
ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD 1

On Automatic Data Augmentation for 3D
Point Cloud Classification
Wanyue Zhang∗

wzhang@mpi-inf.mpg.de

Xun Xu†

xux@i2r.a-star.edu.sg

Fayao Liu
liu_fayao@i2r.a-star.edu.sg

Le Zhang‡

zhangleuestc@gmail.com

Chuan-Sheng Foo
foo_chuan_sheng@i2r.a-star.edu.sg

Institute for Infocomm Research
A*STAR, Singapore

Abstract

Data augmentation is an important technique to reduce overfitting and improve learn-
ing performance, but existing works on data augmentation for 3D point cloud data are
based on heuristics. In this work, we instead propose to automatically learn a data aug-
mentation strategy using bilevel optimization. An augmentor is designed in a similar
fashion to a conditional generator and is optimized by minimizing a base model’s loss on
a validation set when the augmented input is used for training the model. This formula-
tion provides a more principled way to learn data augmentation on 3D point clouds. We
evaluate our approach on standard point cloud classification tasks and a more challenging
setting with pose misalignment between training and validation/test sets. The proposed
strategy achieves competitive performance on both tasks and we provide further insight
into the augmentor’s ability to learn the validation set distribution.

1 Introduction

Understanding 3D point clouds is crucial to a wide range of applications including au-
tonomous driving, robotics and human-computer interaction. Recent progress in this area
is attributed to training deep neural networks on labeled data [22, 23]. In order to increase
the diversity of training data to aid generalization, data augmentation has been used in the
training of neural networks for 3D point clouds to much success [3, 12, 33]. Current data
augmentation methods for point clouds can be broadly classified into heuristic methods and
learning-based methods. In the former category, mixup [3, 10, 32] between multiple shapes
is often used to synthesize novel training examples. Despite being able to provide consistent

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

† Correspondence to Xun Xu. ∗ Wanyue Zhang is now with the Max Planck Institute for Informatics. ‡ Le
Zhang is now with the University of Electronic Science and Technology of China.

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017{}

Citation
Citation
{Chen, Hu, Gavves, Mensink, Mettes, Yang, and Snoek} 2020

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

Citation
Citation
{Zhang, Chen, Ouyang, Liu, Zhu, Chen, Meng, and Wu} 2021

Citation
Citation
{Chen, Hu, Gavves, Mensink, Mettes, Yang, and Snoek} 2020

Citation
Citation
{Lee, Lee, Lee, Lee, Lee, Woo, and Lee} 2021

Citation
Citation
{Zhang, Cisse, Dauphin, and Lopez-Paz} 2017

2 ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD

performance improvements, potentially due to stronger regularization with label smoothing,
the data sample after mixup often does not resemble a realistic object. For instance, when
applied to a plane and a car, mixup does not yield a semantically meaningful object; the rea-
son behind the success of mixup remains unclear. Learning-based augmentation methods,
on the other hand, automatically learn an augmentation strategy instead of hand-engineering
one. PointAugment [12] trains a neural network as the augmentor to predict the rotation and
additive jittering parameters for each sample. A heuristic learning objective encouraging
augmented samples to be different from the original is used to update the parameters of the
augmentor. While PointAugment has showed improved performance over baseline methods,
its learning objective does not necessarily guarantee that the augmented sample will benefit
the main task.

By contrast, in the image domain, recent automatic data augmentation methods adopt a
bilevel optimization framework [6, 13, 14] where the learnt augmentation strategy minimizes
a base model’s loss on validation data while the model is trained using this strategy. Solv-
ing the bilevel optimization problem then involves iterating between training the base model
and updating augmentation policies. Inspired by the recent success of bilevel optimization
for automatic data augmentation on images [13, 14], we propose a novel 3D point cloud
augmentation method, Automatic data augmentation for 3D Point Cloud data (AdaPC). We
define the augmentation procedure as sampling from a sequence of transformation opera-
tions each parameterized by a distribution, then apply the transformations to each training
sample. To allow for a high degree of flexibility for augmentation, we use a neural network
termed as the augmentor to model such distributions. The augmentor parameters are then
learned using a bilevel optimization framework by minimizing a base classifier’s loss on vali-
dation data when the model is trained using the augmentor. For computational efficiency, the
hypergradients, i.e the gradients of the augmentor parameters w.r.t. the validation loss, are
approximated by a one-step unrolling algorithm [15] and augmentor parameters are updated
with gradient descent.

