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Abstract
Fusion of the extracted high-order features by capturing complex correlation between

features to obtain a better representation performs well in visual tasks. As a simple
and effective high-order feature interaction representation, the bilinear representation has
achieved remarkable results in many visual tasks: fine-grained image classification, se-
mantic segmentation and so on. However, bilinear pooling has not been widely used due
to the bilinear representation up to hundreds of thousands or even millions of dimen-
sions. In this paper, we propose grouping bilinear pooling (GBP) that the representation
captured by GBP can achieve the same effect with less than 0.4% parameters compare
with full bilinear representation. This extreme compact representation largely overcomes
the high redundancy of the full bilinear representation, the computational cost and stor-
age consumption. It can be used as a plug-and-play module with convenient operation.
Comparing with other state-of-the-art approaches, it achieves competitive performance.
The effectiveness of the proposed GBP is proved by experiments on the widely used
fine-grained recognition datasets.

1 Introduction
Convolutional neural network (CNN) has been widely used in various computer vision tasks
such as image classification [18, 31], object detection [24, 29] and semantic segmenta-
tion [2, 30]. The key is that CNN can extract rich semantic features through the stacked
convolutional layers and the elaborate design of structure. To make better use of the ex-
tracted semantic features, lots of meaningful and enlightening works are proposed to get
better feature representation.

Most studies obtain the feature representation of input image by pooling high-order fea-
tures [37, 38], making model to pay attention on valuable information [12, 32] or aggregat-
ing the features of different levels [21, 30], then apply it to subsequent tasks. Besides, some
other studies use the high-order statistical information of features to obtain better feature
representation, such as VLAD [11], Fisher Vector [3, 27], spatial pyramids [19] and bilinear
pooling [23, 36]. Among them, the full bilinear pooling (FBP) [23] captures the complex
association between paired features and uses the bilinear representation for classification
which makes remarkable achievements in fine-grained image classification. However, the
bilinear representation is as high as hundreds of thousands or even millions of dimensions.
It is far higher than the aggregating representation, resulting in huge computational load and
memory consumption, and limiting the expansion of model structure.
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Figure 1: The architecture of Bilinear CNN

In order to reduce the dimensions of bilinear representation, [5, 14, 16, 35, 39] simplify
the bilinear operations in different ways. [5] regards the image classification based on bi-
linear pooling as a linear kernel machine and proves that bilinear pooling enabled the linear
classifier to have the discriminating ability of a second-order kernel machine. Then, Random
Maclaurin (RM) [13] and Tenor Sketch (TS) [28] are used for low-dimensional approxima-
tion, and a compact bilinear pooling (CBP) is established. [14] uses Hadamard product to
perform low-dimensional approximation bilinear pooling. [16, 35] also reduces the dimen-
sions by carrying out low-dimensional feature mapping to get a low-rank representation.
Learnable grouping module is introduced for semantic grouping in [39]. It also reduces the
dimensions of bilinear representation to a certain extent.

Inspired by various compression methods, we note that further compression is possible
for bilinear representation. According to the analysis of bilinear pooling in Section 2, it is
shown intuitively that the bilinear representation is actually a low-rank self-correlation and
cross-correlation representation. Then, the reason for high redundancy of bilinear repre-
sentation is analyzed. To compress the bilinear representation to the extreme, we propose
grouping bilinear pooling (GBP) to minimize the dimensions of bilinear representation with
only 0.4% parameters of full bilinear representation. With the fewest parameters, GBP can
reach the best accuracy among compact methods. It also achieves competitive performance
comparing with other state-of-the-art approaches. Experiments on the widely used datasets
CUB-200-2011 [34] and Stanford Cars [17] show the effectiveness of GBP.

2 Analysis of Bilinear Pooling
In FBP [23], in order to get the bilinear representation Z of input image, the image will pass
through the convolutional neural network first to obtain the high-order feature representation
X , X ∈RC×H×W , where C is the number of feature layers, the height and the width of feature
layers are H and W . For each feature layer, there are H×W different locations. The network
architecture is illustrated in Figure 1.

Here, we define local descriptor xT
i =

[
x1

i ,x
2
i , . . . ,x
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i
]
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Vectorizing Z, vector (Z) ∈ RC2
. Assuming C is 512, vector (Z) will be up to 250K

dimensions. The high dimensions of bilinear representation result in high computation and
storage costs.

