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Abstract

Meta-learning stands for ‘learning to learn’ such that generalization to new tasks is
achieved. Among these methods, Gradient-based meta-learning algorithms are a specific
sub-class that excel at quick adaptation to new tasks with limited data. This demonstrates
their ability to acquire transferable knowledge, a capability that is central to human learn-
ing. However, the existing meta-learning approaches only depend on the current task in-
formation during the adaptation, and do not share the meta-knowledge of how a similar
task has been adapted before. To address this gap, we propose a ‘Path-aware’ model-
agnostic meta-learning approach. Specifically, our approach not only learns a good ini-
tialization (meta-parameters) for adaptation, it also learns an optimal way to adapt these
parameters to a set of task-specific parameters, with learnable update directions, learning
rates and, most importantly, the way updates evolve over different time-steps. Compared
to the existing meta-learning methods, our approach offers the following benefits: (a)
The ability to learn gradient-preconditioning at different time-steps of the inner-loop,
thereby modeling the dynamic learning behavior shared across tasks, and (b) The capa-
bility of aggregating the learning context through the provision of direct gradient-skip
connections from the old time-steps, thus avoiding overfitting and improving general-
ization. We report significant performance improvements on a number of datasets for
few-shot learning on classification and regression tasks.

1 Introduction
Leveraging from their prior experience, humans can easily learn new concepts from a few
observations. Few-shot learning aims to mimic this astounding capability, and requires quick
model adaptation using only a few examples. In contrast, contemporary deep learning mod-
els are data hungry by nature, learn each task in isolation and require significant training
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time. Meta-learning comes as a natural solution to this problem, due to its focus on ‘learn-
ing to learn’ a generalizable model from multiple related tasks. This strategy offers a quick
adaptation to new tasks.

Model-agnostic meta-learning (MAML) [5] is a popular approach that learns a general-
izable representation which can be quickly adapted to a new task with only a few examples.
In MAML, the meta-training operates in two nested loops. First, the task-specific parame-
ters are learned in the inner-loop, followed by learning a shared set of parameters that acts
as a good prior for all the tasks. Although MAML uses standard gradient descent for inner-
loop optimization, recent works demonstrate that an improved inner-loop optimization can
positively influence the performance [2, 13, 15]. However, these existing methods do not
consider the learning trends (update direction, step-size and evolution through iterations) in
the inner-loop across different tasks.

In this paper, we develop a new model-agnostic meta-learning framework called ‘Path-
Aware MEta-LeArning’ (PAMELA). Compared to MAML, which learns a good initializa-
tion for the meta-learner, our approach learns the optimal learning trend shared across dif-
ferent tasks. This means that, in addition to a transferable initialization, we learn the update
directions, the learning rates and, most importantly, the way updates evolve over different
time-steps. As an example, our model can encode how the inner-loop training first com-
mences with large steps and converges to shorter steps as it gets close to the local minima.
Similarly, it can also learn how to optimally reuse task parameters from the past updates. In
essence, our approach provides a new way to encode the prior (generalizable) knowledge in
a more principled and flexible manner.

PAMELA showcases two main novelties to meta-learn the learning paths shared across
tasks. First, we propose to learn distinct gradient preconditioning matrices at different iter-
ation steps in the inner-loop. Pre-conditioning was first proposed in Meta-SGD [13]. How-
ever, as opposed to [13], which learns a single preconditioning matrix for the whole path,
we show that learning iteration-specific preconditioning provides us the flexibility to model
varying trends along the learning paths. Second, to learn better context at each time step,
we propose a residual connection based gradient preconditioning that allows multiple old
gradients to directly flow via the gradient-skip connections. This approach not only provides
better context, but also helps avoid gradient vanishing for the task at hand.

Overall, our approach helps in providing an improved modelling of the short-term knowl-
edge specific to a task and also the long-term trends shared between tasks. In a similar
pursuit, recurrent neural network (RNN) based meta-learning methods have been explored
in the literature [1, 7, 17]. Andrychowicz et al. [1] proposed an LSTM meta-learner that
learns to mimic a gradient based optimizer, outputting updates at different time steps. Ravi
and Larochelle [17] extended the LSTM meta-learner for few-shot settings, where both the
base initialization and update mechanism are learned, resulting in a high complexity. In con-
trast to these approaches, we take a different perspective on aggregating path context. We
learn unique trends in each update step while simultaneously combining past context using
gradient-skip connections. This results in an easy-to-train model with faster convergence
and superior performance.

