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Abstract

Few-shot action recognition aims to recognize novel action classes using just a few
samples as knowledge. Most of the recent approaches learn to compare the similarity
between videos. Recently, it has been observed that directly measuring this similarity is
not ideal since the action instance cannot well aligned among videos. In this paper, we
leverage the novel event boundary information to guide alignment learning in few-shot
action recognition. First, a novel frame sampling strategy based on temporal boundaries
is proposed to relieve the intra-class variance. Second, we propose a boundary selection
module to locate the start & end time of action and further align videos to their duration.
Ablation studies and visualizations demonstrate the effectiveness of the proposed meth-
ods. Extensive experiments on benchmark datasets show the potential of the proposed
method in achieving state-of-the-art performance for few-shot action recognition.

1 Introduction

With the application of video analysis, action recognition has attracted much attention from
researchers. Recently, data-driven deep learning has advanced the frontiers of this field.
However, numerous labeled data is hard and expensive to obtain in real-world scenes. There-
fore, few-shot action recognition task has received increasing interest [1, 2, 3, 18, 19], which
aims to learn to recognize novel action categories using few samples for training.

The major line of existing works on few-shot action recognition follows the metric-
learning paradigm [1, 2, 19], which is widely adopted in previous general few-shot learning
(FSL) methods [10, 11, 15]. Specifically, they measure the distance or similarity between
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Figure 1: Illustration of our method compared with previous method. In both figures, we
highlight the action subparts(e.g, approach & jump in high jump ) with colors and different
parts have different colors.

videos with learned metrics and embedding feature space. Recently, some approaches [2,
3, 18] reveal that directly measuring similarities between videos is challenging due to the
temporal misalignment of action instances. The misalignment attributes to the fact that the
temporal locations, duration, and evolution (the process of movement) of actions vary in
videos. Some methods [2, 3] try to address this issue by learning an alignment among video
features or metrics.

Nevertheless, two issues remain unresolved: First, previous methods adopt the frame
sampling strategy introduced in TSN [16], which samples frames uniformly across the whole
video. However, since the action duration varies from videos, this may sample a distinct
number of frames for different action instances (as illustrated in Figure 1(a)). Thus, uniform
sampling inevitably aggravates the problem of misalignment. Moreover, it leads to a larger
intra-class variance, which is prejudicial to metric learning. Second, for existing methods
that try to perform temporal alignment, their alignment lacks effective guidance or restriction
during training.

Recently, GEBD [9] introduces the generic event boundary annotations into several video
datasets. Different from the common action boundary that marks the start & end time, it di-
vides the whole video into several semantically-coherent action subparts with fine-grained
event boundaries. Based on such temporal boundaries, we proposed a novel method for few-
shot action recognition, which learns the Temporal Alignment via Event Boundary (TAEB).
Specifically, we first devise the boundary-based sampling strategy (Figure 1(a)), which sam-
ples frame uniformly on each action subparts according to the boundaries rather than the
whole video. In this way, it makes the frame-wise representation of action instances among
videos more consistent and thus reduces the intra-class variation. Secondly, we propose a
boundary selection module (BSM). It selects the duration boundaries (start & end time of
action) from all boundary candidates. Video features are then aligned to action duration by
a temporal affine transformation. Finally, an attention mechanism is introduced to further
refine the alignment. The overall framework of our method is illustrated in Figure 2.

In summary, our main contributions are as follows: (1) We are the first to introduce event
boundaries into few-shot action recognition task as a prior to guide temporal alignment. (2)
We devise a frame sampling strategy based on temporal boundaries to reduce the intra-class
variance and relieve action misalignment collaborating with proposed boundary selection
module. (3) A novel boundary selection module is introduced to align video features to
their action duration. (4) Extensive experiments conducted on few-shot action recognition
datasets show that our proposed method achieve the state-of-the-art results.
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2 Related Works

