from source and target modules are then fed back
to the shared module to further bridge the domain gap. The learning of feature domain-
invariance will boost the performance of the task module on target domain data. Only the
shared and task modules will be adopted for inference.

from those virtual environments, which opens a new research direction for computer vision
applications. However, due to lighting and texture differences between objects in virtual and
real-world images, direct knowledge transfer from virtual to real is limited. Well-trained
models on virtual source datasets often experience drastic performance drop when they are
applied on real-world target domain where labels are missing.

After showing promising results in pixel-level image style transfer, image-to-image trans-
lation [18, 27, 53] models have brought much attention to unsupervised domain adaption. A
pioneer research is conducted in [15], which makes use of target-like images translated from
source domain together with their labels to provide guidance when learning target domain
segmentation. Despite the visually pleasing target-like translations, important features get
lost during image translation, because a pure image-to-image translation model is not built
for conveying semantic information, additionally it does not guarantee a perfect mapping
from source to target domain. Thus, the performance gain for semantic segmentation is
limited on target domain data.

Other interesting approaches such as curriculum domain adaptation [52], depth-aware
domain adaptation [45] and frequency domain adaptation [48] also obtain state-of-the-art
results for domain adaptive semantic segmentation. Unfortunately, adaptable knowledge is
still not fully explored and transferred from source to target domain, and hence remains an
open topic.

In this work, we provide a new perspective for solving the domain adaptive semantic
segmentation problem. We hypothesize that a shared feature map which can help produce a
source as well as a target domain output simultaneously, should be domain-invariant. To this
end, as Fig. 1 illustrates, we design our TridentAdapt framework such that the shared module
is forced to satisfy both source and target constraints, resulting in learning domain-invariant
representations from input data. With this design, the framework further benefits from its
back-fed cross-domain augmented views that are self-induced by source and target modules
during training to bridge the domain gap.

We summarize our contributions as follows:

• We put forward an intuitive yet effective trident-like architecture in which source and
target distributions adopt a confrontational stance, compelling the shared encoder to
produce feature maps that are indistinguishable in terms of domain.
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• We incorporate cross-domain augmented views which are self-induced from our frame-
work into the training pipeline. Thus, we introduce semantic consistency losses on
feature level and extra segmentation losses on output level, which not only encour-
age semantic information to be conveyed into the generators for better output quality,
but also boost the learning of domain-invariance for the encoder and segmentation
network.

• Our trained models demonstrate superior results over state-of-the-art methods on chal-
lenging benchmark datasets.

2 Related Work

Input Level Adaptation. Since image-to-image translation models [18, 27, 53] based on
GANs [1, 13, 20, 21, 29] can be trained following an unsupervised manner, in [15, 50]
target-like images translated from source domain are involved to train a target segmentation
model for cross-domain improvement. [6] employs for source and target domains separate
segmentation networks, to which source data and their target-like translations are fed, respec-
tively, to force the segmentation maps to be consistent. In [41], other than adversarial feature
alignment, all possible cross-domain outputs based on CycleGAN training pipeline are taken
into consideration to reduce the domain gap. [30] improves source-to-target translation by
incorporating SPADE layers [33]. In another work [22], semantic segmentation is learned
by receiving target-like translations together with the stylized source images carrying various
texture changes to prevent the segmentation network from overfitting on one specific source
texture. SG-GAN [24] employs a gradient-sensitive loss and a semantic-aware discrimina-
tor to improve structural contents after image translation. However, the above approaches
seek to build separate networks for image translation and semantic segmentation purposes,
where domain transfer modules and segmentation encoder do not place sufficient constraints
on each other. Therefore, the potential of image translation is not fully explored to support
domain adaptive semantic segmentation. Our proposed method tackles this by sharing the
learned semantic knowledge across all networks and looping back cross-domain outputs to
collaboratively learn a reinforced domain-agnostic feature space.
Output Level Adaptation. Aligning segmentation outputs between source and target do-
mains is considered an effective way to narrow the domain gap. Adversarial learning is
adopted in [42, 44] by connecting source and target segmentation outputs to a discrimina-
tor which learns structured output space. [47] proposes to refine segmentation by connect-
ing a image reconstruction network to the output label maps. Self-training [3, 54] such as
pseudo-label generation, which enhances the confidence level of knowledge learned from
source data, has become a widely adopted concept in domain adaptive semantic segmenta-
tion. In [7, 12, 22, 25, 32, 56, 57], self-training is conducted to acquire pseudo-labels which
further enhance segmentation performance on target domain.
Feature Level Adaptation. In semantic segmentation models, deeper layer features often
convey rich semantic information. Therefore, exploring a domain-invariant feature space,
which can be shared by both source and target input data, will theoretically bring signifi-
cant effect on minimizing cross-domain discrepancy. However, this has always been a key
challenge in domain adaptive semantic segmentation. Inspired by adversarial learning, a
feature discriminator is introduced in [15] to force the encoder of segmentation network to
extract similarly distributed feature maps from both domains. Taking one step forward, [12]
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Figure 2: A pictorial overview of our proposed TridentAdapt framework in detail.