2 Related Work
Meta-learning algorithms can be grouped into three main categories: a) Metric-based, b)
Model-based and c) Gradient-based optimization methods. We outline these below and con-
trast our work with each line of works.
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Figure 1: Inner-loop optimization of model-agnostic gradient-based meta-learning algo-
rithms: MAML takes multiple steps towards the optimal parameters θ ∗, and Meta-SGD
takes a single step with a preconditioned direction. While PAMELA takes multiple steps
towards θ ∗ with a unique preconditioned direction for each step, as well as shares the meta
information between past and future updates via Gradient-skip connections. This results in
a faster convergence closer to the optimal parameters.

Metric and Model-based Meta-learning: Metric-based methods learn an optimal distance
kernel, parameterized by meta-parameters. Koch et al. [11] used a siamese network to com-
pare the distance between samples. Vinyals et al. [21] proposed matching networks, which
learn the similarity between support sets and the test samples by producing a weighted sum
of the support set labels and attention kernel. Relation networks [20] use a learnable module
to predict relation scores in the feature space. Further, prototypical networks [19] define a
prototype for each task as an average embedding of the network output, and learn the met-
ric space via error back-propagation. The model-based meta-learning algorithms learn to
quickly adapt to the tasks by either having an internal memory or by using fast weights.
Gradient-based Meta-learning: Meta-LSTM [17] models the meta-learner as a recurrent
network (LSTM), thereby learning to generate the parameters of the learner at each time
step. Finn et al. [5] proposed a Model Agnostic Meta-Learning (MAML) algorithm. MAML
functions in two loops (inner and outer) and uses the second-order gradients to update the ini-
tial parameters. This requires backpropagation through the learning steps of the inner loop.
Therefore, to reduce the computational complexity of MAML, the authors also proposed a
first-order approximation of MAML (FOMAML), which considers only the last gradient on
the inner loop update as the meta-gradient. In addition to FOMAML, Nichol et al. [14] used
Reptile, which is a better first-order approximation since it computes an average of all inner
loop gradients for the meta-update. Reptile is more robust to sample selection and gradient
noise. In addition to this, Antoniou et al. [2] made few changes to MAML, such as layer-
wise learning rates and accumulating meta-loss in each update. Rajeswaran et al. [16] used a
closed-form approximation to solve the MAML optimization, using a regularized loss func-
tion. Khodadadeh et al. [9] proposed a semi-supervised version of MAML algorithm while
Im et al. [8] generalize MAML update with a higher-order ODE solver. However, these
MAML based methods treat the inner loop as a fixed learning process and do not share
any meta knowledge during the learning updates. In essence, these meta-learning methods
fall into learning-to-initialize framework, while our work is a combination of learning-to-
initialize and learning-to-optimize paradigms.

Meta-SGD [13] preconditions the inner loop gradients with meta-trainable learning rate,
thus allowing the meta-information to be used in the inner loop adaptation process. Similar
to Meta-SGD, Park et al. [15] proposed Meta Curvature, which learns the curvature infor-
mation to precondition the gradients. Meta-Curvature performs better than Meta-SGD in
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practice, however, it requires higher-order tensor operations to learn the curvature. Recently,
Flennerhag et al. [6] proposed a warp gradient-based approach, which inserts warp layers in
between the network layers, and updates these after a specific interval using the accumulated
gradients (meta-update). However, WarpGrad [6] is not model agnostic since it requires
modifications in the model architecture. Further, WarpGard preconditions the feature space
in the forward pass, while our method preconditions only the gradients, thereby making it
totally independent from the model architecture. In addition, different to the above men-
tioned approaches, PAMELA learns the optimal inner-loop update trends shared across tasks
as well as the best combination of knowledge acquired at previous steps.
Meta-Curvature [15] also use gradient precondition to find an optimal point for the adapta-
tion. However, Meta-curvature does preconditioning on the forward gradients in the inner
loop, and their goal is to achieve better generalization by this preconditioning during adap-
tation and essentially uses the same MAML style algorithm to learn a good initialization of
weights. Our method on the other hand focuses on both good initialization as well as adap-
tation. With our gradient-skip connections, optimizing the outer-loop objective becomes
much easier compared to optimizing MAML objective. Therefore, PAMELA can quickly
learn good set of weights for the initialization. Additionally, our choice of Q is simple
element-wise multiplication compared to Meta-curvature’s complex matrix multiplications.
MAML++ [2] has proposed various way to improve the stability of MAML training. How-
ever, our gradient-skip connection concept is different from MAML++ ’s average loss func-
tion. MAML++ injects gradients into every step of the update by using a loss function which
is evaluated at every step on the validation data (note MAML evaluates on the last step).
While our method uses skip connections during the optimization stage (”gradient-skip” con-
nection), thus creating a skip connection in the parameter space, not in the activation space.
This will allow us to back-propagate 2nd order gradients via these gradient-skip connections.

