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Abstract

This paper addresses the 3D point cloud reconstruction and 3D pose estimation of
the human hand from a single RGB image. To that end, we present a novel pipeline for
local and global point cloud reconstruction using a 3D hand template while learning a
latent representation for pose estimation. To demonstrate our method, we introduce a
new multi-view hand posture dataset to obtain complete 3D point clouds of the hand in
the real world. Experiments on our newly proposed dataset and four public benchmarks
demonstrate the model’s strengths. Our method outperforms competitors in 3D pose
estimation while reconstructing realistic-looking complete 3D hand point clouds.

1 Introduction
The 3D shape and pose of the human hand are critical for augmented and virtual reality
applications. To accommodate this form of human-computer interaction, an entire disci-
pline of computer vision is devoted to estimating 3D hand shape and pose. Achieving
accurate estimates is extremely challenging due to the hand’s high degrees of articulation
and self-occlusion. Earlier approaches attempted to combine representations from various
viewpoints [7, 8, 9, 10], or transform 2.5D depth maps to 3D representations such as vox-
els [23, 25], point clouds [21], or meshes [34]. Since 3D voxel models are computationally
more expensive than mesh and point cloud models, the latter two are preferable for estimat-
ing 3D hand shape and pose.

Current RGB-based methods [2, 19, 46] prefer to estimate hand shape by mapping visual
features to the parameters of a parametric model e.g. MANO [29]. However, the MANO
mesh inherently differs from the real hand surface, resulting in an unnaturally smoothed
hand shape. Non-parametric mesh techniques [11, 34] can generate more realistic shapes
and account for shape surface details but learning such models requires a substantial amount
of annotated mesh data that are non-trivial to collect.
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We believe that 3D hand point clouds could serve as a non-parametric alternative to
meshes. Unlike meshes, point clouds are unordered and do not require predefined topolog-
ical structure for surface. Point clouds are easily obtained from various sources, e.g. depth
cameras, laser scanners, and other 3D representations. Moreover, a 3D hand point cloud’s
density is easily adjustable; depending on the resolution requirements, we can down- or up-
sample the number of points from the surface of the hand. The use of point clouds for 3D
hand pose and shape estimation is limited [9, 10, 21, 37]. The work most closely related to
ours is [37], which estimates a point cloud from different modalities, including RGB images.
Their estimated point cloud, is only of the camera-facing surface. A complete point cloud
would provide more complete geometric information, as shown previously in 3D body pose
estimation [1, 39, 45].

This paper proposes a unique point cloud reconstruction technique for determining the
full hand shape and pose from RGB images. We put forth a combined local and global rep-
resentation for learning a detailed 3D latent representation for the hand. To reconstruct an
accurate and high-resolution point cloud of the hand, we draw inspiration from point cloud
architectures like FoldingNet [38] and AtlasNet [12]. However, our work is novel in that
we design a new template initialization specifically for 3D hand recovery. Our template is
flexible and enables us to pre-distribute the 3D points in a configuration more useful for
reconstructing the 3D hand. Additionally, we offer a semantic grouping strategy for recon-
structing the local and global point clouds that correspond to the individual fingers.

Existing RGB-based 3D hand pose datasets do not have any corresponding (complete)
3D point cloud data. As such, we sample from the surface of the MANO mesh model to
generate point clouds for existing datasets. Additionally, we introduce a new multi-view
RGB-D dataset and illustrate the usefulness of our methodology on real-world point clouds
recovered from depth images to validate our methodology on real-world data.

Our contributions are summarized as follows:

• We propose a unique framework for 3D point cloud reconstruction of the hand with a
customized 3D hand template. To our knowledge, our system is the first to reconstruct
a complete 3D hand point cloud rather than just the camera-facing surface.

• We propose an effective combined local and global point cloud reconstruction method
which captures more detailing than a single global model.

• We introduce a multi-view RGB-D hand pose dataset with 3D joint annotations, fitted
MANO parameters and depth-map based 3D point clouds.

• Evaluation on four public benchmarks and our own newly proposed dataset verifies
that our framework can outperform state-of-the-art approaches for 3D hand pose esti-
mation while being able to reconstruct high-quality point clouds.