makes use of the downsampled pseudo-labels to design a semantic-wise separable feature
discriminator which allows class level adversarial learning to improve the domain invariance
of deep features. In [38] and [55], the segmentation encoder is connected by a shared gen-
erator to produce domain transferred outputs alternately to reduce domain gap on feature
level. However, the generated images are not utilized to further interact with the segmenta-
tion network for mutual improvement. DCAN [46] seeks to align channel-wise statistics of
bottleneck features between source and target domains via AdaIn [17]. Inspired by [18], [2]
is trained to split input data into domain-specific texture and domain-invariant structure, and
the learned structural features are used to train the segmentation network. In our framework,
however, we implicitly put source and target distribution in confrontation to help search for
a domain-invariant feature space, obtaining better performance than existing approaches.

3 Proposed Method
In this section, we introduce TridentAdapt framework for domain adaptive semantic seg-
mentation. Let {X s,Y s} and X t denote the source and target domain datasets respectively,
where xs ∈ X s stands for a source training RGB image with corresponding source label map
ys ∈ Y s, and xt ∈ X t stands for a target training image whose label yt ∈ Y t is missing. The
goal is to train a model that is able to predict correct per-pixel label for X t by the assistance
of {X s,Y s}. As depicted in Fig. 1, we achieve this by leveraging a confrontation between
source and target distributions to learn a domain-invariant feature space for the segmentation
network Φ. The learning is reinforced by introducing self-induced cross-domain augmented
data into a backward loop, bridging the domain gap further. Detailed pictorial description is
provided in Fig. 2.

3.1 Source-target confrontation
To achieve our design purpose, effective data distribution modelling for both domains is
a key step. Although classical image-to-image translation approaches [18, 27, 53] exhibit
some clues on how image distribution can be modelled using GANs, yet they focus more
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on altering image appearances for style transfer, ignoring the semantic level information.
Therefore, for modelling source and target distributions we propose semantic-aware gener-
ators, to which semantic knowledge from the encoder is incorporated. As shown in Fig.
2, TridentAdapt training pipeline contains mainly four modules: shared encoder E initial-
ized by weights of ImageNet [9] pretrained backbone network, source generator Gs, target
generator Gt and segmentation network Φ.

If E receives an image xs from source domain dataset during training and outputs a
feature map E(xs), based on which Gs will produce a source reconstruction image Gs(E(xs))
measured by L1-loss Ls

rec in Eq. (1). Note that for Ls
rec, pixels belonging to image edges are

prioritized in order to compensate the omitted pixels due to the max pooling operations in
the encoder.

Ls
rec(E,G

s;X s) = Exs∼Xs [||Ωs� (Gs(E(xs))− xs)||1] (1)

Ωs ∈Rcim×h×w, is a weight matrix where ωs
i jk =

{
1+ηs, if xs

i jk ∈ edges
1, otherwise

(i stands for the channel index and j,k the spatial indices). � denotes element-wise multipli-
cation. Empirically we set ηs to 0.5. Here the edges are computed based on a sobel operator,
where h, w and cim are height, width and the number of channels of an image xs respectively.

In parallel, Gt takes the same feature map E(xs) and generates a source-to-target trans-
ferred image Gt(E(xs)) following target distribution with help of the target discriminator Dt ,
computing adversarial loss Ls ) t

adv based on LSGAN [29] for target domain,

Ls ) t
adv(E,G

t ,Dt ;X t ,X s) = Ext∼X t [(Dt(xt))2]+Exs∼Xs [(1−Dt(Gt(E(xs))))2] (2)

Here the domain-agnostic feature is learned by the confrontational constraints coming from
intra-domain reconstruction (pulling towards source) and cross-domain transfer (pulling to-
wards target) simultaneously.