3 Path-aware Meta-learning
In a classical learning setting, a model learns knowledge about the training set and applies it
on the test set. This paradigm learns each task in isolation and demands large quantities of
data and training time for each training cycle. In contrast, meta-learning seeks to learn about
learning so that quick adaptation to new tasks is possible. In this pursuit, we propose a new
model-agnostic meta-learner called PAMELA, which not only learns a better initialization
that can generalize across tasks, but also models the learning trends that reveal how the inner-
loop (task-specific update process) evolves during training. Further, it uses the acquired
meta-knowledge to combine previous gradients for a stronger context, thereby converging to
a better initialization.

3.1 Meta-training
Meta training of gradient-based models, involves learning a good initialization, so that during
the adaptation it can converge faster. In this work, we are also interested in learning a good
trajectory of the inner-loop. Therefore, during the meta-training we need to learn a set of
initialization weights, as well as a set of preconditioning weights which will shape trajectory
of the inner-loops. Consider a classification model fθ , which is parameterized by θ , and
FΦ(θ), which is an inner-loop optimization function of the meta-learner parameterized by
Φ. We suppose that a task T contains two sets of data, a training set Dtr and a validation
set Dval i.e., {Dtr,Dval} ∈ T . We want to optimize fθ on each task T ∼ P(T ), so that after
learning from multiple tasks of similar nature, FΦ can figure out how to rapidly learn a new
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task sampled from the same distribution P(T ). This optimization problem is given by:

min
θ ,Φ

ET ∼P(T )

[
LDval ( fFΦ(θ)︸ ︷︷ ︸

inner-loop

)
]

︸ ︷︷ ︸
outer-loop

, (1)

where L is a loss function for the given task. As Eq. 1 shows, meta-training consists of
two parts: an inner-loop and an outer-loop. The inner-loop learns the task-specific adapta-
tion, while the outer-loop learns about the ‘learning process of the inner-loop’. Below, we
respectively describe the two nested loops.

3.1.1 Inner-loop Optimization

In PAMELA, the inner-loop optimization function FΦ is defined as an iterative update pro-
cess. FΦ takes the model parameters θ and gives θn after n inner-loop iterations, such that
LDtr( fθ ) is minimized,

θn← FΦ(θ)≈min
θ

EDtr∼T [LDtr( fθ )]. (2)

The inner-loop of PAMELA differentiates it from other gradient-based meta-learning algo-
rithms such as MAML [5] and Meta-SGD [13]. MAML [5] simply follows the gradient
descent during inner-loop optimization, hence θ moves along the true gradients. The on-
line update is formally given by: θ j+1 = θ j−α∇θ jLDtr( fθ j), where α is a constant scalar
and j > 0. However, following the true gradients on a limited number of samples will not
converge to a globally optimal set of parameters, which minimizes the loss on all Dtr ∈ T .
In summary, MAML [5] uses no gradient pre-conditioning, thus ignoring how other tasks
update their parameters. To improve MAML, Meta-SGD preconditions the true gradients by
considering α (step size) as a meta-parameter. As a result, θ moves in a direction that can
provide the optimal parameters for all tasks. Although Meta-SGD moves θ along a meta-
learned direction, it takes only a single step towards the optimal parameters and therefore
does not guarantee convergence. Notably, Meta-SGD cannot be simply run with multiple
steps since it uses a single preconditioning matrix that cannot model the different directions
required to be learned for multiple-steps in the inner-loop. As an example, early updates
generally need stronger gradients, while later ones do not; thus, a single parameter cannot
encompass the step-wise learning behavior. To validate this, we extend the Meta-SGD with
multiple inner-loop steps and notice that it fails to converge with more iterations.

