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Abstract

Binary neural networks (BNNs) represent weights and activations using 1-bit values,
which has extremely lower memory costs and computational complexities, but usually
suffer from severe accuracy degradation. Knowledge distillation is an effective way to
improve the performance of BNN by inheriting the knowledge from higher-bit network.
However, faced with the accuracy gap and bit gap between 1-bit network and differ-
ent higher-bit networks, it is uncertain which higher-bit network is more suitable to be
the teacher of a certain BNN. Therefore, we propose a novel multi-bit adaptive distilla-
tion(MAD) method for maximally integrating the advantages of various bit-width teacher
networks(e.g. 2-bit, 4-bit, 8-bit and 32-bit). In practice, intermediate features and output
logits of teachers will be simultaneously utilized for improving the performance of BNN.
Moreover, an adaptive knowledge adjusting scheme is explored to dynamically adjust the
contribution of different teachers in the distillation process. Comprehensive experiments
conducted on CIFAR-10/100 and ImageNet datasets with various network architectures
demonstrate the superiorities of MAD over many state-of-the-arts binarization methods.
For instance, without introducing any extra inference calculations, our binarized ResNet-
18 achieves 1.5% improvement for BirealNet binarization method on ImageNet.

1 Introduction

Deep convolution neural networks (CNNs) have achieved notable progress in many computer
vision tasks. However, the remarkable performance of CNNs usually relies on millions of
parameters and billions of floating-point operations (FLOPs). For example, ResNet-18 [10]
has about 11.7M parameters and requires 1.8B FLOPs for processing a single 224 x 224
image. To cater for deep learning on resource-limited platforms like mobile phones, it is
necessary to explore portable deep neural networks.

A series of methods have been proposed to develop portable CNNs, including network
pruning [9, 22, 31], low-bit quantization [6, 15, 27], knowledge distillation [12, 28, 37] and
lightweight network architecture design [5, 13, 20]. Wherein, network binarization is a kind
of quantization method to shrink the size of the desired network to the extreme. Compared
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with vanilla 32-bit networks, binary neural networks (BNNs) adopt 1-bit values to repre-
sent weights and activations, which not only achieves a ~32x model compression but also
extremely reduces the computational complexity by a factor of ~58x [27].

Directly reducing the bit-width of weights and activations from 32 to 1 usually results
in a severe accuracy degradation due to the non-differentiable quantization function and
its poor capacity. Generally, the accuracy of a given neural architecture will decrease as
the number of bits decreases, and the difficulty of optimization will increase accordingly.
Knowledge distillation can provide an effective method to improve the performance of 1-bit
student network by inheriting the knowledge from 32-bit teacher [23, 35, 43, 44]. The full
precision 32-bit teacher network is the best one in terms of its accuracy, but whether it is
the most appropriate teacher to teach the 1-bit student network? Obviously, the output by a
1-bit network could be significant different from that of a 32-bit network, due to their large
capacity gap. Imagine that forcing a pupil to understand the advanced course prepared by
a university professor is usually hard. But if there are multiple teachers of different levels,
the student can choose the teachers and their corresponding courses that are most beneficial
for his/her own study. Neural networks of any bit-width larger than 1 can be taken as the
teacher network for the binary network during the distillation. However, existing works
rarely explore multiple teacher networks of different bit-widths for network binarization, let
alone optimizing the choice of teachers.

In this paper, we propose a novel multi-bit adaptive distillation framework by utilizing the
various and diverse knowledge in multiple pre-trained teachers of different bit-widths (e.g.
2-bit, 4-bit, 8-bit and 32-bit). Both knowledge inherited in logits from classification layer
and features from intermediate layers are utilized together to teach the student network. To
better aggregate knowledge from multi-bit teachers, a group of coefficients are introduced
to combine both features and logits in teacher networks, and further develop an adaptive
knowledge adjusting scheme to adjust the contribution of different teachers dynamically.
During distillation, the parameters of student network and the learnable coefficients will be
updated jointly on the training dataset. The training process of binary student network is
guided by the most suitable teacher combination to obtain better performance. To the best
of our knowledge, this is the first time to explore multiple teacher networks with different
bit-widths for distilling binary neural network adaptively. Extensive experiments conducted
on various datasets and networks demonstrate the effectiveness of the proposed algorithm
over the state-of-the-art methods for training BNNs.