2.1 Action Recognition & Frame Sampling

Methods of action recognition in recent years mainly base on convolutional neural networks
(CNNs). C3D [13] and I3D [4] are two representatives of 3D-CNN for video action recog-
nition. C3D-like networks usually divides the whole video into clips, which are usually
consecutive 16 frames. However, 3D convolutions bring expensive computational costs
and memory demand. Therefore light-weight and efficient version such as P3D [8] and
R(2+1)D [14] are proposed. In addition to these methods, some other methods instead of
3D convolution are proposed to capture temporal relation. TSN [16] extracts features from
frames by 2D CNN and aggregates features by temporal aggregation function. TSN-based
networks use sparse uniform frame sampling, which can represent a video by a few frames,
e.g. 8 frames per video. Such uniform sampling divides the video into T parts with equal
length and uniformly sample n frames in each segment, resulting in nT sampled frames.

2.2 Few-shot Action Recognition

The early study of CMN [19] represents videos by a compound memory network and store
features in matrix representation. Representations in the memory can be retrieved and
updated. TAEN [1] represents actions as trajectories in the learned feature space while
FAN [12] encodes motion in a video into an image named dynamic image.

Due to the different distribution of action instances in videos, similarity directly mea-
sured between two videos suffers from misaligned actions and may lead to a trivial metric
function. To solve the misalignment, recent works pay more attention to temporal alignment.
TARN [2] proposed an attentive relation network to implicitly align actions by segment-wise
temporal attention. ARN [18] reduces the temporal dimension by permutation invariant tem-
poral attention and temporal global pooling. OTAM [3] proposes a variant of the Dynamic
Time Warpping (DTW) algorithm to measure distance between videos with alignment.

Above methods only use the video frames while our method make use of event bound-
aries in the video to help the learning of temporal alignment. Moreover, our proposed method
could further apply to them, more details could refer to Section 4.4.3.

2.3 Generic Event Boundary

Recently, the GEBD [9](Generic Event Boundary Detection) proposes a novel task and
Kinetics-GEBD dataset, in which generic event boundaries segment a whole video into
chunks. Conventional works in action detection and temporal segmentation focus on lo-
calizing pre-defined action categories and thus does not scale to generic videos. The GEBD
aims at localizing the moments where humans naturally perceive event boundaries. And
such generic event boundaries can help machine to understand videos since those bound-
aries segment videos into meaningful units or action sub-parts. Compared with rough action
boundaries, generic event boundaries additionally segment actions into atomic parts (e.g. run,
jump and stand up are three parts in a long jump action), which is useful for understanding
and comparing actions.

3 Method
3.1 Problem Setup

We follow the standard few-shot meta-learning paradigm, dividing a dataset into three non-
overlapping splits by class: meta training set Cy4in, meta validation set C,;, and meta test set
Cresr- The meta validation set is only used to evaluate the model during training. The model is
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Figure 2: Overall framework illustration of our method. (a) The overall framework. We high-
light our boundary-guided modules. BSM: Boundary Selection Module. (b) An illustration
of our boundary-guided frame sampling, T=8 is shown. (c) The Boundary Selection Module
(BSM). Red solid lines are event boundaries and filled blocks are where action exists.

trained and tested in a standard N-way K-shot few-shot learning setting. Under the setting,
we randomly sample episodes from the dataset to train and test. An episode consists of
support set S and query set Q. The support set S contains N classes and K support examples
sampled for each class while the query set Q contains N x Q query examples for the same N
classes with S. The support and query set has no overlap.

3.2 Model
3.2.1 Boundary-guided Frame Sampling

Most few-shot action recognition methods uniformly sample a fixed number of frames from
each video to represent the whole video. However, this would aggravate the action misalign-
ment and lead to larger intra-class variance due to the fact that the action duration varies in
videos. This kind of intra-class variance is prejudicial to further metric learning. Inspired by
GEBD [9], we argue that video representation will be more consistent if we sample the same
number of frames for all action sub-parts. Based on this motivation, we devise the following
boundary-guided frame sampling strategy with the temporal boundary provided by GEBD.