In contrast to the above methods, PAMELA preconditions the true gradients in order
to learn unique step-wise update directions and to share meta-knowledge between differ-
ent steps. This behavior is illustrated in Fig. 1. Consequently, our inner-loop optimization
function FΦ has two sets of learnable meta-parameters, QQQ and PPPw, respectively:

Φ = {QQQ,PPPw}, s.t., QQQ = {Q0,Q1, ...Qn−1} and (3)
PPPw = {Pw

0 ,P
w
w , ...,P

w
(n//w−1)∗w}, (4)

where // denotes floor division, n is the total number of inner-loop updates and w is the
interval size over which we aggregate context using gradient-skip connections. Each Q and
P is a vector, with dimensions same as the corresponding layer parameters it represents. The
parameters Q j learn the trends for each inner-loop update, while Pw

j learn the correlations
between current and past updates.
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Figure 2: Comparison between MAML, MetaSGD and our PAMELA. Left: One step inner-
loop update of MAML, which can be understood as an identity gradient-skip connection of
the model parameters and learning the gradients as residual signals. However, the gradients
are not pre-conditioned; therefore, the whole adaptation process is independent of the meta
parameters. Middle: Meta-SGD uses a single matrix Q to pre-condition inner-loop gradients.
However, this will lead to faster jumps at the end of multiple update steps and potentially
collapse the model. Right: PAMELA uses a separate pre-condition matrix Q j for each update
step, as well as sharing the information from the previous learned parameters using a longer
interval of gradient-skip connection with a coefficient Pw

j , thereby learning the update-trends
shared across tasks.

QQQ: Modeling the Learning Directions: Each element Q j ∈QQQ controls the learning trend of
fθ j in each inner-loop update step, thus discretely learning and sharing the meta-knowledge
between tasks at different time steps. At the jth inner-loop update, we pre-condition the
true gradients ∇θ jLDtr( fθ j) by Q j using the Hadamard product. We use the term true gradi-
ents to denote the gradients calculated from the loss function, without any preconditions or
projections. Therefore, the model parameters move in a direction that jointly encompasses
the true gradient directions across tasks. However, assigning a single meta-parameter for
each parameter in the model will suffer from large memory requirements. For example, n
inner-loop updates would require n-times more memory. Due to this, we only learn a single
meta-parameter for each convolutional kernel. This choice is made because a kernel captures
a single feature in the given images, therefore, all the parameters for a given kernel should
adapt similarly as the model evolves in the inner-loop. For fully-connected layer, we keep a
single meta-parameter for each parameter during inner-loop updates.
PPPw: Modeling the Update Context and Learning Rates: The meta-parameters Pw

j learn
the correspondence between the past and the current gradient updates. For example, Pw

j
will fuse the knowledge from θ j−w to θ j. Here, w (interval-size) is a hyper-parameter that
controls the gap between the current and historical gradient update used to calculate the
context at a given iteration. Interval size w is fixed through out the learning process and the
optimal value is set using a validation set. Finally, we use the following update rule for the
jth inner-loop update of FΦ,

θ j+1 =

{
θ j−Q j ◦∇θ jLDtr ( fθ j ) if ( j mod w) ̸= 0,
(1−Pw

j )◦{θ j−Q j ◦∇θ jLDtr ( fθ j )}+Pw
j ◦θ j−w else.

(5)

Here, ◦ is the Hadamard product and 1 is an identity matrix. If the condition ( j mod w) ̸= 0
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is satisfied, then the update is simple gradient descent with a preconditioning. If not, it first
uses a gradient descent update for the model parameters and then combines the updated
weights with previous weight from the ( j−w)th step. The current weights and the historical
weights are combined with coupling coefficients, 1−Pw

j and Pw
j , respectively. Similar to

QQQ, having a per-parameter model for PPP increases the memory complexity by the number of
gradient-skip connections. Thus, we use a single meta-parameter set PPP for each layer. This
helps to minimize the change in the parameter distribution at a layer.
This predefined weights for the inner-loop adaptation limits our ability to use more inner
loop gradient steps, with preconditioning. However, for the datasets we evaluated having 5
number of gradients steps is sufficient to achieve convergence. However, we can still update
the inner loop for any number of gradient steps by having P = Q = I. Also, the model
converges quite fast during the early stages of the inner loop (thanks to preconditioning),
therefore after this adaptation the model will be already close to the optimal point.