At the same time, in the middle path of TridentAdapt, Φ is the task module which takes
encoded feature maps for semantic segmentation. By default we denote the output of Φ as
an upsampled probability map which has been processed through softmax operation. As
ground truth is known for each xs, during training we minimize the cross entropy loss Ls

seg
using source prediction Φ(E(xs)) under the supervision of ys:

Ls
seg(E,Φ;X s,Y s) =−E(xs,ys)∼(Xs,Y s) ∑

h,w,c
ys
(h,w,c) log(Φ(E(xs)))(h,w,c) (3)

Here c is the number of semantic classes. Since E also serves as feature extractor for
Φ, semantic information will thus be incorporated into Gt to make it semantic-aware while
generating Gt(E(xs)).

On the other way round, if E receives an image xt from target domain dataset (unla-
belled), following a symmetric data flow, the confrontational constraints on feature map
E(xt) can be computed similar to Eq. (1) and Eq. (2) to obtain Lt

rec and Lt )s
adv respectively.

In the above procedure, based on input data domain, Gs and Gt are updated according
to a role-switching mechanism, e.g., during training Gs is always an image decoder from
perspective of xs but is adopted as image translator for xt . By switching the role of the gener-
ators according to the switch of input data, our framework guarantees that Gs only produces
source images, Gt purely outputting target images regardless of the input data domains. In
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this way, for example, when Gs is used to reconstruct xs, it learns how ‘real’ source data dis-
tribution should be reflected on its output, and this knowledge is expected to provide weak
guidance to fine-tune itself when it takes the next role as image translator for xt to generate
a ‘fake’ source image Gs(E(xt)), contributing to reinforced target to source transfer.

3.2 Self-induced Cross-domain Augmentation
The shared trident-like design of our framework allows us to utilize its own outputs to en-
hance the learning of domain-invariance in a self-served manner. We introduce a backward
loop where the self-induced cross-domain augmented views Gt(E(xs)) and Gs(E(xt)) are
fed to E. As those views never appear in training set but they resemble cross-domain data
distributions, such that E receives a broader coverage of input data. In this way, the aug-
mented views that are self-induced on-the-fly during each iteration can provide a smooth
transition to bridge the domain gap between source and target domains. To enable this, we
introduce semantic consistency(SC) loss LSC to force the encoder to consider each input and
its cross-domain version semantically identical.

Specifically, we take the semantic features from an intermediate layer of the segmenta-
tion network Φ, which is divided into 2 blocks Φ = {Φ f ,Φs}. Now for each domain we
obtain one feature pair, i.e., Φ f (E(xs)) and Φ f (E(Gt(E(xs)))) for source, Φ f (E(xt)) and
Φ f (E(Gs(E(xt)))) for target. Minimizing the feature distance of each pair, we compute:

Ls
SC(E,Φ f ,Gs;X s) = Exs∼Xs [||Φ f (E(Gt(E(xs))))−Φ f (E(xs))||1] (4)
Lt

SC(E,Φ f ,Gt ;X t) = Ext∼X t [||Φ f (E(Gs(E(xt))))−Φ f (E(xt))||1] (5)

In addition, for each input and its generator outputs, we add a VGG-based perceptual
loss [19] which is widely adopted for training image-to-image translation models, maintain-
ing feature-level structure between input and output images. We get Lsrec,s

percep, Ls )t,s
percep, Ltrec,t

percep
and Lt )s,t

percep based on L1-metric following exactly [19].
Since E is shared across Gs, Gt and Φ, with Ls

SC and Lt
SC we also improve Gs and Gt to

carry higher-level semantic information. We choose Φ f instead of E bottleneck features, as
it contains richer task-specific information.
Augmented Semantic Segmentation. For further fine-tuning the segmentation head using
source-to-target augmented view, we let Gt(E(xs)) share the same ground truth ys, computing
another supervised segmentation loss Ls ) t

seg similar to Eq. (3). Thus, Φ gradually adapts itself
to images which display target domain characteristics.
Self-training. Although ground-truths for target domain are missing, the above training
steps can still provide large support for learning domain-invariance to improve segmentation
performance on target domain. Therefore, we first train our framework for a warming-up
stage which is referred to as ‘stg1’. Thereafter for target domain dataset we perform pseudo-
labelling [25] offline based on predictions of Φ (class-wise median probability as threshold)
to acquire a set of pseudo-labels Ŷ t , with which we go for a self-training phase ’stg2’.