Specifically, given a video {I,b,...,Ir,} and event boundaries {b,b>,...b, } € [0,Tp]",
I; denotes the 7-th frame and b; denotes the i-th event boundary. We first divide the whole
video into (n+ 1) segments with index ranges of So = ljo., ], - -+ Si = Ijp,:p;, 1]+ - +Sn = L1y
To represent a video using a fixed length frame sequence of T frames, we then uniformly
sample n; frames in the S; segment by

T n+l1-—r n+1-+r
1 .
TSl <i<l=;

T
—l @)

)R ey

n,-:[

r=T—(n+1)|
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where 1 is indicator function. By such assignment,

I’l,':T7 V(l,])ln,—n1|§1 (3)
i=0

4

Sampled frames are concatenated in order as a fixed length frame sequence X =1, I, ..., I,
to represent the video.

After sampling, an embedding network f(-) is applied on each frame and embeds sam-
pled sequence into T frame-level features f, = f(X) = {f(L,), ..., f(L;)} € RETHW I
the following, we use f;, f; to represent the video-level feature of the support sample and
query sample, respectively.

3.2.2 Boundary Selection Module

The video-level representation f; still involves some action-irrelevant information (e.g. back-
ground frames) beyond the action duration. To address this, we proposed the Boundary Se-
lection Module (BSM) to locate the start & end time of action, then f; could be aligned to
its action duration by a certain transformation.

The start & end boundary of actions often involves transition about video shots or scenes.
Thus, we consider each paired adjacent frame feature to learn to distinguish action boundary
in BSM. As illustrated in Figure 2(c), the middle time of all two adjacent frames forms
the candidates of action start & end time. Naturally, the beginning and end of the whole
video are also regarded as candidates. Thus, each video contains (7 + 1) such candidates
[co,...,cr]. For each candidate, we concatenate the features of adjacent two frames as its
feature representation: f! = Concat (f, fit!) € R1*2C, Especially, the f0 and f/*! are two
learnable embedding added by us. Then, the feature of candidate undergoes the boundary
selection network ¢ to obtain the selection logit / for each candidate:

Fo = Stack(f0, .. /T) € RO @
1=Softmax(¢(F.)) = [lo,....Ir] € RT+! 5

where the selection network ¢ consists of a few 1D-convolution layers, the Stack means
stack all the features in temporal dimension, 1 is selection logits with length of (7 + 1).
Furthermore, we use the event boundaries provided by GEBD [9] to guide the selection of
BSM:

li=li—(1-1(c;)-m, (6)

where 1(c;) means whether ¢; is labeled as event boundary and m is a hyper-parameter
controls the suppression degree. By such masking, uninformative candidates are dismissed
and the start & end time could be located accurately.

The candidate with maximum score is regarded as the start & end time of action, and it
could be located by argmax operator. For differentiable optimization, we use soft-argmax to
approximate the non-differentiable argmax operator:

Yioi-exp(li/T)
Yioexp(li/7)
where 7 is the temperature parameter controlling the smoothness.

The above soft-argmax is performed twice to select the start and end boundaries of action.
Noticeably, to keep the correct temporal order of the start and end boundaries, the boundary

(7

softargmax® (lp,ly,...I7) =
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detected the first time is regarded as the start time of action. Next, we dismiss candidates
before the start boundary in logits for the end boundary localization. Given the selected start
and end boundaries, we perform a temporal affine transformation T on the input feature f,,
which transforms the start and end boundaries to t = 0 and r = T, respectively:

Tit—t)=T@t—a-t+B), T (' —=1)=T'({'— é(f'—ﬁ)) ®)
T start-T

o= end — start = end —start’ ©)

fx:T<fx)- (10)

3.2.3 Temporal Attention

To further aggregate and refine the global temporal information, we further perform a self-
attention mechanism on videos, which has been widely used in video tasks [7, 17]. Given a
pair of features fj, fq € RT*4 representing a support feature and a query feature after being
aligned by BSM, we perform a cross attention on temporal dimension. To calculate attention
map M € RT*T, we first project support and query features f; and fq linearly by key head
Wy and query head W, respectively.