2 Related Works

Binarization. The pioneering work BNN [15] turned both weights and activations
into -1 and 1, it also verified the feasibility and benefit of binary neural networks. Raste-
gari et al. [27] proposed a better method for estimating floating-point values by adding a
scale factor to the binary values instead of simply taking a sign function. DoReFaNet [42]
explored how the different bit-widths of weights, activations and gradients affect the perfor-
mance. BirealNet [21] enhanced the representational capability of BNNs by adding identity
shortcut between all the intermediate convolutional layers. Yang et al. [34] and Gong et
al. [7] investigated a differentiable soft quantization scheme to gradually approximate the
standard quantization function. Lin ez al. [18] analyzed the influence of angular bias on the
quantization error and then creatively introduced a rotated BNN. In addition, exploring more
effective neural architecture search method for BNNs has been discussed in [3, 4, 17].
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Distillation. Knowledge distillation was first proposed in [ 12], which is an effective ap-
proach to improve the student model’s performance by inheriting knowledge from a teacher
model. FitNets [28] combined the soft output and intermediate features through introducing
point-wise convolutional transforming layers. Yim et al. [36] defined the knowledge as in-
ner product between features from two layers in teacher network, which can optimize student
network faster. Apart from transferring between a static pre-trained teacher and a student,
Zhang et al. [41] presented a deep mutual learning strategy by collaboratively training an
ensemble of students. Converting both the information in teacher and student to the same
space where the distance is easier to measure are studied in [8, 32]. Besides, distilled by
multiple teachers in other tasks are also investigated in [29, 33, 37, 39]. To bridge the gap
between the small student and the larger teacher, Mirzadeh et al. [25] and Son et al. [30]
employed intermediate-sized networks (teacher assistant) and achieved promising result. In
addition to the classification tasks, knowledge distillation was also introduced in the Gener-
ative Adversarial Networks (GANSs) [16].

Distillation for BNNs. Aside from exploring more accurate quantization functions,
there are also many works on improving the performance of BNNs by distillation. Zhuang et
al. [44] proposed to inherit the strong representational ability of single full-precision teacher
network to the low-bit student network with the same architecture. Zhou et al. [43] and
Ye et al. [35] further applied the distillation paradigm by single 32-bit teacher to the bi-
nary network and achieved higher performance. Real-to-Binary-Net [24] and ReActNet [23]
achieved state-of-the-art performance by redesigning binary-friendly network architectures
and adopting effective training techniques such as two-step training and distillation by single
full precision network. To the best knowledge of ours, existing works rarely explore multiple
teacher networks of different bit-widths for teaching BNN dynamically.

3 Preliminaries

Quantized Neural Networks. In all our following experiments, we use the DoReFaNet
method [42] to quantize the 32-bit network into multiple low-bit(i.e. 2-bit, 4-bit and 8-bit)
networks to get all our teachers. A general quantization function is first introduced:
quantizey(x) = rilround((Zk —1)x), ()
where k denotes the number of bit-width. The activations are clipped to [0,1] and then
quantized to low-bit values:
a’ = quantize(clip(a’,0,1)), 2)
where clip(a’,0, 1) = max(0,min(1,a/)). Similarly, the weights are transformed to [0,1]
and then quantized to low-bit values:
tanh(w')
2max(|tanh(w/)|)
Different from low-bit neural networks, BNNs use 1-bit values to replace floating-point
numbers of weights and activations. In particular, every element w/ € R in the weights is
binarized into a binary value:

w? = 2quantize( +0.5)—1, 3)

wl=a- sign(wf)7 )
where o is the scale factor, and sign(-) is the sign function that outputs —1 for negative
numbers and +1 otherwise. For the scale factor, the current approaches usually use the
absolute mean of current layer’s weights or make it learnable [40, 42]. As for activations,
each element a/ is binarized similarly:

a® = round(clip(a’,0,1)), 5
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Knowledge Distillation. Knowledge distillation is an effective approach to improve the
student model’s performance. Given the groundtruth one-hot label vector y € {0,1}€ and
the output logits of both student and teacher network, i.e. y* € R€ and y' € RC, where C is
the number of classes. The knowledge distillation is achieved by minimizing the following

loss function: t ) . )
tia (o).0(0) = (o0 2T, ©

where Lk refers to the Kullback—Leibler divergence, o represents softmax function. T
is the temperature coefficient and when 7 increases, the probability distribution produced
by the softmax function becomes softer. A series of knowledge distillation methods are
proposed to make full use of the teacher networks, such as Fitnets [28] and attention trans-
fer [38]. Inspired by the progress in knowledge distillation, we propose to take advantage
of teachers to help the training of BNNs, where the teacher can be higher-bit quantized net-
works with much better performance.

