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Abstract

Knowledge Distillation (KD) utilizes training data as a transfer set to transfer knowl-
edge from a complex network (Teacher) to a smaller network (Student). Several works
have recently identified many scenarios where the training data may not be available due
to data privacy or sensitivity concerns and have proposed solutions under this restrictive
constraint for the classification task. Unlike existing works, we, for the first time, solve
a much more challenging problem, i.e., “KD for object detection with zero knowledge
about the training data and its statistics”. Our proposed approach prepares pseudo-targets
and synthesizes corresponding samples (termed as “Multi-Object Impressions”), using
only the pretrained Faster RCNN Teacher network. We use this pseudo-dataset as a
transfer set to conduct zero-shot KD for object detection. We demonstrate the efficacy of
our proposed method through several ablations and extensive experiments on benchmark
datasets like KITTI, Pascal and COCO. Our approach with no training samples, achieves
a respectable mAP of 64.2% and 55.5% on the student with same and half capacity while
performing distillation from a Resnet-18 Teacher of 73.3% mAP on KITTI.

1 Introduction
Object detection has been an important and active area of research in the computer vision
community. It deals with assigning a class label and a bounding box to each object in a given
image. It is widely used across several applications. For example, in autonomous cars [6,
42] where correctly localizing the traffic signals, signboards, pedestrians, etc., is crucial to
avoid accidents. They have also been used to analyze aerial images [36, 44] and perform
multi-object tracking [5, 43]. As detection is a crucial component in several vision-based
applications, most of the research works primarily focus on making the object detection
models as accurate as possible by leveraging deep networks and large amounts of training
data. Such models are not suitable for deployment on portable devices that have limited
memory and computational power. Therefore, there is an essential requirement to make
such models compact and fast while retaining high accuracy.

Several compression techniques exist in the literature for obtaining a lightweight model
from a complex deep model like pruning [13, 26, 37], quantization [22] and low-rank fac-
torization [35]. Their limitations are: i) architecture-dependence, ii) heuristics-based, iii)
drop in accuracy. On the other hand, Knowledge Distillation [17] (KD) transfers the knowl-
edge from a trained large network (Teacher) to a smaller network (Student) by matching
the temperature raised soft labels along with cross-entropy loss on the ground truth. This
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“dark knowledge” provided by the teacher helps the student models to generalize well, with-
out much drop in accuracy. Also, it is architecture-independent and does not require any
heuristics. So, we restrict ourselves to KD as a means to learn compact models.

In general, KD uses training dataset on which Teacher was trained, as a transfer set for
knowledge transfer from Teacher to Student. However, we may only have access to the
trained models and not their training data as several companies may have proprietary rights
over them (e.g. pretrained models [19] on Google’s JFT-300M [21] proprietary dataset).
Also, if the data is sensitive (e.g. medical and biometric data), it may not be shared due to
privacy concerns. Recently several works have identified such issues [4, 28, 29] for classifi-
cation setting. The solutions proposed for classification problems either synthesize transfer
set directly using the trained Teacher model [29, 46] or learn the target data distribution
through generative models [4, 28]. However, both of these approaches cannot be readily ap-
plied for object detection which is a more challenging and difficult problem. Object detection
has dual priorities of object classification along with localization, and at the same time each
image may contain variable number of objects. Moreover, each object can be of different
spatial scales and aspect ratios, which can be present at various locations in an image.

Several works[3, 38, 41] in object detection, assume the availability of the training data
on which Teacher is trained and uses them to distill the knowledge to Student. However, to
perform KD for object detection in the absence of training data is a non-trivial and challeng-
ing problem. In our current work, we addressed this problem by synthesizing pseudo-dataset
using only the trained Faster RCNN based Teacher detection network and use them as a
transfer set to conduct knowledge transfer in the data-free setting. Our proposed approach is
broadly divided into two phases: Generation and Distillation as shown in Fig. 1.