S

(We- G(fs)) Wq - G(fg))"

dim

M = softmax( ), (11)

where G(-) is global average pooling and dim is the channel dimension of feature G(f). Ac-
cording to the attention map M, query feature could be re-weighted. Besides, we also apply
value head projection and residual sum to the support feature f; in order to keep feature-space
consistency. The re-weighting process can be formally expressed as:

fo=Fo+M-(W,-G(£,)), (12)
fi=Fh+Wo-G(f), (13)

3.2.4 Optimization
Following previous work [3], we use the ‘diagonal’ distance as the metric, which is:
~ ~ T ~ ~
D(fp. fq) = Y 1 —cos fois Fyi» (14)

i=1

where f),, f; represents prototype and query features, [i] means indexing in time dimension.
Such a distance is the sum of the cosine distances between the corresponding frames of the
two videos. We use the negative distances as logits and use standard cross entropy loss.

4 Experiments

4.1 Datasets and baselines

Datasets We conduct experiments on two datasets in GEBD [9], which are widely used in
few-shot action recognition :
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HMDB5] [6] contains 6,849 videos divided into 51 action categories. Each category con-
tains at least 101 videos. We follow the protocol of ARN [18], which takes 31/10/10 action
classes with 4280/1194/1292 videos for train/val/test.

Kinetics-GEBD [9] : Since Kinetics-GEBD releases about 38k annotations in train and val
set, which have limited overlap with the widely used Kinetics-CMN [19] split, we resam-
ple a split from released Kinetics-GEBD. Following CMN, we sample 64/24/12 classes for
train/val/test set and sample 100 videos for each class in the Kinetics-GEBD dataset.

For both datasets, we use ground truth event boundaries annotations. Since annotations

provided in GEBD are raw annotations, we preprocess the raw annotations by selecting
the annotation from the annotator with highest f1-score and deleting all non-instantaneous
boundaries. Also, we add the start and the end of the video into boundaries.
Competitors Except for common baseline of ProtNet [10], we compare our method with re-
cent FSL action recognition works related to temporal handling with state-of-the-art results,
including ARN [18] and OTAM [3]. Comparisons are made on above two datasets instead of
Something-V2 and Kinetics-CMN split due to no boundary annotations available in GEBD
datasaets [9].

4.2 Implementation Details

We adapt standard episode style meta-learning way to train and test models. In the N-way
K-shot setting, we sample episodes in the way described in subsection 3.1. For each video,
boundary-guided frame sampling is used to sample T = 8 frames, as described in subsubsec-
tion 3.2.1. Then we use ResNet-50 [5] to extract frame-level features so that we can make
fair comparison with other works. Sampled frames are first resized to 256256 with ran-
dom horizontal flip as augment. Then random crop with the size of 224 x224 is applied in
training phase. For test phase, the random crop is replaced by a center crop with the same
size. We use the ImageNet pre-trained checkpoint of ResNet-50 as the initial state of the
feature embedding module and the whole model is trained together in the end-to-end way.
For multi-shot settings, We also adapt a similar multi-head temporal attention among support
features. Concretely, for K-shot setting, a temporal self attention is applied on total KT sup-
port features, which belong to the same class. To keep feature space symmetry, value head
projection with residual is also applied on query feature like Eq. (13). Hyper-parameters are
described in the supplementary material.

4.3 Main Results

HMDB Kinetics-GEBD
1-shot Sshot | 1-shot Sshot
ProtoNet [10] | Uniform | 54.2 68.4 | 60.8 70.12

Method Sampling

ARN [18] Uniform | 45.5 60.6 | - -
OTAM* [3] Uniform | 54.5 66.1 | 62.7 74.0
Ours Bound | 58.6 73.8 | 67.0 80.9

Table 1: Results of 5-way 1-shot and 5-shot action recognition accuracy in percent. ‘Uni-
form’ means uniform sampling proposed and ‘Bound’ indicates our proposed sampling
methods based on event boundary. The mark * means re-implemented by us.