4 Learning from Multi-bit to 1-bit

Most of BNNSs utilize STE to enable end-to-end training, when both the weights and
activations in network are quantized into 1-bit values, the difficulty of optimizing BNNss is
hard. Besides, full precision network or quantized networks with > 2 bit-width perform
much better than the corresponding BNN as illustrated in the blue bars in Fig. 1. It would be
helpful to use the higher-bit network with higher accuracy to guide the training of BNN.

Accuracy Gap and Bit Gap. There are two

factors may influence the effect of knowledge 94 I
distillation: 1) the performance of teacher net- 92 - e

work, 2) the bit gap between teacher network 9%

and student network. The full-precision net- g8

work has the highest accuracy compared with 286 saos 8538 giof| ssof| saol
other lower-bit versions. Higher performance 84

may provide more potential to the student. Ad- 82

ditionally, the bit gap between 2-bit teacher and 80 . L

. . . o . . 1-bit 2-bit 4-bit 8-bit 32-bit
1-bit student is smaller, i.e. the similarity be-

tween their outputs is higher so that a smaller Figure 1: The accuracy charts of ResNet-
bit gap is easier for the student to learn from 20 on CIFAR-10, where blue bars denote
teacher. We then conduct a toy experiment to  the accuracy of ResNet-20 with various
validate the influence of these two factors. For  bit-widths, red bars denote the accuracy of
fairness, we repeat the experiment for 4 times  binarized ResNet-20 distilled by different
with different random seeds, and report the me-  single higher bit-width teacher.

dian value. The red bars in Fig. 1 displays

the performance of binarized ResNet-20 distilled by teachers with different bit-widths on
CIFAR-10 dataset. Here, the DoReFaNet binarization method is used to binarize the weights
and activations. From Fig. 1, we can see that although 32-bit teacher has higher accuracy,
1-bit student distilled by 32-bit teacher achieves lower accuracy than 2-bit teacher. In ad-
dition, although 4-bit teacher has smaller bit gap, 4-bit distillation achieves lower accuracy
than 8-bit distillation. Thus, to better guide the knowledge transfer, we need to achieve a
balance between higher accuracy gap and smaller bit gap of the teacher networks.
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Figure 2: The diagram of the proposed method. Each teacher network is assigned a set
of learnable coefficients. The overall loss consists of the cross-entropy loss of logits, KL-
divergence of logits, and distance loss of intermediate layers’ features, which are used to-
gether to update the binary student network, the point-wise convolutional layers and the
learnable coefficients simultaneously.

4.1 Multi-bit Distillation

Multi-bit Logits Distillation. Based on the above observations, we propose to train the
BNN by learning from multiple pre-trained teachers with different bit-widths, as shown in
Fig. 2. In particular, given M teachers whose bit-widths are ki, k>, - - - , kys, respectively, we
utilize all of them to teach the student. Denoting the output logits of the m-th teacher as
y., € RC, we integrate these outputs to form the multi-bit logits of all the teachers:

M
=Y Som¥n, ©)
=1

where &, is the coefficient indicating the importance of m-th teacher’s output and it satisfies
):%:1 0o,m = 1, which can be realized simply by softmax function. Denoting the logits of 1-
bit student network as y* € RC, we utilize the multi-bit logits in Eq. 7 to guide the training
of student network and the loss function is the same as Eq. 6.

Multi-bit Feature Distillation. To provide richer knowledge from teachers, we distill not
only the logits from final classification layer, but also the features from intermediate layers.
For example, we choose the feature output by every stage to compute the distance loss be-
tween intermediate layers for ResNet [10]. Consider the i-th layer (i = 1,2, - - -) whose output
feature is F’ € RPWX¢ where h,w, c represent height, width and channels, respectively. We
integrate multiple teachers with different bit-widths by adding their activations to get the
final full-precision activations,

Z 61 mE s (8)

where §; .m 1s the coefficient for the i-th layer in the m-th teacher and it also satisfies Z 5,'7,,, =
1, F;, is the corresponding quantized activations. However, if we directly calculate the
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distance loss of intermediate layers between teachers and student, it will not improve the
performance of student. The features in intermediate layers is not one-to-one correspon-
dence by channel between teacher networks, or between the teacher and student network.
Inspired by Fitnets [28], we construct point-wise convolutional transforming layers on top of
the selected intermediate layers of the student network to transform the features. The trans-
formed features are r;(F;’) using the transforming layer r;. In addition, if we also transform
the mixed feature of multiple teachers by a transforming layer, the weight in convolutional
transforming layers of student and teachers will easily all fall into zero values as the training
progresses, so we keep the mixed features of teachers unchanged.