AdaPC has several advantages over existing methods for data augmentation on 3D point
clouds. First, compared to heuristic approaches [3, 33], AdaPC is able to learn the opti-
mal augmentation for a particular dataset as it directly minimizes the validation loss, while
heuristic approaches may only work well in certain cases and require extensive manual hy-
perparameter tuning. Second, compared to PointAugment [12], AdaPC optimizes the aug-
mentor in the direction that minimizes validation error which makes it more likely to gen-
eralize to test data. More importantly, if the training set distribution does not exactly match
that of the validation/test set (e.g. due to pose mismatch), AdaPC can learn to bridge the gap
by capturing any misalignment with the augmentor; we demonstrate that AdaPC is indeed
superior in an experimental setup with non-fixed pose. Insight into the effectiveness of the
augmentor is also provided by analyzing the distributions learnt by the augmentor.

We summarize the contributions of this work below:

• We propose an automatic data augmentation method for 3D point cloud classification
by training the augmentor and classifier jointly through bilevel optimization. Com-
pared to existing augmentation methods on 3D point clouds, we provide a more prin-
cipled way for learning data augmentation strategies.

• We achieve superior results on two standard 3D point cloud classification benchmarks
compared to other data augmentation methods.

• We demonstrate that our augmentor is able to learn meaningful augmentation policies

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

Citation
Citation
{Cubuk, Zoph, Mane, Vasudevan, and Le} 2018

Citation
Citation
{Li, Hu, Wang, Hospedales, Robertson, and Yang} 2020{}

Citation
Citation
{Lim, Kim, Kim, Kim, and Kim} 2019

Citation
Citation
{Li, Hu, Wang, Hospedales, Robertson, and Yang} 2020{}

Citation
Citation
{Lim, Kim, Kim, Kim, and Kim} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2018

Citation
Citation
{Chen, Hu, Gavves, Mensink, Mettes, Yang, and Snoek} 2020

Citation
Citation
{Zhang, Chen, Ouyang, Liu, Zhu, Chen, Meng, and Wu} 2021

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD 3

when there is a pose mismatch between training and validation/test sets and provide
insight into the distribution of augmentation learned under this scenario.

2 Related work

2.1 Data Augmentation for 3D Point Clouds
Deep learning methods for 3D point clouds [2, 21, 22, 23, 25] commonly incorporate small
perturbations such as scaling, jittering, point dropout, flipping and rotation to enhance the
diversity of the training set. Recently, more sophisticated data augmentation strategies have
been studied. Inspired by the success of mixing up images as augmentation [27, 32], Point-
MixUp [3] proposed to interpolate two point clouds by finding a shortest path between the
two shapes on the manifold. PointCutMix [33] further extended CutMix [31] by first find-
ing correspondences between 2 point clouds and then swapping selected regions. Despite
demonstrating improvements on standard point cloud datasets, both works are based on
heuristics and do not explain the success of the proposed methods. Orthogonal to heuris-
tic augmentation strategies, PointAugment [12] formulates augmentation as learning an aug-
mentor which is reminiscent of PointNet. However, it employs a hand-engineered adversarial
loss function to train the augmentor which does not necessarily guarantee that the learned
augmentation is beneficial and often leads to unstable results. For 3D object detection, PA-
AUG [5] divides object bounding boxes into fixed partitions and stochastically applies 5
basic transformations such as noise, points dropout, sampling, cutmix [31], cutmixup [30].
Progressive population based augmentation (PPBA) [4] uses evolutionary search to narrow
down the search space of optimal augmentation policies. In this work, we propose to for-
mulate learning data augmentation in a more principled way. The base model’s loss on a
validation set is exploited to guide the learning of augmentation strategies that results in
improved performance and better generalization to more challenging scenarios.

2.2 Automatic Data Augmentation
Hand-crafted augmentation rules can be ineffective in selecting the optimal combination of
augmentation policies as well as their magnitudes. SmartAugment [11] tackles the prob-
lem by training an augmentor to combine samples from the same class alongside the target
network. There is also a line of GANs-based approaches [1, 19, 20, 24] which generate
augmented samples according to the feedback from the main task. Another class of meth-
ods learns an augmentation strategy based on the validation set. AutoAugment [6] adopts
reinforcement learning (RL) to select augmentation policies which improve validation accu-
racy. RandAugment [7] eliminates the search phase used by previous automatic augmenta-
tion methods and conducts a grid search to find the augmentation policies. In light of slow
convergence of RL-based approaches, FastAutoAugment [14] uses Bayesian optimization
to efficiently learn augmentation strategies. DADA [13] further boosted efficiency by in-
troducing a gradient-based policy searching paradigm and employed bilevel optimization to
update augmentation policies. DABO [18] proposed a differentiable augmentor which is ca-
pable of generating affine and color transformations. MetaMixUp [16] focused on finding a
dynamic and adaptative interpolation ratio in an online fashion. In this work, we take a sim-
ilar approach to optimize the augmentor based on the validation performance using bilevel
optimization. For computational efficiency, the hypergradients are approximated using the
algorithm described in [15].