Upon the acquisition of Ŷ t , we are able to enhance segmentation for target domain data
simply by adding loss L̂t

seg during each training iteration,

L̂t
seg(E,Φ;X t ,Ŷ t) =−E(xt ,ŷt )∼(X t ,Ŷ t ) ∑

h,w,c
ŷt
(h,w,c) log(Φ(E(xt)))(h,w,c) (6)

Similarly, we also fine-tuned the segmentation head further by computing L̂t )s
seg using the

self-induced target-to-source view Gs(E(xt)) which enjoys the same pseudo-label.
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3.3 Full objective
We denote N as the set of names for all above losses, summing up all of which formulates
our full objective for training TridentAdapt:

LTridentAdapt = ∑
i∈N

λiLi (7)

4 Experiments and Discussion
In this section, we provide our experimental setups and report our results on benchmark
datasets for comparison with state-of-the-art methods.

4.1 Datasets and Implementation Details
For target domain we adopt Cityscapes dataset [8] containing 2975 annotated street scene
images with 2048× 1024 resolution (annotations excluded during training) and 500 im-
ages for validation, and we consider for source domain the GTA5 dataset [35] consisting
of 24,966 annotated images with 1914× 1052 resolution taken from game engine, as well
as SYNTHIA-RAND-CITYSCAPES dataset [37] consisting of 9,400 images of 1280×760
resolution with fine-grained segmentation labels.

We implement TridentAdapt with Pytorch [34] on an NVIDIA Quadro RTX 8000 with 48
GB memory, of which around 37 GB will be taken when running our training scripts. For all
experiments we use pretrained ResNet-101 [14] as backbone feature extractor to initialize
encoder E and adopt Deeplab-V2 [4] for segmentation network Φ. During training, we
first resize source input images to 1280× 720 resolution and target images to 1024× 512
resolution but take 512× 256 random crops for both domains in each training iteration.
We train our framework using batch size 4 and set the max training iteration number to
2.5× 105 (Though the model performs equally well even before 2× 105 iterations). We
use the SGD [36] optimizer with a default learning rate of 2.5× 10−4 for E and Φ, and
Adam [23] optimizers for Gs,Gt with default learning rate 1.0× 10−3 but 1.0× 10−4 for
Ds,Dt . Polynomial decay policy is applied to all learning rates. We set momentum to 0.9
and 0.99. For evaluation on target validation set we upsample the segmentation predictions
to the full resolution of Cityscapes [8] dataset.

Notice that for the first 3500 iterations in ‘stage 1’ we detach feature maps from E before
passing to Gs and Gt , aiming to let them warm up and not to deteriorate the pretrained
encoder E in the initial training stage. Starting from the 5000th iteration we take source-
to-target transferred images to compute segmentation loss and all cross-domain augmented
images to compute semantic consistency losses as they look realistic enough.

We adopt multi-scale discriminator architecture for Ds and Dt following [18]. During
training, we weight the losses with different hyperparameters, here empirically we set λ s

rec =
λ t

rec = 1, λ s ) t
adv = λ t )s

adv = 0.1, λ s
sc = λ t

sc = 0.1, λ s
seg = λ s ) t

seg = 1, λ̂ t
seg = λ̂ t )s

seg = 0.75, λ
srec,s
percep =

λ
trec,t
percep = 0.5, λ

s )t,s
percep = λ

t )s,t
percep = 0.25.

4.2 Comparison with State of the Art
Our TridentAdapt approach shows leading performance among the state-of-the-art meth-
ods on GTA5-to-Cityscapes adaptation presented in Table 1, achieving 53.3 mIoU. More-
over, our approach outperforms other methods by considerable margins on many challenging

7

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Richter, Vineet, Roth, and Koltun} 2016

Citation
Citation
{Ros, Sellart, Materzynska, Vazquez, and Lopez} 2016

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2017{}

Citation
Citation
{Robbins and Monro} 1951

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Huang, Liu, Belongie, and Kautz} 2018



classes (e.g., pole, traffic light, trafic sign, person, rider, motorcycle, etc.). Fig. 3 visually
presents examples of the segmentation results by TridentAdapt. On Synthia-to-Cityscapes
adaptation in Table 2, we also achieved state-of-the-art results, being superior to other meth-
ods in segmenting cars, buses, etc. Our framework is compatible with other data augmenta-
tion techniques such as [51] and [31] to achieve better results (See Supplementary Sec.4).