The distance between the features of multi-bit teachers and the transformed features of
student is calculated to monitor the progress of training BNN. Here we use smoothed-L;
distance owing to its smoother gradient and robustness:

N
Lpis = ZDis( ri(F? ) Z Z smoothy, (x 9)
i=1

i=lxeA

where N refers to the number of selected intermediate layers and
A=F —r(F) (10)

0.5(x)%, if |x| <1,

|x| —0.5, otherwise,

smoothy, (x) = { (11)

By combining the cross-entropy loss of logits, KL divergence of logits in Eq. 6 and
distance loss of intermediate layers’ features in Eq. 9, we achieve the objective function:

Lan = Lce + aLgr +BLpis = (y,logo(y’)) +

OC<G();),1 EyS?; >+ﬁz Y smoothy, (x

i=lxeA

12)

where o and f are the trade-off hyper-parameters. Given positive &, and 6, values, opti-
mizing the loss L4;; can guide the student BNN to learn from the multiple teacher networks.

4.2 Adaptive Knowledge Adjusting

The importance of each individual teacher is not absolutely static. Instead, the optimal
teacher importance may change at different steps during the training process. Hence be-
yond the manual-setting of § values, we propose an adaptive knowledge adjusting scheme to
make the coefficients in Eq. 7 and Eq. 8 learnable and changeable. All trainable parameters
in our proposed framework include three parts: the student network’s parameters 6, the pa-
rameters O, in transforming layers equipped with binary student network and the learnable
coefficients 0 indicating the importance of different teachers. It should be noted that the
transforming layers do not participate in the inference of student model, so the complexity
of BNN is the same as the original one. All the trainable parameters are optimized jointly un-
der the supervision of the overall loss in Eq. 12. The gradients of weights in ordinary neural
layers can be computed using standard back-propagation algorithm. As for the introduced
coefficients 9, the gradients can be calculated as
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Table 1: Accuracy comparisons on CIFAR-10 and CIFAR-100.

Model Method Bit-Width (W/A) CIFAR-10 (%) CIFAR-100 (%)
FP 32/32 9378 73.42
8-bit 8/8 93.81 7431
4-bit 4/4 93.65 74.02
2-bit 22 93.33 73.27
BNN [15] 171 89.90 -
XNOR [27] 11 89.80 67.18
VGG-Small by p Net [43] 11 90.19 64.54
DSQ [7] 11 91.72 .
IR-Net [26] 11 90.4 .
RBNN [18] 11 913 .
DoReFaNet [42] 1/1 91.20 70.17
MAD 11 9228 +0.11  71.23 +0.20
FP 32/32 92.99 69.43
8-bit 8/8 92.03 66.73
4-bit 4/4 91.40 67.35
2-bit 22 90.01 62.53
ResNet-20 DSQ [7] 71 8411 -
XNOR [27] 11 85.33 54.06
IR-Net [26] 11 85.4 -
DoReFaNet [42] 1/1 84.78 54.37
MAD 11 8591+0.12  55.03+0.18

ALy ILyy Iy ILkr

aaoml - ay[ © (9607," =« ayt aYm ) (13)
dLay  ILay OF dLpis .

28, OF 96, —f’<av6cw;yv““‘7’m>>v 1

where o means the multiplication in the chain rule, Vec(-) is the vectorization operation for
transforming the features from four dimensional matrix format(i.e. [n,c,h,w|, where n, c,
h, w represent the batch size, channel, height and width of features, respectively) to two di-

mensional vector(i.e. [n,c X h x w]). The value of aacy’fL and a\a,fcl(’;;f_,) can be obtained via the

standard chain rule back-propagation. All the trainable parameters are updated simultane-
ously using SGD or Adam optimizer.

S Experiments

5.1 Experimental Setup

We use four teachers with different bit-widths including 32-bit, 8-bit, 4-bit and 2-bit to teach
BNN, and the quantization method of these low-bit teacher networks is described in pre-
vious preliminaries section. For ResNet-20 and ResNet-18 [10], we choose the features
output by the end of every stage to compute the distance loss of intermediate features. For
VGG-Small [40], we choose the features output by every MaxPooling operation to compute
the distance loss. In addition, we also conduct experiment on lightweight model based on
ReActNet-A [23] since its backbone structure is MobileNetV1 [14]. For CIFAR-10 dataset,
the hyperparameters o and 3 in Eq. 12 are empirically set to 1 and 0.2, respectively. For
CIFAR-100 and ImageNet datasets, & and 8 in Eq. 12 are set to 1 and 0.1, respectively.
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Figure 3: The evolution of four teachers’ coefficients at different layers, where MP represents
MaxPooling operation.
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(b) activations of first MP layer
Figure 4: The histogram distribution of logits and activations, where MP represents Max-
Pooling operation.