Citation
Citation
{Atzmon, Maron, and Lipman} 2018

Citation
Citation
{Phan, Leprotect unhbox voidb@x protect penalty @M {}Nguyen, Nguyen, and Bui} 2018

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017{}

Citation
Citation
{Thomas, Qi, Deschaud, Marcotegui, Goulette, and Guibas} 2019

Citation
Citation
{Verma, Lamb, Beckham, Najafi, Mitliagkas, Lopez-Paz, and Bengio} 2019

Citation
Citation
{Zhang, Cisse, Dauphin, and Lopez-Paz} 2017

Citation
Citation
{Chen, Hu, Gavves, Mensink, Mettes, Yang, and Snoek} 2020

Citation
Citation
{Zhang, Chen, Ouyang, Liu, Zhu, Chen, Meng, and Wu} 2021

Citation
Citation
{Yun, Han, Oh, Chun, Choe, and Yoo} 2019

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

Citation
Citation
{Choi, Song, and Kwak} 2020

Citation
Citation
{Yun, Han, Oh, Chun, Choe, and Yoo} 2019

Citation
Citation
{Yoo, Ahn, and Sohn} 2020

Citation
Citation
{Cheng, Leng, Cubuk, Zoph, Bai, Ngiam, Song, Caine, Vasudevan, Li, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

Citation
Citation
{Lemley, Bazrafkan, and Corcoran} 2017

Citation
Citation
{Antoniou, Storkey, and Edwards} 2017

Citation
Citation
{Mun, Park, Han, and Ko} 2017

Citation
Citation
{Perez and Wang} 2017

Citation
Citation
{Tanaka and Aranha} 2019

Citation
Citation
{Cubuk, Zoph, Mane, Vasudevan, and Le} 2018

Citation
Citation
{Cubuk, Zoph, Shlens, and Le} 2020

Citation
Citation
{Lim, Kim, Kim, Kim, and Kim} 2019

Citation
Citation
{Li, Hu, Wang, Hospedales, Robertson, and Yang} 2020{}

Citation
Citation
{Mounsaveng, Laradji, Benprotect unhbox voidb@x protect penalty @M {}Ayed, Vazquez, and Pedersoli} 2021

Citation
Citation
{Mai, Hu, Chen, Shen, and Shen} 2021

Citation
Citation
{Liu, Simonyan, and Yang} 2018

4 ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD

Inner Loop Classifier

Augmentation
Hyperparameters

HypergradientsOuter Loop

augmentor

Figure 1: Bilevel optimization framework for automatic data augmentation. The solid red
arrow indicates a forward pass in the inner loop. The red dashed arrow indicates the up-
date path for outer loop optimization. We use the yellow dashed line to highlight that the
hypergradients are approximated instead of being computed by automatic differentiation.

3 Methodology
We first provide an overview of AdaPC in Fig. 1. During training, AdaPC iterates between
an inner loop and outer loop optimization. The inner loop optimization involves updating
the base classifier network f (·;Ω) by minimizing the training loss ltr. The forward pass
for inner loop optimization is indicated by the solid red arrow. The outer loop optimization
updates the data augmentation parameters (or hyperparameters) Φ. Since the validation loss
lval(Ω

∗(Φ)) implicitly depends on Φ, we approximate the hypergradients following [15].
The outer loop update path is indicated by the red dashed arrows. In the following section,
we first introduce our bilevel optimization framework in Sect. 3.1 followed by the specific
designs of the augmentor in Sect. 3.2

3.1 Learning Data Augmentation with Bilevel Optimization
We introduce the bilevel optimization framework for learning data augmentation. We define
the augmentation as a mapping g : X→ X̂ parameterized by Φ (the augmentation hyper-
parameters), which is to be learned. This augmentation often involves randomness with
instantiations explained in Sect. 3.2. Let Dtr = {Xtr,ytr} and Dval = {Xval ,yval} denote
training and validation sets, f : X→ y parameterized by Ω denote the classification network,
lval(Ω;Dval) =

1
|Dval | ∑Xi,yi∈Dval

CE(f (Xi;Ω),yi) denote the validation loss and ltr(Ω,Φ;Dtr)

denote the training loss. Since augmentation is turned off during validation, lval does not ex-
plicitly depend on Φ. We now formally write the bilevel optimization objective in Eq. 1
where the left problem is often called the outer loop and the right problem is the inner loop.

min
Φ

lval(Ω
∗(Φ);Dval), s.t. Ω

∗(Φ) = argmin
Ω

ltr(Ω,Φ;Dtr) (1)