The Quantitative Results of ours and other competitors on HMDB51 and Kinetics-GEBD
are listed in Table 1 As shown in the table, our method outperforms the powerful baseline
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(a) HMDB51 (b) Kinetics-GEBD

Figure 3: Visualization results of BSM. Selected boundaries(start and end) are marked with
red lines while boundaries not selected are marked with yellow lines. Note that since the
selected boundaries are regressed by soft-argmax, they may not locate in annotated bound-
aries.

ProtoNet by a significant margin. OTAM is the most related SOTA method focusing on
temporal relationship and alignment. Compared with it, our method still outperforms it by
a large margin under all settings, demonstrating the effectiveness of our boundary-guided
temporal alignment.

The Qualitative Results and Visualizations. For boundary selection module, in Figure 3,
we visualize selected boundaries and all event boundaries by red and yellow lines respec-
tively on sampled frame sequences. All the visualisation results come from test set. In the
visualization, it can be seen that our BSM can learn to locate discriminative part in the video
according to event boundaries. It is worth noting that some of the selected boundaries are not
in event boundaries like the last row of HMDBS51, but they may be more proper. This shows
the advantage of soft-argmax and boundary-guided masking, which can trade-off between
prior guidance and actual video content. This can somehow prevent the misleading affection
of not detected event boundaries.

4.4 Ablation Study

4.4.1 Contribution of each module

Modules HMDB51 | Kinetics-GEBD
TA + UniformSample 57.40 66.29
TA + BoundSample 58.32 66.23
TA + BoundSample +BoundSelection w/o prior 58.05 66.85
TA + BoundSample +BoundSelection w/ prior 58.60 67.01

Table 2: Breakdown results of modules. For default settings, uniform sampling and TA
(Temporal Attention) are used. ‘BoundSample’ means boundary-guided frame sampling
and ‘BoundSelection’ means boundary selection module. For ‘BoundSelection’, ‘w/o prior’
means all possible positions are considered as boundaries (i.e. event boundaries are not used
in both training and testing) and ‘w/ prior’ means only annotated event boundaries are used
in training and testing. Results are reported under 5-way 1-shot setting.

We analyze the performance gain of each module by breakdown analysis. Quantita-
tive results of boundary-guided sampling and boundary selection module on both datasets
are listed in Table 2. It can be seen that boundary-guided sampling gains about 0.9% on
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HMDBS51 but makes little difference on Kinetics-GEBD dataset. Since HMDBS1 is well-
trimmed compared to Kinetics-GEBD, the boundary-guided sampling mainly addresses the
variance of action parts on HMDBS51, indicating the effectiveness of proposed sampling
method. On HMDB51 dataset, the main performance gain comes from boundary-guided
sampling while the BSM provides a little about 0.3%. This is natural because HMDB51
is trimmed and the beginning and end of the action are mostly at the beginning and end of
the video. However, on Kinetics-GEBD dataset, the BSM provides about 0.7% performance
gain. Longer video duration in Kinetics-GEBD makes it more valuable to locate the action
instances before comparing. Also, on Kinetics-GEBD dataset, the BSM without prior (i.e.
don’t perform masking with event boundaries in BSM) gains about 0.5%, and the use of
prior (i.e. perform masking with the event boundaries in BSM) further gains about 0.2% and
BSM with prior gains about 0.3% on HMDBS51 dataset. These indicate that although the
BSM can learn to locate the action instance without prior, the use of prior can help the BSM
learns and generalizes better.

4.4.2 Performance gain on different baselines

HMDB Kinetics-GEBD
Baseline +BS+BSM | Baseline +BS+BSM
ProtoNet [10] 542 565 (+23) | 608  62.5(+L.7)
OTAM [3] 54.5 56.9 (+2.4) 62.7 63.9 (+1.2)
TA 57.4 58.6 (+1.2) 66.3 67.0 (+0.7)
Table 3: Accuracy gain of BoundSample with Boundary Selection Module on three base-
lines (ProtoNet, OTAM and temporal attention), reported under 5-way 1-shot setting. BS
meas BoundSample and BSM means Boundary Selection Module.