5.2 Experiments on CIFAR-10/100

We employ the widely-used network architectures including VGG-Small and ResNet-20 for
CIFAR-10/100 dataset, and follow the general setting in BNNS to set the first and last layers
as full-precision convolutional layers. For VGG-Small [40], we train 400 epochs and employ
learning rate starting at 0.01 and decay the learning rate by a factor of 10 at 100, 200, and
300 epochs. For ResNet-20, we train 400 epochs and employ learning rate starting at 0.1 and
decay the learning rate by a factor of 10 at 200, 300, and 375 epochs. SGD with momentum
of 0.9 is used as our optimization algorithm with batch size of 128. Weight decay is set to Se-
4 when training binary VGG-Small, and 1e-4 when training binary ResNet-20. In order to get
more accurate statistics, we repeat the experiment for 4 times with different random seeds,
and report the median and standard deviation of classification accuracy in Table 1. In all
cases, without changing the network architecture, our method obtains the best performance
on both CIFAR-10/100. For example, there are about 1.08% and 1.13% improvement for
VGG-Small and ResNet-20 binarized by DoReFaNet method on CIFAR-10, respectively.
Analysis on the importance of multi-teachers.  To analyze the adaptive adjusting
scheme for multiple teachers, we plot the evolution process of the coefficients at different
layers for each teacher in VGG-Small on CIFAR-100. From Fig. 3, we can see that the full-
precision teacher is always dominated at the first MP layer, and the 2-bit teacher is always
dominated at the classification layer. In other words, the early layers of VGG-Small tend
to choose high-precision teachers, and the later layers tend to choose teachers with similar
outputs. For the second MP layer and third MP layer, the coefficients of four teachers have
slightly change during training process. That is, as the training progresses, the binary student
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will choose higher-bit teachers dynamically and targetedly at different layers.

Fig. 4 intuitively displays the histogram distribution of logits and activations in network,
for simplicity, we only display the first MP layer’s activations. From the histogram distri-
bution of logits in classification layer, the distribution of 1-bit student is obviously closest
to the distribution of 2-bit teacher, which can be attributed to the largest coefficients of 2-bit
teacher in training process. Besides, in the distribution of activations of the first MP layer
among four teachers, zeros are all in the majority, which can explains that zeros are also in
the majority at this layer of 1-bit student network.

5.3 Experiments on ImageNet

Binarize non-compact network. For the large-scale ImageNet classification task, we
firstly use the widely-used non-compact ResNet-18 as the backbone network. We use three
binarization methods including DoReFaNet, BirealNet [21] and ReActNet-ResNet [23] to
binarize weights and activations. DoReFaNet does not change the architecture of vanilla
ResNet-18, while BirealNet equips every convolution layer with a shortcut layer. Based on
the modified ResNet-18 structure

of BirealNet, ReActNet-ResNet Table 2: Accuracy of ResNet-18 on ImageNet.

Bit-Width Top-1 Top-5

further proposed a channel-wise Method (W/A) %) (%)
reshaping and shifting operation FP 32/32 710 898
on activation first, then a two-step 8-bit 8/8 704 89.6
distillation scheme by a single full 4-bit 4/4 69.8  89.1
precision teacher. For DoReFaNet 2-bit 212 64.1 854
binarization method, we utilize BNN[15] 171 422 671
both SGD and Adam as they influ- ABQCI_\IN[Z;[]IQ] }ﬁ ‘5%2 %g
ence the accuracy largely [1]. For Bop [11] 11 56.6 794
BirealNet and ReActNet-ResNet XNOR++ [2] 1/1 57.1 79.9
binarization method, we only ap- DGRL [35] /1 60.45 -
ply Adam for its effectiveness. Real-to-Binary-Net [24] 171 654 862
In addition, when training the XNﬁi}gﬂ] ij } g;z ;;é
ReActNet-ResNet, we also fol-  —5opemmermoreen) 71 525 765
low their activation transforma- MAD (SGD) 11 534 775
tion operation and two-step train- DoReFaNet [42] (Adam) 171 562 789
ing scheme but by multiple teach- MAD (Adam) 1/1 574 802
ers. For models using SGD, we BirealNet [21] 11 564 795
train 120 epochs with the initial MAD 11 579 803
learning rate of 0.2 and decay by ReActNet-ResNet [23] 171 65.5 -
MAD 171 66.5 86.5

a factor of 10 at 70, 90, and 110
epochs. For Adam, we employ learning rate starting at 0.002 and decay by a factor of 10 at
70, 90, and 110 epochs. Weight decay is set to O when training BNN.