The above objective aims to find the optimal augmentation hyperparameters Φ such that
when the model is trained with Φ (to obtain model parameters Ω∗) its loss on the validation
data is minimized. If we assume that the validation set has the same distribution as the
test set, this formulation is more principled than PointAugment [12] in guaranteeing better
generalization. Similar optimization problems have been formulated for neural architecture
search [15] and automatic data augmentation [13]. Solving the inner loop until convergence
(training the model to convergence) followed by updating the outer loop leads to a very

Citation
Citation
{Liu, Simonyan, and Yang} 2018

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

Citation
Citation
{Liu, Simonyan, and Yang} 2018

Citation
Citation
{Li, Hu, Wang, Hospedales, Robertson, and Yang} 2020{}

ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD 5

inefficient optimization paradigm as the inner loop usually takes many steps to converge.
We therefore instead used a more efficient approximation algorithm proposed in [15].

Let ξ denote the learning rate for the inner loop optimizer. One step of gradient descent
on the classification network parameters can then be written as Ω

′
= Ω− ξ ∇Ωltr(Φ). By

approximating the best response (optimal) model parameters Ω∗ to hyperparameters Φ with
parameters obtained from one step of gradient descent Ω′, we obtain approximate hypergra-
dients using the chain rule as follows:

∇Φ lval(Ω
∗(Φ))≈ ∇Φ lval(Ω

′
(Φ)) =−ξ ∇

2
Φ,Ωltr(Ω,Φ)∇

Ω
′ lval(Ω

′
) (2)

We further use a central finite difference to approximate the Hessian-vector product. Let
ε be a small perturbation, Ω+ = Ω+ ε∇Ω

′lval(Ω
′) and Ω− = Ω− ε∇Ω

′lval(Ω
′). Then,

−ξ ∇
2
Φ,Ωltr(Ω,Φ)∇

Ω
′ lval(Ω

′
)≈−ξ

∇Φltr(Ω+,Φ)−∇Φltr(Ω−,Φ)

2ε
. (3)

We follow DARTS [15] to set ξ to the learning rate of the classifier and ε to 0.01
‖∇Ω

′ lval(Ω
′
)‖

.
Since the hypergradients tend to be noisy if the hyperparameters are initialized far from a
local optimum, we include an L2 regularization term, lreg = ‖Θ− Θ̂‖2

2, to the output of the
augmentation network to smooth the hypergradients. Prior knowledge Θ̂ about the hyperpa-
rameters can be incorporated using this regularizer, e.g. for scaling, θ̂ = 1 and for rotation,
θ̂ = 0. Overall, the final hypergradients with regularization are given by Eq. 4 where λ is
the weight of the regularization term, and the training procedure is presented in Algo. 1.

∇Φlval(Ω
∗(Φ))≈−ξ ∇

2
Φ,Ωltr(Ω,Φ)∇

Ω
′ lval(Ω

′
)+2λ (Θ− Θ̂) (4)

Algorithm 1: Algorithm for learning model weights Ω and augmentor weights Φ

Initialize classifier weights Ω and augmentor hyperparameters Φ;
while not converged do

One-step inner loop update Ω′ = Ω−ξ ∇Ωltr(Φ);
One-step outer loop update Φ′ = Φ−α∇Φlval(Ω

′
(Φ)) ;

Update classifier weights Ω = Ω−ξ ∇Ωltr(Φ
′
)$

end
return Ω,Φ

3.2 Augmentation Operations

In this section, we introduce the design of an augmentor which can be easily incorporated
into the bilevel optimization framework. Inspired by recent studies into deep learning on 3D
point clouds [12], we apply two types of augmentation operations. First, we apply a point-
wise jittering J ∈ RN×4 (in homogeneous coordinates) which can be seen as a deformation
of the original 3D shape. To limit the learnable parameters for jittering, we sample jittering
from a uniform distribution U(θJ ,θJ +υ) where θJ is a learnable parameter and υ determines
a fixed range. Then, we further apply a rigid transformation, represented in homogeneous
coordinates as H ∈ R4×4 to the perturbed 3D shape. Instead of directly regressing a trans-
formation matrix like PointAugment, we parameterize H = T ·R · S where R is a rotation
matrix parameterized by θr ∈ R1, S is a scaling matrix parameterized by θs ∈ R3 and T is
a translation matrix parameterized by θt ∈ R3. Such a decomposition allows the augmentor

Citation
Citation
{Liu, Simonyan, and Yang} 2018

Citation
Citation
{Liu, Simonyan, and Yang} 2018

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

6 ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD

to directly regress individual parameters; as a result we can easily apply regularization to in-
dividual operations and each operation can be randomly dropped out to create more diverse
augmentations. In contrast, it is difficult to incorporate explicit regularization when directly
regressing onto H. For brevity, we denote Θ = [θJ ,θr,θs,θt] ∈ R8 and the transformation
operation is described by Eq. 5 as follows:

t(X;Θ) = (X+J(Θ)) ·H(Θ)>. (5)