The representation Z is used for classification after passing through the full-connection
layer,

Out put = ZWC +b =
1

HW

(
HW

∑
i

xixT
i

)
WC +bC (2)

Where WC ∈RC2×N is the weight matrix of full-connection layer, bC ∈Rk, Out put ∈RN ,
N is the number of categories. In general, C2� N, the rank of WC is as follow:

rank (WC)≤min
(
C2,N

)
= N (3)

Vectorizing the ith feature layer: f T
i =

[
xi

1,x
i
2, . . . ,x

i
HW
]
∈ RHW , FT = [ f1, f2, . . . , fC] ∈

RC,

Z =
1

HW

 f T
1 f1 . . . f T

1 fc
. . .

f T
1 fc . . . f T

c fc

=
1

HW
FFT (4)

Out put = ZWC +b =
1

HW

(
FFT )WC +bC (5)

In [5], RM [13] is used to sample the feature layers, then bilinear pooling is carried out.
In fact, the representation obtained by [5] is the recombination of part of the element in Z.
The representation obtained by [14] using the low-dimensional approximation of Hadamard
product is the elements on the diagonal of Z. This low-rank approximation actually abandons
the vast majority of information of Z. Losing of information is inevitable, although the
dimensions of representation is reduced.

X contains C different feature layers f , the bilinear representation Z in Equation 1 is
a symmetric matrix. The elements on the diagonal of Z are the dot product sum of the
corresponding positions of feature layer itself. The scalar obtained by point-wise product can
be regarded as the pixel-level self-correlation of the feature layer to some extent. Similarly,
the elements on the non-diagonal of Z are the dot product sum of the corresponding positions
of different feature layers, which can be regarded as the cross-correlation between feature
layers.

Since the bilinear representation obtained by bilinear pooling is a correlation representa-
tion with extremely high dimensions between high-order feature layers (increasing with the
square of the number of feature layers), it will greatly increase the parameters to be learned
by the full-connection layers even there is only a single-layer full-connection layer. Further-
more, there is nearly half of the calculations in symmetric matrices Z are repeated, obviously,
it greatly reduces computational efficiency and results in redundancy of the model.

3 Grouping Bilinear Pooling
According to Equation 3, hoping full-connection layer to establish high-efficient contact
between Z and Out put is impractical. Thus, minimizing the huge gap of dimensions between
Z and Out put is a highly cost-effective way.
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Figure 2: (a) is FBP, bilinear pooling is performed in pairs in all feature layers. (b) is
the intra-group bilinear pooling, bilinear pooling performs in each grouped feature layer
group. (c) is the inter-group bilinear pooling, bilinear pooling performs between two differ-
ent grouped feature layer groups.

We propose grouping bilinear pooling (GBP) that by grouping the feature layers X and
performing intra-group bilinear pooling (Intra-GBP) or strongly constrained inter-group bi-
linear pooling (Inter-GBP), the information of the original bilinear representation can be
greatly preserved and the model can be extremely compressed. Figure 2 shows the differ-
ence between FBP [23] and GBP.

3.1 Intra-group Bilinear Pooling
Dividing F into g groups. Noting that the maximum of g is C while carrying out Intra-GBP.
For the kth group GT

k =
[

f1, f2, . . . , fC/g
]
,Gk ∈ R

C
g ,

Zk =
1

HW
GkGT

k (6)

ZG =Concat (Z1,Z2, . . . ,Zk) (7)

Out put = ZGWG +bG (8)

Where vector (Zk) ∈ R
(

C
g

)2

,k ∈ [1,2, . . . ,g],ZG ∈ R
C2
g ,WG ∈ R

C2
g ×N ,bG ∈ RN .

For FBP, when the full bilinear representation Z is used for classification, the parameters
that the full-connection layer needs to learn are as high as C2N. While for the grouping
bilinear operation proposed by us, the parameters that the full-connection layer needs to
learn are C2N/g.

rank (WG)≤min
(

C2

g
,N
)

(9)

When g is small, this bilinear operation after grouping still requires large computational
resources (Intra-GBP at g = 1 is equivalent to FBP), and the dimension of Intra-GBP is still
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too high. As g gets bigger and bigger, it will bring huge benefits. The influence of changing
g will be explained in the experiment section.