3.1.2 Outer-loop Optimization

Meta-learning happens in the outer-loop during the optimization process. In the inner-loop,
θ is optimized for a task T , and the objective of the outer-loop is to find a new initialization
for θ and Φ such that new tasks can be quickly adapted. Thus, in the outer-loop, multiple θ k

n
are available, which are optimized for their corresponding tasks Tk ∼ P(T ). To combine the
knowledge across all the learned tasks, the outer-loop objective is set to minimize the average
loss on Dk

val . Therefore, we need the gradients with respect to θ and Φ on LDval ( fθn),

{θ new,Φnew}= {θ ,Φ}−β∇{θ ,Φ}

K

∑
k=1
LDk

val
( f

θ k
n
). (6)

Here, β is the learning rate of the outer-loop. Overall, the complete meta-training process
can be combined as learning θn using the inner-loop function FΦ, and learning θ and Φ in
the outer-loop. Note that, the outer-loop optimization is similar to MAML; however, the
gradients of the meta update are different from MAML and Meta-SGD. This is because of
the novel gradient-skip connections introduced in the inner-loop function, which bypass the
gradients in the backward pass and combine multiple inner-loop gradients in the forward
pass1. It is important to note that ‘gradient-skip’ connection denotes bypassing the weights
from early updates to the current update, in contrast to the features as in standard residual
networks e.g., ResNets.

4 Experiments
We extensively evaluate PAMELA on few-shot supervised classification and regression prob-
lems. In both cases, the training set has a large number of tasks with a very small number of
samples. The fewer samples per task makes it non-trivial to learn a good representation using
traditional supervised learning approaches. However, since there are many tasks available,
we can learn ‘what is the best way to learn a task’. Therefore, meta-learning frameworks are
well suited for few-shot learning problems. In addition to evaluating on few-shot learning,
we provide a detailed ablation study on PAMELA (Sec. 4.4).

1Here, backward pass of gradients means the flow of the second-order gradients during the meta update and the
forward pass of gradients means first-order gradients for each inner-loop update.
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Methods miniImageNet, 5-way CIFAR-FS, 5-way tieredImageNet, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML [5] 48.70 ± 1.84 63.11 ± 0.92 58.9 ± 1.9 71.5 ± 1.9 51.67 ± 1.87 70.30 ± 1.75
MAML++ [2] 52.15 ± 0.26 68.32 ± 0.44 - -
FOMAML [5] 48.07 ± 1.75 63.15 ± 0.91 55.6 ± 0.9 70.2 ± 0.7 47.37 ± 0.80 66.12 ± 0.79
Reptile [14] 49.97 ± 0.32 65.99 ± 0.58 - -
Meta-LSTM [17] 43.44 ± 0.77 60.60 ± 0.71 43.4 ± 0.8 60.6 ± 0.7 - -
Meta-SGD [13] 50.47 ± 1.87 64.03 ± 0.94 56.9 ± 0.9 70.1 ± 0.7 50.92 ± 0.93 69.28 ± 0.80
iMAML-HF [16] 49.30 ± 1.88 - - -
MT-Net [12] 51.70 ± 1.84 - - -
R2D2 [3] 49.50 ± 0.20 65.40 ± 0.20 62.3 ± 0.2 77.4 ± 0.2 - -
L-MAML [4] 49.40 ± 1.83 - - -
HSML [22] 50.38 ± 1.85 - - -

PAMELA 53.50 ± 0.89 70.51 ± 0.67 63.5 ± 0.9 79.1 ± 0.7 54.81 ± 0.88 74.39 ± 0.71

Figure 3: Few-shot learning results on miniImageNet [17], CIFAR-FS [3] and tieredIma-
geNet [18] datasets. All accuracies are in %.

4.1 Few-shot Classification

Settings: For an M-way N-shot setting, N samples are given for M different classes in each
task. Therefore, for a kth task Tk, the training dataset Dk

tr ∈ Tk has N ∗M samples. For
all experiments, we use 15 samples per class for validation during the meta-update, hence
Dk

val ∈ Tk has M ∗15 samples.