One approach to obtain Θ is to learn a fixed vector that applies to all training examples.
However, this does not allow randomness in the augmentation procedure. Another approach
is to model Θ using a parametric distribution p(Θ), e.g. Gaussian or uniform distribution,
which is easy to parameterize and sample from. For example, if a Gaussian distribution is
used, we parameterize it as θi ∼ N (µ,σ) where µ and σ are hyperparameters to optimize
and Ω = [µ,σ]. We discuss such augmentor designs in more detail in Section S1 of the
supplementary material. Despite being more flexible, it is not trivial to specify the most
appropriate distribution without any prior knowledge. To further increase the flexibility of
the distribution used to model Θ, we propose to use a neural network denoted as h(z;Φ),
as illustrated in Fig. 1. The neural network takes a random noise vector with components
sampled from a zero-mean, unit variance Gaussian distribution z ∼ N (0,1) and transforms
it into augmentation parameters Θ = h(z;Φ). This network is similar to a generator in a
GAN [9] which maps a simple distribution to a more complicated one. The generator is
trained by optimizing the performance on the validation set. Overall, the augmentor g(X;Φ)
can be seen as a conditional generator [17] and augmentation is regarded as a conditional
generative process.

4 Experiments
4.1 Datasets
We evaluate on ModelNet40 [29] for shape classification. It consists of 12311 CAD models
from 40 categories of which 9843 models are used for training and 2468 for testing. We use
a pre-processed dataset which contains uniformly sampled points from the mesh surfaces as
input to our network. Following the standard practice, we use 1024 points per shape.

To test the robustness of our method on objects cropped from real 3D scans, we use the
OBJ_ONLY variant provided by ScanObjectNN [26] without the background. OBJ_ONLY
contains objects with noisy surfaces of non-uniform density from 15 categories.

Our method requires a validation set which is not provided by the above 2 datasets.
Hence, we use 90% of the original training data as the new training data, and the remaining
10% as the validation data. To ensure a fair comparison with other methods, we randomly
re-split the training and validation set every epoch so that that our network has access to the
entire training data across epochs.

4.2 Implementation details
The initial learning rate for both classifier ξ and augmentor α are 0.001 with Adam optimizer
(β1 = 0.9, β2 = 0.999). The classifier learning rate is halved every 20 epochs. The classifier
and augmentor are updated every minibatch and we train for 300 epochs in total. We use a
batch size of 24 for PointNet and 12 for PointNet++ and DGCNN. The regularization weight
λ is a manually tunable hyperparameter. A proper selection of λ is vital to the stability of
training. We use λ = 0.5 for ModelNet40 and λ = 10.0 for ScanObjectNN. We use cross-
entropy loss for classification. We adopt other training practices from PointAugment for

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Mirza and Osindero} 2014

Citation
Citation
{Wu, Song, Khosla, Yu, Zhang, Tang, and Xiao} 2015

Citation
Citation
{Uy, Pham, Hua, Nguyen, and Yeung} 2019

ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD 7

fair comparison, e.g. adding a term to penalize the feature difference between the original
and augmented samples, apply dropout to the augmentation types and mix original data and
augmented data during training.

4.3 Automatic Augmentation for Classification

We first report results on standard benchmark datasets for classification on point clouds,
ModelNet40 and ScanObjectNN using PointNet as the backbone [22] in Tab. 1. We compare
the following approaches in this experiment. First, we evaluate three baseline methods with a
fixed predefined augmentor, referred to as Fixed Aug. in Tab. 1. Vanilla PointNet without any
augmentation, PointNet with predefined scaling and translation as augmentation, referred to
as Sampling-S,T in Tab. 1 and PointNet with predefined scaling, translation and rotation,
referred to as Sampling-S,T,R are respectively evaluated. For predefined scaling (S), we
adopt the practice in PointAugment [12] by randomly sampling from a uniform distribution
U(0.67,1.5). For predefined translation (T), we uniformly sample from U(−0.2,0.2). For
predefined rotation about the y-axis (Ry), we sample from N (0,0.062) with output clipped
at 0.18. For predefined jittering (J), we sample from N (0,0.012) with output clipped at
0.05. We further evaluate state-of-the-art point cloud data augmentation approaches, includ-
ing PointMixup [3] (PointMixup-Mixup) and PointAugment [12] (Sampling-S,T-PointAug.-
R,J). We notice from the released code that sampling from predefined scaling and translation
is adopted by PointAugment. Finally, we evaluate two variants of our proposed approach:
one that includes scaling, translation and rotation operations (AdaPC-S,T,R) and another that
further includes jittering (AdaPC-S,T,R,J).