The representation Zk in Equation 6 has similar properties to the representation Z ob-
tained by FBP, that is, Zk is also a symmetric matrix and there is still computational redun-
dancy. Thus, we propose inter-group bilinear pooling for further improvement.

3.2 Inter-group bilinear pooling
Same as Intra-GBP, dividing F into g groups. The difference is that bilinear pooling is carried
out between two different grouped feature layers groups Ga and Gb (Ga,Gb ∈R

C
g ,Ga 6= Gb)

in Inter-GBP. Ga and Gb are from grouped g groups, and each group is selected only once.

Zk
′
=

1
HW

GaGT
b (10)

ZG
′
=Concat

(
Z1
′
,Z2

′
, . . . ,Zk

′
)

(11)

Out put
′
= ZG

′
WG

′
+bG

′
(12)

Where vector
(

Zk
′
)
∈ R

(
C
g

)2

,k ∈ [1,2, . . . ,g/2],ZG
′ ∈ R

C2
2g ,WG

′ ∈ R
C2
2g ×N ,bG

′ ∈ RN .
Similar to Intra-GBP, Inter-GBP will yield huge benefits when g is large enough. Besides,

g should be a multiple of 2 due to the specific group selection method of Inter-GBP, the
maximum and minimum of g are C/2 and 2. The full connection layer needs to learn the
parameters: C2N/2g.

rank
(

WG
′
)
≤min

(
C2

2g
,N
)

(13)

Furthermore, in order to simplify the operation of Inter-GBP, feature layers are grouped
in sequence, and the groups for bilinear pooling are selected in order.

4 Experiment

4.1 Datasets, Backbone and Experiment Configurations
Datasets

We conduct experiments on two widely used fine-grained image classification datasets:
CUB [34] and Stanford Cars [17]. In all experiments, we only used the category labels of
images. The details of datasets are shown in Table 1.

Dataset Training Testing Category
CUB [34] 5994 5794 200

Stanford Cars [17] 8144 8041 196

Table 1: Datasets Details

Backbones
In order to compare with compact bilinear pooling methods and the states-of-the-art ap-

proaches using different methods, we use VGG-16 [31], ResNet-50 [9], ResNet-101 [9] and
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ResNet-152 [9] pretrained on the ImageNet [4] image classification dataset as our backbone
networks respectively (removing full-connection layers, using the GBP pooling layer and the
new full-connection layer instead).
Experimental Configurations

The experiment was carried out on the server of Ubuntu system, using PyTorch [26]
framework and 4 NVIDIA GTX 1080Ti GPUs for distributed model training. The size of
input image is 448× 448 and our data augmentation follows the commonly used methods.
During the training, the pre-training weight of the model on ImageNet [4] was first loaded
and frozen, and the parameters of the full-connection layer between GBP representation and
outputs were fine-tuned. During the fine-tuning, the initial learning rate was 0.0003, and
the Adam optimizer [15] was adopted with factor=0.2, patience=3, cooldown=3. After fine-
tuning the epoch to 45 epochs, the model was unfreezing, then the learning rate was adjusted
to 0.0001. In all experiments, the same experimental configurations were followed.

4.2 Evaluation

First, we used VGG-16 [31] as the backbone network to perform Intra-GBP and Inter-GBP
on CUB [34] dataset and Stanford Cars [17] dataset respectively. Then, after grouping bilin-
ear pooling, the obtained representation was used to classification directly by full-connection
layer. The high-order feature layer X extracted from VGG-16 has 512 feature channels,
which was divided into g groups, g ∈ [1,2,4,8,16,32,64,128,256]. Noting that the Intra-
GBP degenerates to FBP [23] at g = 1, and the minimum of g is 2 in Inter-GBP.

Figure 3: (a) is the Top1 accuracy of Intra-GBP and Inter-GBP based on VGG-16 on CUB
dataset; (b) is the corresponding model size (including backbone CNN).

The original FBP achieved an accuracy of 84.01% on CUB dataset, and our reimplemen-
tation achieved an accuracy of 83.43%. The experiment results of Intra-GBP and Inter-GBP
on the CUB dataset are shown in Figure 3 and Figure 4. Intra-GBP(Inter-GBP) achieved the
best accuracy 83.64%(83.66%) at g = 32 on CUB, 91.42%(92.49%) at g = 64 on Stanford
Cars. In the same grouping case, Inter-GBP tends to mean higher performance and fewer
parameters.