In the generation phase, we first prepare pseudo-targets using proposed Algo. 1 in ab-
sence of the training data and its statistics. Every object has three attributes associated with
it : size, location and class label. We use the anchor scales and ratios obtained from Teacher
model to estimate the range of the object sizes. Based on the number of objects required to
be placed in a given image dimension with a given IOU overlap constraint, we restrict the
minimum and maximum possible areas for each object. We use Power Law distribution to
sample the object area from this range. As the class distribution of objects is not known, we
uniformly sample the class labels for each object.

The second step in the generation phase is to synthesize inputs corresponding to the pre-
pared pseudo-targets (details in proposed Algo. 2). We use random texture images as back-
ground initialization and optimize them by backpropagating the gradients of Faster RCNN
loss (Lgt ) and our proposed diversity loss (Ldiv) via the frozen Teacher model. Our generated
samples named as Multi-Object Impressions (MOIs) are impressions of multiple objects of
same/different classes at different locations with different scales. We further make our gen-
erated MOIs invariant to augmentation operations like flipping, cutout via differential batch
augmentation, and the proposed diversity loss further improves the intraclass variation on
objects (shown in Fig. 4). In the distillation phase, we use our pseudo-dataset as transfer set
and perform zero-shot KD. Our generated data is even suitable to be used beyond transfer set
as we obtain reasonable mAP even while training the network from scratch with our data.

We thus, summarize our contributions as follows:
• We are the first to attempt knowledge distillation on object detection, assuming zero

knowledge about the training data and their statistics.
• We propose an algorithm to synthesize pseudo-dataset comprising of target labels and

corresponding input data, i.e. Multi-Object Impressions using a trained deep Faster
RCNN detection model. Our pseudo-dataset is robust to augmentation operations.
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• We show the utility of such pseudo-dataset as a transfer set for distillation and are even
suitable to train a detection network without any Teacher assistance. Moreover, they
can be used as augmentation in the presence of proxy data or few training samples.

• We propose a diversity loss that enhances the intraclass variation on the foreground
objects of MOIs, leading to an improved distillation performance.

• The effectiveness of our proposed approach is demonstrated across several architec-
tures and benchmark datasets like KITTI, Pascal and COCO.

BA

Generation
T

S

Distillation

T

Multi-Object
Impressions

Prepare pseudo-targets
using Algorithm 1.

BP: Backpropagation of the gradients
BA: Batch Augmentation

Trainable

Frozen and BP
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Multi-Object
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Figure 1: Our proposed approach for zero-shot kd on object detection: a. Generation (left) where
pseudo-dataset is synthesized using Algo. 2.; b. Distillation (right) is done using our pseudo-dataset as
a transfer set. Note: we use our prepared pseudo-targets as ground truth to calculate the loss values.

2 Related Works
KD for classification: The task of KD for the image classification, involves training a

Student network on a temperature-raised softmax output of the teacher network. In the past
years, the trend in this domain has been towards using as less data as possible. Kimura et
al. [20] used few training samples and generated pseudo-examples for KD , whereas Lopes et
al. [25] stored feature activations of all layers and used them in the form of meta-data. Nayak
et al. [29] proposed a data-free approach to KD, where the training set was composed of data-
impressions obtained via modeling the softmax output space through Dirichlet distribution.
Micaelli et al. [28] proposed an adversarial method that trains a generator iteratively to craft
images that cause the student to poorly match the teacher and subsequently used them to
perform distillation. Chen et al. [4] used an adversarial generator to synthesize images such
that the teacher network gives high feature response and classifies them with high probability.
Few works [14, 47] also uses batchnorm statistics of the trained classifier to regularize the
feature distribution. Li et al. [23] uses features from several pretrained models and data
mixup strategy to avoid model bias while matching such feature statistics. Thus, the problem
of implementing a zero-shot/data-free approach to KD for image classification has produced
a diverse set of solutions, each with a distinctive approach.