4 2 0 2 4

2

1

0

1

2

Few shot regression (K=20)

Ground Truth
Data points
MAML
Meta SGD
PAMELA

4 2 0 2 4

2

1

0

1

2

Number of Updates on PAMELA

Ground Truth
Data points
#updates = 1
#updates = 2
#updates = 3
#updates = 4
#updates = 5

K Method MSE

5
MAML [5] 1.13 ± 0.18
Meta-SGD [13] 0.90 ± 0.16
MT-Net [12] 0.76 ± 0.09
PAMELA 0.54 ± 0.06

10
MAML [5] 0.77 ± 0.11
Meta-SGD [13] 0.53 ± 0.09
MT-Net [12] 0.49 ± 0.05
PAMELA 0.41 ± 0.04

20
MAML [5] 0.48 ± 0.08
Meta-SGD [13] 0.31 ± 0.05
MT-Net [12] 0.33 ± 0.04
PAMELA 0.17 ± 0.03

Figure 4: Left: We compare PAMELA with MAML and Meta-SGD on the sine wave re-
gression problem. We can see that PAMELA fits the curve better, and the curve generated
by PAMELA is smoother than the curve generated by MAML and Meta-SGD. middle: We
also show that how the function changes with the number of inner-loop updates. Note that, at
4th update, the model over shoots, however in the next update it recovers the better function.
right: Mean squared error on sine wave regression: We test MAML-based algorithms on
sine wave regression with K = {5,10,20}. PAMELA achieves the lowest error in all three
cases. (lower is better)

Results: We compare PAMELA with several other model-agnostic gradient-based meth-
ods: MAML [5], iMAML [16], FOMAML [5], Reptile [14] and Meta-SGD [13]. On the
miniImagenet 5-way 5-shot setting, with a total of 600 test tasks (out of possible 15,504
tasks), PAMELA achieves 70.51±0.67%, whereas for the 5-way 1-shot setting, it achieves
53.50± 0.89%. This is an absolute gain of 2.19% and 1.35% over the current state-of-
the-art method. Similarly, on the CIFAR-FS dataset, our method achieves state-of-the-art
performance compared to the family of MAML algorithms. On the 5-way 5-shot setting,
we achieve 79.1± 0.7%, with a gain of 1.7%, and on 5-way 1-shot setting, we achieve
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MAML + Q0 (multiple) 62.71 ± 0.69
MAML + QQQ 69.71 ± 0.66
MAML + PPP 68.30 ± 0.67

MAML + QQQ + PPP1 70.72 ± 0.63
MAML + QQQ + PPP2 70.17 ± 0.67
MAML + QQQ + PPP3 70.31 ± 0.69
MAML + QQQ + PPP4 70.51 ± 0.65

Figure 5: Left: Loss on different steps of the inner-loop updates. We can see that PAMELA
converges with decreasing variation in error compared to MAML and does not overfit with
the increasing number of inner-loop updates. Losses were calculated across 100 runs. mid-
dle: Convergence Curves: We plot the train accuracy (broken lines) and test accuracy (solid
lines) for the training of PAMELA, MAML and Meta-SGD. The plot demonstrates that
PAMELA achieves a given accuracy faster than the other compared methods. right: Dis-
secting PAMELA: Results are reported for miniImageNet 5-way 5-shot experiments with 600
testing samples, and n = 5. Means and 95% confidence intervals are reported.

63.5±0.9% with a gain of 1.2%. Further, we also surpass MAML, Meta-SGD on 5- and 1-
shot learning on tieredImageNet with 54.81±0.88% and 74.39±0.71%. The path learning
behaviour of PAMELA provides valuable context and gradient preconditioning, resulting in
strong improvements compared to other model-agnostic gradient-based methods.