4.3 Ablation study
In this section, we investigate the effectiveness of TridentAdapt components. In rows 1-
8 of Table 3, we add each component at a time to show the performance of segmentation
task on GTA5-to-Cityscapes adaptation. The 1st row stands for training with source only
data, whereas the 2nd row is our baseline which is taken from [42]. The 3rd row shows
that training with Gs &Gt will bring confrontational constraints (described in Sect. 3.1) to E
to learn feature domain-invariance, yielding a performance increase of 0.7 over the baseline,
and adding VGG perceptual losses in row 4 gives 0.3 improvement. In the 5th row, involving
self-induced cross-domain augmentations (described in Sect. 3.2) to computeLs

sc &Lt
sc leads

to a performance boost to 44.6 mIoU, which suggests that domain gap can be bridged by our
self-induced augmentations, widening input coverage in domain level. By introducing Ls ) t

seg
to the previous setup (5th row) for fine-tuning φ brings another performance gain of 1.9
mIoU as can be seen in 6th row. Note that the result seen in 6th row, which totally relies on
adversarial learning for domain adaptation, already outperforms some existing self-training
based approaches [7, 12, 32, 56]. Finally, adding pseudo-labelling by computing L̂t

seg, L̂t )s
seg

leads to the best performance in 8th row, which increases mIoU from 46.5 to 53.3. This
is conceivable since E is shared across Gs, Gt and Φ, any improvement on E means other
modules can benefit as well, thus enhancing the learning objectives among each other. Row
9 indicates that training without looping back our self-induced augmentations will lead to
a performance drop from 53.3 to 47.6. Overall, this analysis shows how all the considered
components are relevant in our proposal.

Figure 3: Qualitative results of GTA5-to-Cityscapes adaptation on Cityscapes validation
set. Columns from left to right are: target domain inputs; ground-truth labels; segmentation
predictions of source-only model; segmentation predictions of TridentAdapt.

4.4 Learning Domain-invariance
We show empirically that the shared encoder E reduces the domain gap at feature-level
by visualizing the Φ f feature-map distribution (described in Sect. 3.1) and projecting the
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mIoU
Source-only [42] 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
AdaptSeg [42] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
ADVENT [44] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.4
SSF-DAN [12] 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4

CRST [57] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
PyCDA [26] 90.5 36.3 84.4 32.4 28.7 34.6 36.4 31.5 86.8 37.9 78.5 62.3 21.5 85.6 27.9 34.8 18.0 22.9 49.3 47.4

BDL [25] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
IntroDA [32] 90.6 36.1 82.6 29.5 21.3 27.6 31.4 23.1 85.2 39.3 80.2 59.3 29.4 86.4 33.6 53.9 0.0 32.7 37.6 46.3

TIR [22] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2
SAIT [30] 91.2 43.3 85.2 38.6 25.9 34.7 41.3 41.0 85.5 46.0 86.5 61.7 33.8 85.5 34.4 48.7 0.0 36.1 37.8 50.4

TridentAdapt 91.3 51.5 86.4 38.8 36.4 42.3 45.4 42.0 86.6 36.4 84.3 67.7 42.8 89.1 41.7 38.2 20.6 40.3 30.7 53.3

Table 1: GTA5-to-Cityscapes adaptation results. we compare our model performance with
state-of-the-art methods which are trained with ResNet-101 [14] and Deeplab-V2 [4]
based models. In all the tables of Sect. 4, bold stands for best, and underline for second-best.
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mIoU mIoU?

Source-only [42] 55.6 23.8 74.6 - - - 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 - 38.6
AdaptSeg [42] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7
ADVENT [44] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0
SSF-DAN [12] 84.6 41.7 80.8 - - - 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 - 50.0

CRST [57] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
PyCDA [26] 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 85.0 64.1 25.4 85.0 45.2 21.2 32.0 46.7 53.3

BDL [25] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
IntroDA [32] 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

TIR [22] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3
SAIT [30] 87.7 49.7 81.6 - - - 19.3 18.5 81.1 83.7 58.7 31.8 73.3 47.9 37.1 45.7 - 55.1

TridentAdapt 89.5 51.9 79.1 7.3 1.1 34.3 15.2 25.8 80.4 88.0 57.3 19.2 87.5 52.2 18.6 42.1 46.8 54.4

Table 2: Synthia-to-Cityscapes adaptation results. mIoU, mIoU? refer to 16-class and 13-
class experiment settings, respectively.