KD for object detection: Chen et al. [3] proposed a distillation framework for object
detection that used the Faster-RCNN model, which acts as a baseline model in a data-driven
distillation framework. This approach used hint learning [32] to improve the feature repre-
sentation capability of the student, after which the classification and regression outputs of
both the proposal network and the region CNN were distilled to the student. Wang et al. [41]
avoid full imitation to overcome the noise introduced from various background instances and
use fine-grained feature imitation exploiting important information in the near object anchor
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locations, which helps the Teacher to generalize better. All of these approaches in detection
use large training datasets, often with several classes to perform distillation.

One way to handle the absence of training data is to generate synthetic data and use
them for the downstream task. Few works such as [12, 16, 40] generate synthetic data
using external tools like CAD or depend on the availability of cropped images of objects.
Therefore, there is an implicit assumption of familiarity with the target categories. In absence
of such priors, synthetic samples are generated from a pretrained Yolo network in [2] but their
method depends on training data statistics in the form of batch norm. Also, their focus is on
one-stage detectors with the goal of only knowledge transfer.

We, in this paper, focus on two stage-detectors like Faster RCNN with an objective of
model compression along with knowledge transfer where zero knowledge about training
samples and training data statistics are assumed.

3 Proposed Approach
Our approach for zero-shot KD for object detection is broadly divided into two phases (also
shown in Figure 1):

• Generation: In order to synthesize samples in absence of training data and their statis-
tics, we first need to prepare ‘pseudo-targets’ (in Sec. 3.1). We generate Multi-Object
Impressions (MOIs) corresponding to them, using the pretrained weights of Teacher
network via backpropagation (in Sec. 3.2).

• Distillation: The generated dataset (D̂) can then be used as a transfer set to distill
knowledge into the Student network (in Sec. 3.3).

We define our pseudo-dataset as D̂ = {(xi,yi)}K
i=1, where K is the number of samples to

be generated, xi is the ith input with corresponding pseudo-target yi. The pseudo-target is
defined as yi = {(cio,bboxio)}Ni

o=1, where Ni is the number of objects in input xi, cio denotes
target class and bboxio denotes target bounding box coordinates, for the oth object in xi.

3.1 Preparation of Pseudo-Targets
In detection, multiple objects can be present in an image. These objects can be of variable
sizes, at different locations and belong to same or different classes which makes the problem
complex. We aim to prepare pseudo-targets that are close to the annotations of training data
in terms of sizes, locations and class labels of objects.

The size of an object is defined in terms of scales and aspect ratios [31]. We leverage on
the anchor ratios and scales obtained from the pretrained detection model to get some insight
regarding the range of object sizes in the training dataset. Please note that it only provides a
clue about the estimated range of the object sizes in the training dataset but in no way reveals
their actual sizes or the class labels.

The location of an object is dependent on the other object’s locations. We need to take
care of their overlap so that one object does not get placed over other objects or have very
high overlap. It is desirable to have the overlap within some predefined threshold. We use
IoU measure to enforce such a constraint.

The class label distribution of the training data is unknown and no prior information
or metadata is available, so we use uniform sampling to assign a class label to an object.
Algorithm 1 contains the detailed steps to obtain pseudo-targets for pseudo-dataset (D̂).

We define the minimum and maximum object area as Amin and Amax based on the anchor
scales defined by the teacher model (Line 1). The maximum number of objects that are
allowed in any sample is denoted by M. For an ith image (xi), the important factors on
which its pseudo-target depends are: the number of objects, class label, size (aspect ratio and
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Algorithm 1: Preparation of B pseudo-targets for pseudo-dataset D̂ using Teacher T

Input: Wi,Hi: width and height of ith input, IoUthresh: max IoU threshold, C: # foreground classes
t1, t2: control Amax and Amin respectively, Rmin,Rmax: min and max aspect ratio,