We make the following observations from Tab.1. First, with predefined augmentation
strategies, classification performance is consistently improved compared to the baseline. The
improvement is more significant on the dataset scanned from the real world (ScanObjectNN).
This is partially explained by the increased diversity of data samples in the real-world dataset.
Second, when jittering is naively incorporated, performance drops on ScanObjectNN as seen
by comparing Sampling-S,T (80.20%) v.s. Sampling-S,T,J (76.93%). This is consistent
with many observations on data augmentation for 3D point clouds that jittering may not
be helpful. PointAugment managed to learn jittering policies with heuristic objectives but
still failed to improve over the baseline (Sampling-S,T) on ScanObjectNN. In contrast, with
a more principled augmentation objective, our AdaPC achieves the best performance on
both datasets with S,T,R. We would like to highlight that AdaPC’s 0.7% improvement over
PointAugment is non-trivial given the limited diversity and highly controlled setting of the
ModelNet40 dataset. When jittering is incorporated, AdaPC further improves on ScanOb-
jectNN. Finally, we evaluate AdaPC on two additional backbones, PointNet++ and DGCNN
and present results in Tab. 2. AdaPC achieves results superior to, if not comparable with, the
predefined augmentation baseline, PointMixup and PointAugment.

4.4 Classification under Non-Fixed Poses

In the previous setting, the poses of CAD models are all perfectly aligned, thus reducing
the effect of data augmentation. Thus, here we consider a more challenging scenario where
both training, validation and test data are not perfectly aligned and then investigate the effec-
tiveness of learning the augmentation. Since variations in scaling and translation can often
be eliminated by normalization, we consider rotation about the y-axis (gravity) only in this
experiment.

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

Citation
Citation
{Chen, Hu, Gavves, Mensink, Mettes, Yang, and Snoek} 2020

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

8 ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD

ModelNet40 ScanObjectNN

Predefined Aug. Learnable Aug. Test
Acc.

Test
Acc.

Method Ops Method Ops

E
xi

st
in

g
- - - - 89.58 77.96

Sampling S, T - - 90.55 80.20
Sampling S, T, R - - 90.51 77.96
Sampling S, T, J - - 90.88 76.93

PointMixup Mixup - - 89.90 -
Sampling S, T PointAug. R, J 90.90 79.34

O
ur

s - - AdaPC S, T, R 91.61 79.86
- - AdaPC S, T, R, J 90.80 81.75

Table 1: Results on 3D point cloud classification. Method and Ops indicate respectively the
method adopted for augmentation and the specific operations used for augmentation.

PointNet++ DGCNN

Predefined Aug. Learnable Aug. Test
Acc.

Test
Acc.

Method Ops Method Ops

- - - - 91.41 91.85
Sampling S, T, R - - 92.26 92.38

PointMixup Mixup - - 92.70 -
Sampling S, T PointAugment* R, J 92.82 92.70

- - AdaPC S, T, R 92.94 92.82

Table 2: Additional backbones on ModelNet40 (*for fair comparison, we report the repro-
duced results for PointAugment under the setting where batch size is 12 and Adam optimizer
is used.)

Concretely, we randomly rotate each example by sampling an angle θr ∼ N (1.0,0.22).
We compare AdaPC to vanilla PointNet without augmentation, PointNet using rotation aug-
mentation with angle θ ∼U(−δ ,δ) for several values of δ , PointAugment [12] (PointAug.-
R,J), a state-of-the-art SO(3) rotation invariant network VectorNeurons [8] and our final
model (AdaPC-S,T,R). The results are shown in Tab. 3. We observe that including augmen-
tation with a small rotation (δ = 0.1) increases baseline model test accuracy from 87.07%
(without augmentation) to 89.54%, while large rotations (δ = 3.14) harm performance;
our results suggest that including small pose perturbations is helpful for generalization.
PointAugment produces results close to the best manually defined augmentation but is still
outperformed by AdaPC. Finally, we observe a much weaker performance by VectorNeurons
despite its robustness to SO(3) rotation.

4.5 Pose Mismatch between Training and Testing

In this section, we simulate the challenging setting where there is a pose mismatch between
training and validation/testing sets, which may occur in practice as detecting and aligning
poses for 3D point clouds is a non-trivial task [28]. We rotate the test and validation sets
by 0.35/0.70/1.05/1.4 radians about the y-axis while the training set remains unchanged. We
note that the validation and test sets should be drawn from the same distribution for bilevel
optimization to work. Here we assume no prior knowledge on rotation angles and hence
remove the regularization term. We evaluate 4 methods in this experiment: 1) the “None”
baseline that does not apply any augmentation, 2) “Same rotation”, that applies the ground-
truth rotation to the training data and thus serves as an upper bound, 3) “Random rotation”,

Citation
Citation
{Li, Li, Heng, and Fu} 2020{}

Citation
Citation
{Deng, Litany, Duan, Poulenard, Tagliasacchi, and Guibas} 2021

Citation
Citation
{Wang, Sridhar, Huang, Valentin, Song, and Guibas} 2019

ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD 9

Augmentation Test
Acc.