As discussed, Intra-GBP still has inherent redundancy, and Inter-GBP can reduce the
redundancy. Comparing with the Intra-GBP, the Inter-GBP is always more compressive
and performs better with same backbone. This characteristic does not vary with backbone
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Figure 4: (a) is the Top1 accuracy of Intra-GBP and Inter-GBP based on VGG-16 on Stanford
Cars dataset; (b) is the corresponding model size (including backbone CNN).

and dataset. Therefore, we only show Inter-GBP with better performance in subsequent
experiments.

In order to further verify the effectiveness of GBP with different backbones, we also
used ResNet-50, ResNet-101 and ResNet-152 as the backbone to perform GBP respectively.
With a more powerful backbone, GBP performs better. Table 2 shows the performances of
Inter-GBP based on ResNet-50 on CUB and Stanford Cars.

The groups 2 4 8 16 32 64 128 256 512 1024
CUB(%) 83.79 84.19 85.13 85.28 85.23 85.11 85.07 85.21 85.32 85.54

Model size(MB) 987.81 497.81 297.81 197.81 147.81 122.81 110.31 104.06 100.94 99.37
Stanford Cars(%) 92.11 92.34 92.35 92.29 92.33 92.49 92.61 92.75 92.74 92.86
Model size(MB) 971.81 489.81 293.81 195.81 146.81 122.31 110.06 103.94 100.87 99.34

Table 2: The Inter-GBP experiments on CUB dataset and Stanford Cars dataset (ResNet-50)

In the case of g=1024, the best accuracy of Inter-GBP on CUB dataset(Stanford Cars
dataset) reaches 85.54%(92.86%), which is 2%(0.4%) higher than Inter-GBP based on VGG-
16. When g goes from 2 to 1024, the model size goes from 987.81MB(971.81MB) to
99.37MB(99.34MB) and the accuracy goes from 83.76%(92.11%) to 85.54%(92.86%).

Noting that the accuracies reach the highest at g=1024 (maximum number of grouping).
It is because the Inter-GBP representation is the most compact when maximum number of
grouping is used. In all experiments with ResNet as the backbone, more groupings often
represent better performance.

4.3 Comparison with Compact Bilinear Pooling Methods
It is similar to the comparison method in [16], we compare our GBP with some classical
compact bilinear pooling methods [5, 16, 22, 23] in details.

Assuming that the categories to be classified is N, and bilinear pooling is carried out
on the feature layers with the size of c× h×w, where c is the feature channels, the height
and width of feature layers are h and w (VGG-16: h=w=28, c=512; ResNet-50: h=w=14,
c=2048). For more intuitive comparison, taking the experiment on CUB as an example. The

Citation
Citation
{Kong and Fowlkes} 2017

Citation
Citation
{Gao, Beijbom, Zhang, and Darrell} 2016

Citation
Citation
{Kong and Fowlkes} 2017

Citation
Citation
{Lin and Maji} 2017

Citation
Citation
{Lin, RoyChowdhury, and Maji} 2015



8 RUI ZENG, JINGSONG HE: GROUPING BILINEAR POOLING

input size of the images is 448×448. The configurations of the comparative experiment are
as follows: g=128(VGG-16), g=1024(ResNet-50), m=100, r=8, d=8192, N=200.

Backbone Method Dimension Computing Parameters
Pooling Classifying Projection Classifier Total

VGG-16

FBP [23] c2[262K] O(hwc2) O(Nc2) 0 Nc2 200MB
iFBP [22] c2[262K] O(hwc2) O(Nc2) 0 Nc2 200MB

CBP-TS [5] d[10K] O(hw(c+dlogd)) O(Nd) 2c Nd 8MB
CBP-RM [5] d[10K] O(hwcd) O(Nd) 2cd Nd 48MB
LRBP-I[16] mhw[78K] O(hwcm) O(Nrmhw) cm Nrm 0.8MB
LRBP-II[16] m2[10K] O(hw(cm+m2)) O(Nrm2) cm Nrm 0.8MB