Output: B Pseudo-Targets: {yi}B
i=1

1 Amin, Amax ←Minimum and Maximum object area based on range of anchor scales and t1, t2
2 Choose M such that M ≤ (Wi ·Hi)/Amin,∀i ∈ [1..B]
3 for i = 1 : B do
4 yi←∅; cur_iter← 0; max_iters← 50
5 Ni ∼ U{1,M}; ai←M/Ni
6 Amax

i ←min(Amax,(Wi ·Hi)/Ni)
7 for o = 1 : Ni do
8 cio ∼ U{1,C}; rio ∼ U(Rmin,Rmax)
9 while cur_iter ≤ max_iters do

10 xio ∼ P(ai), where P(x;a) = axa−1,0≤ x≤ 1,a > 0
11 Aio← (Amax

i −Amin) · xio +Amin

12 Obtain width wio and height hio using area Aio and aspect ratio rio
13 [ ctrx

io, ctry
io]∼ [ U{wio/2,Wi−wio/2+1}, U{hio/2,Hi−hio/2+1}]

14 bboxio← [ctrx
io,ctry

io,wio,hio]
15 if (IoU( bboxio, bbox) < IoUthresh ∀bbox ∈ yi) or (cur_iter == max_iters) then
16 yi← yi ∪{(bboxio,cio)}; break
17 else
18 cur_iter← cur_iter+1
19 end
20 end
21 end
22 end

area) and location of each object in the image. We now discuss in detail how our proposed
algorithm handles each of these factors.

The number of objects is sampled uniformly i.e. Ni ∼ U{1,M}. The class label cio is
assigned to the oth object using uniform distribution i.e. cio∼U{1,C}where C is the number
of foreground classes. The aspect ratio of each object (rio) is uniformly sampled from the
range of anchor ratios defined by the teacher model. Based on the dimensions of xi and
value of Ni, we constrain the maximum possible object area and denote it by Amax

i (Line 6).
We utilize Power Law distribution P to sample from the range [Amin, Amax

i ], denoted by Aio.
We define the parameter ai as a function of Ni (Refer to supplementary for details). Using Aio
and rio, width (wio) and height (hio) of the target bounding box are obtained for the oth object
in xi (Lines 10- 12). Next (Lines 13- 19), we place the oth object in xi such that object overlap
between each pair is less than the IoU threshold. The threshold condition often gets satisfied
within a few iterations. Otherwise we save the pseudo-targets after maximum iterations.

3.2 Crafting MOIs for Pseudo-Targets

Let the pretrained Faster RCNN model be denoted by T and its learnt model parameters by
θT which is trained on a detection training dataset (D). In the absence of the dataset D, we
aim to synthesize pseudo dataset D̂. After obtaining the pseudo-target yi using proposed
algorithm 1, we need to synthesize xi using pretrained weights of T such that:

T (xi) = yi,∀i ∈ [1..K] (1)

In order to satisfy this condition, every data sample xi requires to have impressions of objects
of variable sizes at different locations belonging to same or different classes. Therefore, we
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call such xi’s as Multi-Object Impressions (MOIs). In other words, the ith sample of pseudo-
dataset D̂ corresponding to ith pseudo-target (yi) is the ith MOI (denoted by xi).

The RCNN based detectors classify the diverse backgrounds in images into a single
background class. To handle this background variability, we initialize our MOIs with sam-
ples from a texture dataset [7]. In comparison to random noise, feature maps extracted by the
layers of base network of pretrained detector have higher activation values and acts as better
initialization. The texture images do not contain any objects. Also, the Teacher network
predicts background class on such images with high confidence. Thus, the initialization of
each xi’s with texture image act as background initialization for the MOIs.

Data augmentation [48] is a commonly used technique to improve the performance of
the training model. But we cannot directly apply data augmentation on MOIs during KD,
since MOIs are the samples on which the Teacher model is confident. We cannot predict the
behaviour of the Teacher on the augmented MOIs. The Teacher may not predict the required
pseudo-target on the augmented MOIs and can violate equation 1. So, we make the MOIs
robust to augmentation operations via differentiable batch augmentation.