Method Ops

- - 87.07
Sampling R (θr ∼ U(−0.05,0.05)) 89.42
Sampling R (θr ∼ U(−0.1,0.1)) 89.54
Sampling R (θr ∼ U(−0.17,0.17)) 88.81
Sampling R (θr ∼ U(−3.14,3.14)) 77.87
PointAug. R, J 89.54
VectorNeurons - 81.68
AdaPC S, T, R 90.92

Table 3: Classification results on Mod-
elNet40 under non-fixed poses.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Rotation angle about the y-axis (radians)

45

50

55

60

65

70

75

80

85

90

A
cc

u
ra

cy Same rotation (upper bound)

AdaPC

Random rotation

None

Figure 2: Test accuracy on Model-
Net40 at various test rotations

that applies a random rotation θr ∼ U(−3.14,3.14) to the training data, and 4) AdaPC with
only rotation augmentation. Fig. 2 shows the test accuracy on ModelNet40 at various rotation
angles. We see that AdaPC (green line) largely outperforms “Random rotation” and is always
much better than the no-augmentation “None” baseline.

We further provide insight into the distribution learned by the proposed augmentor by
visualizing the augmentor’s output distribution over the course of training in Fig. 3. At the
beginning, the augmentor’s output closely resembles a Gaussian distribution. However, as
training progresses, the mean of the augmentor distribution converges to the ground-truth
pose. The spread of the distribution at the best epoch suggests that randomness is essential
to the success of augmentation.

We also explored if the augmentor can be trained using a subset of the training data
and transferred to the full dataset under this setting, as this could accelerate training of the
augmentor. Results from this experiment are discussed in Section S2 of the supplementary
material and suggest the potential viability of such an approach.

A
ug

.O
ps

S - X - - - X X X
T - - X - - X X X
R - - - X - - X X
J - - - - X - - X

ModelNet40 89.58 90.19 90.15 90.15 89.82 90.84 91.61 90.80
ScanObjectNN 77.96 77.62 80.72 75.59 76.62 78.14 79.86 81.75

Table 4: Ablation study on individual augmentation operations.

4.6 Ablation Study
4.6.1 Different combinations of augmentation operations

Here we explore the effectiveness of various combinations of augmentation operations on
both ModelNet40 and ScanObjectNN datasets. From the results in Tab. 4.5, we see that us-
ing each of scaling, translation, rotation, and jittering alone outperforms the no-augmentation
baseline on ModelNet40, and that the best results are achieved by combining the first 3 types

10 ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD

0

100
Epoch 0 Epoch 50 Epoch 100 Best epoch

0

100

0

100

5 0 5
0

100

5 0 5 5 0 5 5 0 50.0 0.2 0.4 0.6 0.8 1.0
Rotation angle about the y-axis (radians)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Figure 3: Rotation distributions learned by the augmentor over training epochs. The
dashed black vertical line indicates the mean of the learned distribution and the red verti-
cal line indicates the ground-truth rotation applied to the test set. From top to bottom, a
0.35/0.70/1.05/1.4 radian rotation is respectively applied to the validation/test sets.

of augmentations (91.61% on ModelNet40). We observe a slight drop in performance on
ModelNet40 when further including jittering. One possible reason for this drop in perfor-
mance is that ModelNet40 consists of points uniformly sampled from CAD models that
are noise-free. Hence, training samples augmented with jittering deviate from the distribu-
tion of noise-free test samples, causing a drop in performance. In contrast, ScanObjectNN is
cropped from real-world scenes, thus shapes are naturally contaminated by noise and jittering
is more effective. Our observations suggest that research into domain-specific augmentation
strategies will be valuable.

5 Conclusion

Data augmentation plays an important role for deep learning on 3D point clouds. Different
from existing heuristic augmentation methods, we propose an automatic data augmentation
method, AdaPC, based on a more principled bilevel optimization framework. In AdaPC,
an augmentor network is used to predict transformation parameters for augmentation. This
augmentor is then learned by minimizing the validation loss. AdaPC achieved very com-
petitive results on two point cloud classification datasets. We also demonstrate that AdaPC
is effective in a pose mismatch scenario, where the mean of the learned augmentation dis-
tribution converged to the true pose. Our work suggests that future works on point cloud
augmentation should include evaluations on challenging real-world datasets and settings to
demonstrate the true value of data augmentation.