high dimensional features class-wise on a 2D-space using the t-SNE [43] algorithm. We
compare the class-wise feature distributions before adaptation (source-only model) and after
adaptation (TridentAdapt). In addition to the visualization we compute for each class the
Cluster-Center-Distance (CCD) bewteen source and target feature vectors. Fig. 4 illustrates
the analysis on GTA5-to-Cityscapes adaptation for four different classes (road, sidewalk,
wall, and person). From road, sidewalk and wall classes we can clearly see the source and
target domain features of the source-only model are building two different clusters, which
are perfectly separable. In comparison, however, we can see that our TridentAdapt model is
able to narrow the feature-distribution gap for these classes and can reduce the CCD drasti-
cally. For person class, although the features of source-only model are not as fully separable
as in previous examples, nevertheless by comparing the CCD we can also confirm that Tri-
dentAdapt reduces the domain gap at feature level. This analysis implies that the proposed
TridentAdapt approach enforces the shared encoder to produce domain-invariant features,
such that the cross-domain discrepancy between source and target input data is reduced.

4.5 Modelling source and target distributions
We demonstrate experimentally the visibility of employing our proposed semantic-aware
generators to model source and target distributions, therefore placing strong domain-specific
constraints to the shared encoder in achieving domain-invariance and providing substantial
support for bridging domain gap when introduced into a backward loop. We first evaluate the
target-to-source image translation performance on Cityscapes validation set. Specifically, we
compare CycleGAN [53] and TridentAdapt translated images by passing them to a source-
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configuration mIoU
1. X s,Y s [42] 36.6
2. +X t [42] 42.4
3. +Gs &Gt 43.1
4. +Lpercep 43.4
5. +Ls

sc &Lt
sc 44.6

6. +Ls ) t
seg (stg1) 46.5

7. +L̂t
seg 51.8

8. +L̂t )s
seg (stg2) 53.3

9.
−Ls

sc & Lt
sc

−L̂t )s
seg −Ls ) t

seg
47.6

Table 3: Ablation Study
on GTA5-to-Cityscapes
adaptation

(SO-CCD=0.44, TA-CCD=0.08) (SO-CCD=0.43, TA-CCD=0.16) (SO-CCD=0.30, TA-CCD=0.17) (SO-CCD=0.02, TA-CCD=0.008)
(a) Road (b) Sidewalk (c) Wall (d) Person

Figure 4: Class-wise t-SNE [43] visualization: GTA5 features
(red) vs. Cityscapes features (blue). From top to bottom: source
only (SO-CCD) before adaptation and TridentAdapt model (TA-
CCD) after adaptation.

Translation Model mIoU ∆

Source-only (ours) 31.5 -
CycleGAN (T2S ‘validate’) 35.8 +4.3

TridentAdapt (T2S ‘validate’) 38.6 +7.1
CycleGAN (S2T ‘train’) 39.3 +7.8

TridentAdapt (S2T ‘train’) 44.5 +13.0

Table 4: Quantitative comparison of image
translation results for semantic segmenta-
tion.

Figure 5: Visual comparison of image transla-
tion results. From left to right: input, Cycle-
GAN and TridentAdapt output.

only (GTA5) segmentation model, which is, for fair comparison, trained using our configu-
rations (e.g., batch size, crop size, augmentations) as in TridentAdapt. We observe in Table
4 that our source-like images achieve a 7.1 gain in mIoU over non-translated Cityscapes
validation images, outperforming CycleGAN result also by a large margin. To evaluate our
target generator Gt , we train a segmentation model sorely on our source-to-target translated
GTA5 images, computed mIoU of the trained model on Cityscapes validation set, and com-
pared with the result of CycleGAN [53]. Interestingly, this improves the source-only model
result by 13.0 in mIoU and outperforms CycleGAN [53] by 5.2. Fig. 5 visually reveals
that TridentAdapt better preserves semantic contents (e.g., distant vegetation and vehicles)
during translation. Therefore we conclude that generators of TridentAdapt are effective for
modelling domain data distributions, which is beneficial to the subsequent tasks for learning
domain-invariance.

5 Conclusion

We propose TridentAdapt, a trident-like architecture for domain adaptation including a source
module and a target module which simultaneously imposes confrontational constraints on the
shared feature encoder. We present a novel framework which produces self-induced cross-
domain augmentations during the forward pass to further reduce domain gap. Experimental
results show SOTA semantic segmentation performance on target domain data.
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