Batch augmentation [18] (BA) improves the generalization of the model and also leads to
faster convergence. We use this approach1 to make our MOIs invariant to certain augmenta-
tions. We perform two differential batch augmentations, namely Flip and Cutout [9]. In BA
module in Fig. 1, xi (i.e. ith MOI) is passed through differentiable augmentation operations
with probability p and q. We set p = q = 0.5 and xba

i is the output of BA module which is
then fed to the Teacher network.

After the initialization and augmentation, we optimize each xi keeping θT fixed with
target labels yi,∀i ∈ [1..K] using the loss L as defined:

LMOI = λgtLgt +λdivLdiv (2)

where λgt and λdiv are hyperparameters which are used to balance the losses. The description
of the losses are mentioned below:
Detection Loss (Lgt ): The usual classification and bounding boxes losses [31] applied at
RPN and RCNN layers in training the network T . In absence of original training dataset (D),
we use our pseudo-dataset (D̂).
Diversity Loss (Ldiv): To ensure intraclass variability across the foreground objects, we
define diversity loss as:

Ldiv =−
1
C

C

∑
c=1

1
|Nc| ∑

(i, j)∈Nc

d( fi, f j) (3)

where C denotes the number of foreground classes, Nc denotes the collection of pairs of fore-
ground objects belonging to class c in the current batch. fi and f j denote the pooled feature
vectors of foreground objects i and j that also belongs to same class c. d is distance metric
(euclidean, cosine). We use cosine similarity for the experiments.
Training Setup: MOIs initialized with texture images are trainable. The gradients are back-
propagated with respect to each xi’s through the frozen Teacher. Each xi is optimized for N
iterations to minimize the loss between the Teacher’s prediction and pseudo-targets yi’s. The
RPN loss from Lgt forces the region proposals to be near to the target bbox’s in yi’s. Further
RCNN loss corrects the proposals and predicts each target class in yi’s with high confidence.
This would eventually lead to having foreground objects’ impressions such that the Teacher

1performs augmentation on MOIs in a batch

Citation
Citation
{Cimpoi, Maji, Kokkinos, Mohamed, and Vedaldi} 2014

Citation
Citation
{Zoph, Cubuk, Ghiasi, Lin, Shlens, and Le} 2019

Citation
Citation
{Hoffer, Ben-Nun, Hubara, Giladi, Hoefler, and Soudry} 2019

Citation
Citation
{DeVries and Taylor} 2017

Citation
Citation
{Ren, He, Girshick, and Sun} 2015



NAYAK ET AL.: KNOWLEDGE DISTILLATION WITH MOIS 7

Algorithm 2: Generation of pseudo-dataset (D̂)

Input: T : Pretrained Faster RCNN model, K: Number of samples, N : Number of iterations
Output: D̂ : pseudo-dataset

1 D̂←∅
2 Select batch size b, s.t. K mod b = 0,b > 1
3 for K/b batches do
4 Sample a minibatch of b background images, {x1,x2, . . . ,xb} from DTD texture data [7]
5 Obtain a minibatch of b pseudo-targets, {y1,y2, . . . ,yb} using Algo. 1
6 Associate the pseudo-targets with sampled images (x,y) = {(x1,y1),(x2,y2), . . . ,(xb,yb)}
7 for N iterations do
8 Perform Batch augmentation (xba,yba)← BA(x,y)
9 Update x by descending its gradient ∇xLMOI(T (xba),yba)

10 end
11 D̂← D̂∪ (x,y)
12 end

network when fed with optimized MOIs, predicts the desired pseudo-targets. Diversity loss
encourages objects of a target class to have diverse features which helps it to improve KD
performance. Refer to Figure 5 for visualization of synthesized MOIs and supplementary for
more visualizations. Algo. 2 contains overall steps involved in the generation of D̂.