Intra-GBP(ours) c2/g[2K] O(hwc2/g2) O(Nc2/g) 0 Nc2/g 1.6MB
Inter-GBP(ours) c2/2g[1K] O(hwc2/2g2) O(Nc2/2g) 0 Nc2/2g 0.8MB

ResNet-50
FBP [23] c2[4194K] O(hwc2) O(Nc2) 0 Nc2 3200MB

Intra-GBP(ours) c2/g[4K] O(hwc2/g2) O(Nc2/g) 0 Nc2/g 3.2MB
Inter-GBP(ours) c2/2g[2K] O(hwc2/2g2) O(Nc2/2g) 0 Nc2/2g 1.6MB

Table 3: Comparison of different compact bilinear pooling methods. We used VGG-16 and
ResNet-50 as the backbone respectively to compare the computational complexity, represen-
tation dimensions and the parameters need to be learned (excluding the backbone network).

The detailed comparisons of different compact bilinear pooling methods are shown in
Table 3. The comparison contents include feature dimension, computational complexity and
the number of parameters. Under the same configurations, the performances of compact
bilinear pooling methods based on VGG-16 are shown in Table 4.

Dataset FBP [23] iFBP [22] CBP-TS [5] CBP-RM [5] LRBP[16] Intra-GBP(ours) Inter-GBP(ours)
CUB(%) 84.01 85.80 84.00 83.86 84.21 83.64 83.66

Stanford Cars(%) 91.18 92.10 90.19 89.54 90.92 91.42 92.49

Table 4: The performances of different compact bilinear pooling methods on CUB dataset
and Stanford Cars dataset. (Based on VGG-16)

According to the comparisons, GBP is more competitive than other compact methods in
almost all the aspects. When using VGG-16 as backbone, the representation dimensions of
Inter-GBP(g = 128) are only 0.4% of FBP, and the calculation amount of pooling is reduced
by 4 orders of magnitude. Besides, the parameters need to learn (excluding the backbone
network) are reduced by 99.6%. Comparing with [5, 16], the grouping operation in GBP
is performed without learning additional parameters. Assuming ResNet-50 is used as back-
bone, the bilinear feature representations based on FBP [23](GBP) will reach 4194K (2K),
and the parameters of model will reach 3200MB (1.6MB).

From the performances, GBP greatly reduces the number of model parameters and achieves
or closes to the best accuracies of other compact methods. On Stanford Cars dataset, the
Inter-GBP based on VGG-16 reaches the best accuracy of 92.49%. When using a more
powerful backbone, GBP will achieve all-round transcendence.

4.4 Comparison with the state-of-the-art

Generally, it is hard to balance accuracy and the complexity of model when bilinear pooling
is applied. With the extreme compression, GBP is able to using more powerful backbones
to improve performance. We embedded GBP in different backbones and compared it with
other methods. The performances of baselines, full bilinear pooling based methods, com-
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pact bilinear pooling based methods, GBP(ours) methods and other state-of-the-art methods
relating to channels are shown in Table 5.

Method Backbone Dimension Parameters CUB(%) Stanford Cars(%)
VGG-16 [31] - 25K 20MB 74.59 85.05
ResNet-50 [9] - 2K 1.6MB 82.15 92.19
ResNet-101 [9] - 2K 1.6MB 82.58 92.56Baselines

ResNet-152 [9] - 2K 1.6MB 82.74 92.64
FBP [23] 84.01 91.18
iFBP [22] 85.80 92.10Full Bilinear Pooling

MoNet-FBP [8]
VGG-16 260K 200MB

86.40 91.80
CBP [5] 10K 8MB 84.00 90.19

LRBP [16] 10K 8MB 84.21 90.90
MoNet-TS [8] 10K 8MB 85.70 90.80

FBC [7] 8K 6.4MB 84.30 -
Compact Bilinear Pooling

SBP-EN [20]

VGG-16

10K 8MB 84.50 90.90
VGG-16 - - - 90.70

ResNet-50 - - - 92.30SWP [10]
ResNet-101 - - - 93.10

HBPASM [33] ResNet-34 - - 86.80 92.80
HBP [35] VGG-16 24K 19MB 87.01 93.70

VGG-16 - - 81.10 88.30SEF [25] ResNet-50 - - 87.30 94.00
MC-loss [1] ResNet-50 - - 87.30 93.70

ResNet-50 - - 87.50 94.10

State-of-the-art

CIN [6] ResNet-101 - - 88.10 94.50
VGG-16 1K 0.8MB 83.66 92.49

ResNet-50 2K 1.6MB 85.54 92.86
ResNet-101 2K 1.6MB 86.10 93.76GBP(ours) Inter-GBP

ResNet-152 2K 1.6MB 86.31 94.22
Table 5: The performances of different methods on CUB dataset and Stanford Cars dataset.
From top to bottom, the five blocks respectively list baselines, full bilinear pooling based
methods, compact bilinear pooling based methods, other state-of-the-art methods relating to
channels and our method.