Acknowledgement: This research is supported by the Agency for Science, Technology and
Research, Singapore (A*STAR) under its Career Development Award (Grant No. 202D8243).
Discussions with Xiatian Zhu are gratefully acknowledged.

ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD 11

References
[1] Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation genera-

tive adversarial networks. arXiv preprint arXiv:1711.04340, 2017.

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural net-
works by extension operators. ACM Transactions on Graphics, 2018.

[3] Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes,
Pengwan Yang, and Cees GM Snoek. Pointmixup: Augmentation for point clouds.
In European Conference on Computer Vision, 2020.

[4] Shuyang Cheng, Zhaoqi Leng, Ekin Dogus Cubuk, Barret Zoph, Chunyan Bai, Jiquan
Ngiam, Yang Song, Benjamin Caine, Vijay Vasudevan, Congcong Li, et al. Improving
3d object detection through progressive population based augmentation. In European
Conference on Computer Vision, 2020.

[5] Jaeseok Choi, Yeji Song, and Nojun Kwak. Part-aware data augmentation for 3d object
detection in point cloud. arXiv preprint arXiv:2007.13373, 2020.

[6] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Au-
toaugment: Learning augmentation policies from data. In IEEE/CVF Conference on
Computer Vsion and Pattern Recognition, 2018.

[7] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practi-
cal automated data augmentation with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.

[8] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and
Leonidas Guibas. Vector neurons: A general framework for so (3)-equivariant net-
works. arXiv preprint arXiv:2104.12229, 2021.

[9] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C Courville, and Yoshua Bengio. Generative adversarial nets. In
NIPS, 2014.

[10] Dogyoon Lee, Jaeha Lee, Junhyeop Lee, Hyeongmin Lee, Minhyeok Lee, Sungmin
Woo, and Sangyoun Lee. Regularization strategy for point cloud via rigidly mixed
sample. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021.

[11] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning
an optimal data augmentation strategy. IEEE Access, 2017.

[12] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu. Pointaugment: an
auto-augmentation framework for point cloud classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[13] Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy Hospedales, Neil M Robertson,
and Yongxin Yang. Differentiable automatic data augmentation. In European Confer-
ence on Computer Vision, 2020.

12 ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD

[14] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast au-
toaugment. In Advances in Neural Information Processing Systems, 2019.

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture
search. In International Conference on Learning Representations, 2018.

[16] Zhijun Mai, Guosheng Hu, Dexiong Chen, Fumin Shen, and Heng Tao Shen.
Metamixup: Learning adaptive interpolation policy of mixup with metalearning. IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[17] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[18] Saypraseuth Mounsaveng, Issam Laradji, Ismail Ben Ayed, David Vazquez, and Marco
Pedersoli. Learning data augmentation with online bilevel optimization for image clas-
sification. In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, 2021.

[19] Seongkyu Mun, Sangwook Park, David K Han, and Hanseok Ko. Generative adver-
sarial network based acoustic scene training set augmentation and selection using svm
hyper-plane. Proc. DCASE, 2017.

[20] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classifi-
cation using deep learning. Convolutional Neural Networks Vis. Recognit, 2017.

[21] Anh Viet Phan, Minh Le Nguyen, Yen Lam Hoang Nguyen, and Lam Thu Bui. Dgcnn:
A convolutional neural network over large-scale labeled graphs. Neural Networks,
2018.

[22] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017.

[23] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural Information
Processing Systems, 2017.

[24] Fabio Henrique Kiyoiti dos Santos Tanaka and Claus Aranha. Data augmentation using
gans. arXiv preprint arXiv:1904.09135, 2019.

[25] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,
François Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable con-
volution for point clouds. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2019.

[26] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit
Yeung. Revisiting point cloud classification: A new benchmark dataset and classifica-
tion model on real-world data. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2019.

[27] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by
interpolating hidden states. In International Conference on Machine Learning, 2019.

ZHANG ET AL: AUTOMATIC DATA AUGMENTATION FOR 3D POINT CLOUD 13

[28] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and
Leonidas J. Guibas. Normalized object coordinate space for category-level 6d object
pose and size estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

[29] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015.

[30] Jaejun Yoo, Namhyuk Ahn, and Kyung-Ah Sohn. Rethinking data augmentation for
image super-resolution: A comprehensive analysis and a new strategy. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[31] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localiz-
able features. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019.

[32] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In International Conference on Learning Repre-
sentations, 2017.

[33] Jinlai Zhang, Lvjie Chen, Bo Ouyang, Binbin Liu, Jihong Zhu, Yujing Chen, Yanmei
Meng, and Danfeng Wu. Pointcutmix: Regularization strategy for point cloud classifi-
cation. arXiv preprint arXiv:2101.01461, 2021.