3.3 Distillation using pseudo dataset (D̂)

Let the student model be denoted by S and its trainable parameters by θS. After obtaining the
pseudo-targets and corresponding MOIs (using Algorithm 2), we use our synthesized pseudo
dataset (D̂) as transfer set to perform knowledge transfer from T to S using the detection loss
(Lgt ) and feature imitation loss (Limitation) used in [41]. We evaluate the generalization ability
of the student S trained with transfer set D̂ through mean average precision (mAP) on actual
test samples and compare its performance with data dependent approaches.

4 Experiments
We first use Resnet-18 [15] Faster R-CNN model as Teacher network trained on KITTI
[11] benchmark dataset. The performance of the trained Teacher model is 73.3% mAP. The
models are evaluated based on the split followed by [1, 27, 41] using official evaluation tool.

Several design choices are possible in crafting MOIs like maximum number of objects
allowed per sample (M) and the size of pseudo-data (K). We discuss the effect of the afore-
mentioned major factors on distillation performance in subsequent sections. We fix the size
of the MOIs as 600× 600 dimensions. We take t1, t2 and IOUthresh as 1.2, 0.8 and 0.1 re-
spectively. We use Adam optimizer and Pytorch framework for all the experiments. Refer
supplementary for hyperparameter details used in experiments.

4.1 Maximum objects per sample

We vary the maximum number of objects (M) possible in any sample of pseudo-dataset D̂
and check its impact on distillation performance of Resnet-18-half student. It is evident from
Figure 2 that mAP improves with an increase in the value of M. Large value of M offers more
variation in object sizes. However, we cannot have an arbitrary large M due to the constraint
specified in line no. 2 of Algo. 1. Thus, we choose the value of M as 20 for subsequent
experiments. These experiments are performed using transfer set size of 2500 MOIs. We
perform an ablation on the number of generated samples in the next section.
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4.2 Size of pseudo-dataset
We generate different sized pseudo-datasets by varying K and analyze its effect while per-
forming distillation on Resnet-18-half student. For a particular value of K, we generate MOIs
using three different ways : a) using Lgt loss, b) using Lgt loss and batch augmentation (BA),
c) using Ldiv loss along with Lgt loss and BA. The results are shown in Figure 3.

a) LLLgt : The performance of the Student model with Lgt (shown in blue curve) improves
by increasing K and achieves 40.8% mAP with 15000 pseudo-samples.

b) LLLgt + BA: In order to make our MOIs robust to augmentations, we do simple differen-
tial batch augmentation like flipping and cutout during generation. This enforces the MOIs
to be invariant to the augmentation operations. Robust MOIs indeed helps in improving the
performance of the Student model as evident from Figure 3 (shown in red curve). Though
BA encourages robustness, but do not explicitly force the object impressions belonging to
the same class to be diverse. So, in order to enforce high intraclass variation, we additionally
add our proposed diversity loss (Ldiv).

c) LLLgt + BA + LLLdiv : After adding Ldiv loss on top of Lgt and BA, we observe further gain
in the performance of the Student model (shown in yellow curve in Figure 3).

Proposed Diversity Loss (LLLdiv): We visualize the pooled features of foreground object
impressions for each class. From Fig. 4 (left), we observe that without the diversity loss, the
objects belonging to each class in the feature space lie close to their class means, and objects
are well separated across classes. Through our proposed loss, we improve the intraclass
variation as shown in Fig. 4 (right). Also, sample density near the boundary region has
increased which helps the Student to learn the decision boundary resulting in improved mAP.