Comparing with the methods based on bilinear pooling and compact bilinear pooling,
GBP is the most compact method and achieves the best performance. Especially, Inter-
GBP improves the best performance of compact bilinear pooling from 91.80% to 94.22% on
Stanford Cars dataset.

In addition, due to lack of simplicity and convenience, few papers apply compact bilin-
ear pooling approaches to high-performing backbones. And we also tried to perform other
compact BP on better backbones, but the result is not good enough. GBP compresses the
bilinear representation to the extreme so that it can be used with more powerful backbones
to achieve competitive performance.

The grouping operation of GBP is performed at the channel level. Comparing with other
state-of-the-art methods relating to channels [1, 6, 10, 25, 33, 35], GBP shows performance
as good as or even better than these methods.

Spatially weighted pooling (SWP) [10] strategy was proposed to improve the robust-
ness and effectiveness of the feature representation. [33] devised a novel model Hierarchical
Bilinear Pooling with Aggregated Slack Mask (HBPASM) to generate a RoI-aware image
feature representation for better performance. [35] first proposed to obtain a better feature
representation by adjusting channel dimensions and performing Hadamard product between
different hierarchical feature layers. Mutual-channel loss [1] achieved the state-of-the-art
performance when implemented on top of common base networks. Channel permutation
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and weighted combination regularization in [25] also shown its effectiveness. And channel
interaction network [6] allowed the model to learn the complementary features from the cor-
related channels, yielding stronger fine-grained representation. These methods achieved the
state-of-the-art in different ways.

Compared with SWP [10], which also uses VGG-16, ResNet-50 and ResNet-101 as
backbones, GBP has better performance with different backbone. GBP outperformed most
other state-of-the-art methods with the accuracy of 94.22% on the Stanford Cars dataset,
only 0.3% lower than the best method [6].

5 Conclusions
We propose GBP in this paper, then Intra-GBP and Inter-GBP is introduced. By bilinear
pooling the grouped high-order feature layers in different way, GBP greatly reduces the
dimensions of the bilinear representation, the storage consumption and calculations. Com-
paring with other compact bilinear methods, GBP achieves the-state-of-the-art. Meanwhile,
the experiments show that GBP has also achieved competitive performance comparing with
other state-of-the-art approaches.

With the reduction of bilinear representation dimensions brought by GBP, bilinear pool-
ing can be applied in other visual tasks efficiently. And GBP can be embedded into different
models as a plug-and-play module with convenient operation. We believe GBP has much
more potential. In the future work, we plan to further explore GBP by combining it with
other methods.

References
[1] Dongliang Chang, Yifeng Ding, Jiyang Xie, Ayan Kumar Bhunia, Xiaoxu Li, Zhanyu

Ma, Ming Wu, Jun Guo, and Yi-Zhe Song. The devil is in the channels: Mutual-channel
loss for fine-grained image classification. IEEE Transactions on Image Processing,
2020.

[2] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2018.

[3] K. Daniilidis, P. Maragos, and N. Paragios. Improving the fisher kernel for large-scale
image classification. Eccv, 2010.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009.

[5] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear pooling.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[6] Yu Gao, Xintong Han, Xun Wang, Weilin Huang, and Matthew Scott. Channel in-
teraction networks for fine-grained image categorization. Proceedings of the AAAI
Conference on Artificial Intelligence, 2020.