Table 2 shows the comparison of imagenet classification results between our work and
the excellent work of other predecessors. When using DoReFaNet binarization method,
without changing the network architecture, we achieve 0.9% and 1.2% Top-1 improvement
for SGD and Adam respectively. When using BirealNet binarization method, we achieve
1.5% Top-1 improvement for Adam. In addition, we achieve 1.0% Top-1 improvement for
ReActNet-ResNet using Adam, and owing to the adaptive distillation scheme by multiple
teachers, the performance of the binarized shortcut-added ResNet-18 exceeds the vanilla 2-
bit ResNet-18 network. When compared with other kd-based binarization methods including
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DGRL [35], Real-to-Binary-Net [24] and ReActNet-ResNet [23]on the same ResNet-18 ar-
chitecture, our ReActNet-ResNet-MAD achieves the highest accuracy.

Binarize lightweight network. Lightweight network has more practical value than non-
compact network, so we conduct experiment on ReActNet-A [23], which is a strong bi-
narized network modified from MobileNetV1. Considering that the accuracy of baseline
ReActNet-A is close to that of some

higher-bit networks e.g. 4-bit ResNet- Table 3: Accuracy of ReActNet-A on ImageNet.

18, we use the more powerful ResNet- Method : Top-1(%) _Top-3(%)
. ResNet-50 8-bit 76.5 93.0
50 as teachers here. Besides, to save the ResNet-50 4-bit 76.1 9.5
running memory in GPU, we only uti- ResNet-50 2-bit 72.3 89.6
lized pre-trained 8-bit, 4-bit and 2-bit as ReActNet-A 1-bit [23] 69.4 _
teachers since the performance of 8-bit MAD 1-bit 70.2 88.7

is close to that of the full-precision. In

addition, due to the different architecture of teacher networks and student network, we only
calculate the cross-entropy loss of logits and the KL-divergence of logits to guide the learn-
ing of student network.

The classification accuracy is shown in Table 3, with the adaptive distillation by multiple
higher-bit ResNet-50 teachers, we increase the Top-1 accuracy of ReActNet-A to 70.2%,
surpassing the distillation by single static 32-bit teacher network.

We also conduct a series of ablation studies in the Supplementary File.

Memory and computational cost analysis. We take the BirealNet-ResNetl18 as an
example to demonstrate the superiority of the binary neural network in memory saving and
computational cost reduction. We compare the memory and computational cost of the full-
precision and binary neural network in Table 4. The memory calculation method is 32 times
the full precision parameters plus 1 times the binary parameters [21]. In addition, we follow
the principle of counting the total operations (OPs) in ReActNet [23], that is, first count the
binary operations (BOPs) and the floating point operations (FLOPs) separately, and then the
total operations is calculated by OPs = BOPs/64 + FLOPs.

Table 4: Analysis of Memory and Computational Cost for FP and Binary ResNet-18.
Bit-Width (W/A) Memory (Mbit) BOPs (x10%) FLOPs (x10%) OPs (x10%) Top-1(%)
32/32 374.1 0.0 18.1 18.1 71.0
1/1 33.6 15.6 1.39 1.63 57.9

From Table 4, compared with the full-precision neural network, the binary neural net-
work achieves 91% memory savings and 91% reduction in computational cost. In addition,
without introducing any extra inference calculations, our binarized ResNet-18 achieves 1.5%
improvement for the BirealNet binarization method.

6 Conclusion

In this paper, we propose a novel multi-bit adaptive distillation method for improving the
performance of BNN. We combine the knowledge from different layers of the higher-bit
teachers to provide BNN with richer information. To better aggregate the knowledge from
multiple teachers with different bit-widths, we introduce a simple yet effective adaptive
knowledge adjusting scheme to adjust the contribution of teachers in the training process
dynamically. Extensive experiments conducted on various datasets and networks indicate
the effectiveness of the proposed method.
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