4.3 Results on KITTI
In Table 1, we report our overall results while distilling from Resnet-18 (73.3% mAP) as
Teacher to Resnet-18 and Resnet-18-half as Student’s. We compare our data-free kd ap-
proach (no original training samples) with data kd approach (all original training samples)
which serves as an upper bound. We also compare against the baseline that uses in-domain
[8] and out-domain [33] data and report their average performance. We get a significant
improvement over the baseline. Our MOIs generated through a combination of Lgt and Ldiv
losses using BA obtains distillation performance of 64.2% and 55.5% mAP on student with
same and half capacity. Please note that even without KD, we observe decent mAP of 57.8%
by training Resnet-18 with our MOIs which shows its utility to be used beyond transfer set.

4.4 Results on Pascal and COCO
Pascal VOC07 dataset [10] is another popular benchmark dataset for object detection tasks
and is relatively more complex than KITTI dataset. It contains foreground objects that can
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belong to one of the 20 classes. We perform distillation from two different Teacher networks
i.e. Resnet-34 and VGG-16 trained on Pascal. Similar to KITTI, we synthesize samples
with M as 20, K as 15000 with batch augmentation, and optimize using Lgt + Ldiv losses.
The models are evaluated using Pascal VOC convention i.e. mAP at 0.5 IoU. The results
are shown in Table 2. Our proposed zero-shot kd method obtains a distillation performance
of 55.2% on VGG-16 and 58.6% mAP on Resnet-34. In absence of teacher assistance, we
still get a decent performance of 49.3% on VGG-16 and 50.9% mAP on Resnet-34 when our
pseudo-dataset is used to train the networks from scratch.

Setting Training
Method

Loss on
MOIs Teacher Student mAP

With
training

data

w/o KD [31] N/A Resnet-18
——– 73.3

w/ KD [41]
Resnet-
18-half 65.8

Without
training

data
(Ours)

Baseline N/A
Resnet-

18
Resnet-
18-half

42.3
w/ KD Lgt 40.8
w/ KD Lgt+BA 49.2
w/ KD Lgt

+BA
+Ldiv

55.5
w/o KD ——– Resnet-

18
57.8

w/ KD Resnet-18 64.2
Table 1: KD results using our proposed approach
on KITTI dataset.

Setting Training
Method Teacher Student mAP

With
training

data

w/o KD [31] VGG-16 ——– 70.4
w/o KD [31] Resnet-34 ——– 70.1
w/ KD [41] Resnet-18 67.8

Without
training

data
(Ours)

w/o KD ——– VGG-16 49.3
w/ KD VGG-16 55.2
w/ KD Resnet-34 Resnet-18 46.3
w/o KD ——– Resnet-34 50.9
w/ KD Resnet-34 58.6

Table 2: Results of distillation on Pascal
dataset using our proposed data-free approach.

Setting Training Method COCO@0.5 COCO@[0.5,0.95]
With training data without KD [31] 53.8 33.9

Without training data without KD (Ours) 30.9 15.6
with KD (Ours) 41.3 24.0

Table 3: Performance of our proposed method on COCO dataset (with and without KD) on Resnet-101

We also perform experiments on COCO [24] which is large scale object detection dataset
with 80 object categories. The models are evaluated as : a) average precision with IoU at 0.5
and b) mean of the average precisions calculated with IoU starting with 0.5 to 0.95 having a
step size of 0.05. We denote the former one as COCO@0.5 and later one as COCO@[.5,.95].
The results are shown in Table 3. We use Resnet-101 pretrained model [45] on COCO as the
Teacher network which obtains 53.8% and 33.9% mAP on evaluation using COCO@0.5 and
COCO@[.5,.95]. Despite of the large Teacher architecture and complex training dataset, our
zero-shot kd method using our pseudo-dataset as transfer set obtains decent performance of
41.3% and 24.0% while 30.9% and 15.6% without kd on COCO@0.5 and COCO@[.5,.95]
respectively. Hence, our proposed method is scalable even on large scale detection datasets.