4.2 Regression

Settings: We consider sine wave regression as our learning problem. Each task/wave is
parameterized by amplitude, frequency and phase sampled uniformly in ranges [0.1,5],
[0.8,1.2] and [0,π], respectively. In addition, a task T contains K + 10 samples uniformly
drawn from the true curve. The first K samples are used for the inner-loop adaptation and
the remaining 10 used to compute the meta-loss.
Results: To evaluate the effectiveness of the model, we first sample 1000 random sine waves
from the same distribution as the training set. Then we sample K random points on the curve
to update the model. Afterwards, we sample 1000 points on the curve uniformly to find the
Mean Squared Error (MSE) to evaluate the fitness of the curve. We test on MAML, Meta-
SGD, MT-Net and PAMELA with K = {5,10,20}. In all the cases, our method obtains
the lowest error, and with increasing K the loss decreases faster (see Fig. 4 right). From
Fig. 4, we can see that the curves regressed by PAMELA fit the target function well, and are
much smoother compared to other methods. Additionally, Fig. 5 shows how the loss changes
with the number of inner-loop updates. We can see that, PAMELA has better convergence
compared to MAML (standard deviation of loss decreases with inner-loop updates).

4.3 Implementation Details

For experiments on miniImageNet, CIFAR-FS and tieredImageNet, we use a four-layer con-
volutional neural network, each with 64 filters. During the meta update we use 15 samples
per class in the validation data to compute the meta gradients and batch size of four tasks
used in all the experiments. For all the experiments, the inner-loop is updated five times with
two gradient-skip connections using PPP2. Also, the inner-loop learning rate is set to 0.01 and,
in the outer-loop, Adam [10] optimizer with an initial learning rate of 0.001 is employed.
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4.4 Analysis and Ablation Studies

Dissecting PAMELA: We analyze individual contributions of different components of our
approach. We can breakdown PAMELA as a mixture of MAML + QQQ + PPPw. First, we see
how QQQ affects the model learning curve. If we use only one Q for all the inner-loop updates,
extending Meta-SGD, the performance degrades. This is because Q acts as a learning rate
controller for each step, while having the same learning rates for all the steps, may cause
the model to over-shoot or prevent it from converging. However, using different Q j for each
update helps to boost the performance by 3.07%. In addition to QQQ, PPPw helps to learn the trend
across different updates. Therefore, adding PPPw to the loop makes the learning more generic.
As a result, the gradient-skip connection (PPP) gives the highest boost in the performance, with
a 7.40% gain over MAML. However, PPPw contains Pw

j with a hyper-parameter of interval size
(w), which controls the gap between each gradient-skip connection. We can see how the
length of the gradient-skip connections affects the learning from Fig. 5 (right). Our results
show that the influence of skip connection length is not very significant.
Number of inner-loop updates and skip connections: Our inner-loop is modeled with two
hyper-parameters: the number of updates and the width of the skip connections. First, as
we change the number of inner-loop updates, we notice the performance does not change
significantly except for the single update scenario. This is mainly because the model’s inner-
loop path has an extra degree of freedom on how far the parameters have to move. While
training the model, it can learn how the inner-loop path has to change for a given constraint
on the total updates. All these experiments were done on miniImageNet with 5-way 5-
shot problems with PPP2 gradient-skip connections. Secondly, the gradient-skip connection
can also change the dynamics of the adaptation. Although it helps to have the gradient
skip connections, the width of the connections does not have a significant impact on the
performance. However, a depth of 5-10 updates may not be sufficient to prove this claim.

Method #Parameters #Updates Train time Test time

MAML 121.09×103 5 205.50 ms 41.33 ms
MetaSGD 242.18×103 1 53.75 ms 16.67 ms
PAMELA 162.39×103 5 215.84 ms 43.33 ms

Table 1: Model complexity: We compare the number of parameters, train time per task and
test time per task in a 4-layer 64-channel CNN.

5 Conclusion
Model-agnostic meta-learning aims to combine across-task knowledge in order to find a
better initialization for the learner. From this initialization, the model can be quickly fine-
tuned on a new task with only a few examples. In this work, we propose to learn a gradient
preconditioning at each inner-loop iteration to model how learning evolves over time across
multiple tasks. Further, our approach utilizes historical gradients from old updates, which
provides valuable context and prevents over-fitting as well as gradient vanishing. Overall, our
approach achieves faster convergence and performs better classification datasets, including
miniImageNet, tieredImageNet, and CIFAR-FS. We also evaluate our approach on a sine
wave regression task, where it fits the curve much more accurately than the state-of-the-art
methods. Further, we analyse the contribution of each respective component towards the
final performance via an extensive ablation study.
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