Baseline

To further prove the effectiveness of proposed boundary-based modules, we apply Bound-
Sample and BSM on different baselines. Results listed in Table 3 show that our proposed
boundary-based method can stably improve the performance under different baselines. The
gain based on TA is relatively smaller since it’s already a strong baseline. Proposed boundary-
based modules can bring much higher accuracy improvement on other methods.

4.4.3 Effect of boundary-guided sampling

Sampling method | HMDBS51 | Kinetics-GEBD
Uniform 1.146 1.414
Boundary 1.144 1.385
Table 4: Intra-class variance of uniform sampling and boundary-guided sampling on
HMDBS51 and Kinetics-GEBD datasets.

To verify the effectiveness of our proposed sampling strategy, we quantify the intra-
class variance of videos under different sampling manner. Specifically, we feed each video
to a pre-trained video classification to obtain classification probabilities of all frames, then
select the probability vector P¢ = {p{,ps,...,p5} € R!*T of its ground-truth class as the
representation of this video. Based on this, we quantify the intra-class variance as:

Var = Ni(NI y L IE=Flk (15)
eve i#jyi=yj=c
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where y; is the class of the i-th video and N, is the total number of videos of the c class. Vari-
ance under uniform sampling and our boundary-guided sampling are listed in Table 4. As
shown in table, boundary-guided sampling reduces the intra-class variance on both datasets.
Besides, such variance is reduced more on Kinetics-GEBD. Compared with HMDBS51, videos
in Kinetics are longer and untrimmed. Such difference makes variance reduced more on
Kinetics-GEBD.

Baseline HMDB Kinetics-GEBD
Baseline +BoundSample | Baseline +BoundSample
OTAM [3] 54.5 56.1 (+1.6) 62.7 63.7 (+1.0)
BSM 56.3 56.5 (+0.2) 61.9 62.5 (+0.6)
TA 57.4 58.3 (+0.9) 66.3 66.2 (-0.1)

Table 5: Accuracy gain of BoundarySample on three baselines, reported under 5-way 1-shot
setting.

We further perform ablation experiments to verify the accuracy gain of BoundSample as
shown in Table 5. In most cases, the BoundSample brings accuracy certain gains, especially
when applied on OTAM. The accuracy drop of TA on Kinetics-GEBD indicates that for more
complex videos, it is hard to learn a good alignment without any prior guidance. Overall, the
combination of BS and BSM obtains the largest.

4.4.4 The use of boundary prior

We change the degree of using boundary prior to explore the effect of boundary prior. If
we partly use the boundary prior, then we soft mask the predicted logits by add —m to non-
boundary candidates, where m is the penalty value. And using no boundary prior corresponds
to m = 0, while using strong boundary prior equals setting m = +-oo. It is clear that prop-
erly using the boundary prior can achieves the best accuracy, while not using prior or too
dependent on the prior is harmful.

Dataset

m
0.1 1 5 10 50
HMDB51 57.11 57.72 57.84 58.60 56.54
Kinetics-GEBD  66.34 6622 66.69 67.01 66.78

Table 6: Accuracy under 5-way 1-shot setting w.r.t dependency degree of boundary prior.
Settings is the same with Table 1. m = 10 is the default setting used previously.

5 Conclusion

Based on recently proposed GEBD datasets, we explore utilizing the event boundary in
videos to guide the temporal alignment learning for few-shot action recognition. Specifi-
cally, we devise a boundary-guided frame sampling method to generate a more consistent
frame-wise video representation. Besides, we propose a boundary selection module (BSM)
to locate the discriminative boundary (start and end time) and align videos to their action
durations. Experiments on HMDBS51 and Kinetics-GEBD datasets demonstrate that our
method achieves the start of the art. More ablation experiments also verify the few-shot
action recognition benefits a lot from event boundary.
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