We also tried to use other well-known losses like TV loss [34] and L2 regularizer to gen-
erate natural-looking MOIs but we observed that such losses did not yield improvement in
mAP. We also empirically demonstrated that our prepared pseudo-targets reasonably capture
the label distribution of training data. Refer supplementary for more details and analysis.

a) Pseudo-targets b) Background Initialization d) MOI without background c) MOI

Figure 5: Visualization of a synthesized sample: a) Pseudo-Targets using Algo.1, b) Background Init.
using texture image, c) MOI obtained using Algo.2, d) MOI without background for better visibility.
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4.5 Efficacy of our pseudo-dataset beyond KD

Architecture

Original Dataset (D) Our Pseudo-dataset (D̂)

mAP
(Upper Bound)

mAP
(w/ KD)

mAP
(training

from scratch)
Resnet-18
(KITTI) 73.3 64.2 57.8

Resnet-34
(Pascal) 70.1 58.6 50.9

Resnet-101
(COCO) 53.8 41.3 30.9

Table 4: Performance (in %) on our pseudo-
dataset when used to train the network from
scratch across architectures and datasets.

Setting Dataset mAP

Proxy Data

Cityscapes 53.1
Cityscapes + Ours 62.0 (+ 8.9)

Synthia 55.6
Synthia + Ours 62.8 (+ 7.2)

Few original
training samples

5% KITTI 58.5
5% KITTI + Ours 64.8 (+ 6.3)

10% KITTI 60.1
10% KITTI + Ours 66.2 (+ 6.1)

Table 5: Performance (in %) on our pseudo-
dataset when used as augmentation on Resnet-
18 without KD

As shown in Table 4, we obtain respectable performances across datasets and architec-
tures when the network is trained from scratch using our pseudo-dataset (D̂) without any
Teacher assistance. We observe a similar performance gap between the network trained on
D̂ and D, even on a large scale challenging dataset like COCO. This consistent behaviour
highlights the scalability of our proposed approach across datasets and architectures. Our
pseudo-dataset D̂ has a similar behaviour as D. For instance; our generated pseudo-samples
are robust to augmentations like original data. Also, when KD is applied on D̂, we obtain a
significant performance improvement similar to the data-KD setup.

We further analyse the efficacy of our pseudo-dataset by investigating its performance
under different scenarios: a) proxy data + pseudo-data and b) few samples of training data
(few-shot) + pseudo-data. We take an equal number of samples from proxy data and pseudo-
data for a fair comparison. Also, total number of samples is similar to the size of the KITTI
training dataset. The models are evaluated using the official KITTI evaluation tool. As shown
in Table 5, we obtain a noticeable performance improvement of≈ 6−9% when our generated
data (D̂) is used in conjunction with either proxy data or few samples of original training data.
However, we do not observe any significant performance improvement when our pseudo-
data is used along with all training samples. The performance on other state-of-the-art object
detection approaches such as Yolo [30] and FCOS [39], are put in the supplementary (sec.
1) where our dataset (D̂) is used as training set. Overall, the observations from Tables 4 and
5 and the results from supplementary indicate that our pseudo-dataset (D̂) can be treated as
reliable representatives of the original training data and can be used in applications beyond
KD where such data is required but is present in small amounts or not present at all.

5 Conclusion
Recent approaches have focused much on data-oriented knowledge distillation (KD) for ob-
ject detection. However, there are limitations on the availability of the training data due to
data privacy and sensitivity concerns. To handle them, we proposed a novel zero-shot KD
method on two-stage Faster RCNN object detection models. Through extensive experiments
on several architectures and datasets, we showed the utility of our generated data as a transfer
set in KD. We observe decent mAP even when a network is trained on our generated data
without Teacher assistance. Our pseudo-dataset further leads to significant improvement in
mAP when augmented with proxy data or few training samples, proving them as reliable
estimates of original training data. However, our current method depends on the anchor in-
formation from the pretrained model to get an estimate about the range of object sizes in the
original training dataset. As a future direction, we will reduce this dependency further to
make them suitable for anchor-free detectors. Also, extending our work to black box setting,
assuming no access to the pretrained model weights would be another interesting direction.
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