Citation
Citation
{Luo, Zhang, Li, and Wei} 2020

Citation
Citation
{Gao, Han, Wang, Huang, and Scott} 2020{}

Citation
Citation
{Hu, Wang, Li, and Shen} 2017

Citation
Citation
{Gao, Han, Wang, Huang, and Scott} 2020{}



RUI ZENG, JINGSONG HE: GROUPING BILINEAR POOLING 11

[7] Zhi Gao, Yuwei Wu, Xiaoxun Zhang, Jindou Dai, Yunde Jia, and Mehrtash Harandi.
Revisiting bilinear pooling: A coding perspective. Proceedings of the AAAI Conference
on Artificial Intelligence, 04 2020.

[8] Mengran Gou, Fei Xiong, Octavia Camps, and Mario Sznaier. Monet: Moments em-
bedding network. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[10] Qichang Hu, Huibing Wang, Teng Li, and Chunhua Shen. Deep cnns with spatially
weighted pooling for fine-grained car recognition. IEEE Transactions on Intelligent
Transportation Systems, 2017.

[11] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local descriptors into a
compact image representation. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, 2010.

[12] H. Jie, S. Li, S. Gang, and S. Albanie. Squeeze-and-excitation networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PP(99), 2017.

[13] Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels.
Journal of Machine Learning Research, 22:583 – 591, 2012.

[14] Jin-Hwa Kim, Kyoung On, Jeonghee Kim, Jung-Woo Ha, and Byoung-Tak Zhang.
Hadamard product for low-rank bilinear pooling. 5th International Conference on
Learning Representations, ICLR 2017 - Conference Track Proceedings, 10 2016.

[15] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Inter-
national Conference on Learning Representations, 12 2014.

[16] S. Kong and C. Fowlkes. Low-rank bilinear pooling for fine-grained classification. In
IEEE Computer Society, pages 7025–7034, 2017.

[17] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations
for fine-grained categorization. In 2013 IEEE International Conference on Computer
Vision Workshops, pages 554–561, 2013.

[18] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25(2),
2012.

[19] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, 2006.

[20] Q. Liao, D. Wang, H. Holewa, and M. Xu. Squeezed bilinear pooling for fine-grained
visual categorization. In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), 2020.



12 RUI ZENG, JINGSONG HE: GROUPING BILINEAR POOLING

[21] T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid
networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[22] Tsung-Yu Lin and Subhransu Maji. Improved bilinear pooling with cnns. 07 2017.

[23] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for
fine-grained visual recognition. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1449–1457, 2015.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg. Ssd:
Single shot multibox detector. European Conference on Computer Vision, 2016.

[25] Wei Luo, Hengmin Zhang, Jun Li, and Xiu-Shen Wei. Learning semantically enhanced
feature for fine-grained image classification. IEEE Signal Processing Letters, 2020.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, volume 32, 2019.

[27] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categoriza-
tion. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference
on, 2007.

[28] N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2013.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Computer Vision & Pattern Recognition, 2016.

[30] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. Springer, Cham, 2015.

[31] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. Computer Science, 2014.

[32] Ming Sun, Yuchen Yuan, Feng Zhou, and Errui Ding. Multi-attention multi-class con-
straint for fine-grained image recognition. In Computer Vision – ECCV 2018, 2018.

[33] Min Tan, Guijun Wang, Jian Zhou, Zhiyou Peng, and Meilian Zheng. Fine-grained
classification via hierarchical bilinear pooling with aggregated slack mask. IEEE Ac-
cess, 2019.

[34] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
The caltech-ucsd birds200-2011 dataset. Advances in Water Resources - ADV WATER
RESOUR, 07 2011.

[35] C. Yu, X. Zhao, Q. Zheng, P. Zhang, and X. You. Hierarchical bilinear pooling for
fine-grained visual recognition. 2018.



RUI ZENG, JINGSONG HE: GROUPING BILINEAR POOLING 13

[36] Chaojian Yu, Xinyi Zhao, Qi Zheng, Peng Zhang, and Xinge You. Hierarchical bilinear
pooling for fine-grained visual recognition. In Computer Vision – ECCV 2018, 2018.

[37] D. Yu, H. Wang, P. Chen, and Z. Wei. Mixed pooling for convolutional neural networks.
In International Conference on Rough Sets & Knowledge Technology, 2014.

[38] Matthew Zeiler and Rob Fergus. Stochastic pooling for regularization of deep con-
volutional neural networks. Proceedings of the International Conference on Learning
Representations (ICLR), 2013.

[39] Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo. Learning deep bilinear
transformation for fine-grained image representation. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc., 2019.