2 Related Works
Point Cloud Reconstruction methods in deep learning primarily learn unordered represen-
tations by examining the intrinsic 3D structure. Tree-based models [6, 18, 43] represent
point clouds through k-d trees. Other works propose innovative network designs, including
PointNet [28], PointCNN [22] and RNN-based models [40]. To date, most of these ap-
proaches [18, 28, 38, 40] concentrate on point cloud reconstruction from 3D Lidar images.
Our purpose, in comparison, is to recreate point clouds from RGB images.
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3D Hand pose estimation often use depth maps or RGB pictures as input. The 2.5D-
depth map is fed into deep neural networks [27] to obtain heatmaps which are then lifted
to a 3D-hand joint location [7, 8, 9, 10, 25, 30, 35]. Recent papers attempt to estimate
the hand pose of an RGB image along with additional modalities (e.g., depth or mask) as
weak labels [3, 37] or as intermediate forms of supervision [15, 46, 47]. Others [8, 10, 21]
have tried to convert depth maps to obtain an incomplete point cloud of the camera-facing
viewpoint to help predict 3D pose. To the best of our knowledge, we are the first to integrate
point cloud reconstruction with 3D pose estimation from monocular RGB images.

3D Hand shape estimation typically in the form of meshes, can be more challenging
than pose estimation because it needs to simultaneously predict the mesh topology and ver-
tex locations. Most approaches [16, 17, 19, 26, 46] reconstruct the mesh by leveraging the
parametric MANO model [29]. Using MANO allows these works to directly regress shape
(and pose) parameters, which sit in a more tractable and lower-dimensional space. For RGB
inputs, the standard approach [19, 46] is to firstly estimate 2D joint locations and then it-
eratively regress the MANO pose and shape parameters. Non-parametric methods leverage
either a fully convolutional network [34] or a graph convolutional network [11] to directly
regress mesh vertices. Unlike these above approaches, we aim to recover complete point
clouds, which we believe to be a more flexible 3D representation than a mesh.

3 Methodology

3.1 RGB Encoder and 3D Pose Decoder

Our framework has an RGB image encoder, a point cloud decoder, and a 3D pose decoder
(see Fig. 1). The encoder converts the image into a latent representation. Our core contribu-
tion is in learning this latent representation such that it is rich and expressive for accurate 3D
pose estimation (Sec. 3.1) and complete 3D point cloud reconstruction (Sec. 3.2).

The image encoder encodes a single 256×256 RGB image x into a latent representation
z ∈ R512. The pose decoder converts z into the hand pose J ∈ R3×21, i.e. the 3D coordi-
nates of 21 hand joints. We use the same backbone models as other encoder-decoder frame-
works [19, 36, 37]. For the encoder, we fine-tune a ResNet-18 backbone and use the final
layer output fed into a fully connected layer as the latent representation z. For the 3D pose
decoder, we use a three-layer fully connected multi-layer perceptron (MLP) with 128 hidden
units per layer. To train the pose decoder, we use an L2 loss, i.e., LPose = ||Jpred − Jgt ||2,
where the Jgt and Jpred denote the ground truth and estimated hand pose, respectively.

3.2 3D Point Cloud Reconstruction

To reconstruct a 3D hand point cloud Ŝ ∈ RN×3 from z, we follow the decoding architec-
ture of FoldingNet [38]. FoldingNet’s decoder is a series of MLPs that deform or “fold”
a template set of points into their final 3D positions by conditioning on the encoded latent
representation. Assuming that we are given an RGB image and an accompanying ground
truth point cloud S, the encoder-decoder pair can be learned via the Chamfer distance (CD)
and Earth Mover’s distance (EMD). Both distances are computed between S and estimated
point cloud set Ŝ (|S| = |Ŝ| ). If s ∈ R3×1 and ŝ ∈ R3×1 are ground truth and predicted 3D
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Figure 1: Overview of our point cloud reconstruction and pose estimation pipeline.Our
proposed has an RGB image encoder(a), a point cloud decoder (b) and a 3D pose decoder
(c). We experiment with three template initializations in (d) to (f) and observe that the most
effective is to use local 3D initializations that represent the various semantic components of
the hand (f).

points respectively, then the Chamfer distance dCD is defined as

dCD(S, Ŝ)=
1
|S|∑s∈S

min
ŝ∈Ŝ
||s−ŝ||22 +

1
|Ŝ|∑ŝ∈Ŝ

min
s∈S
||s−ŝ||22, (1)

where the first term is the average distance of all predicted points to the closest ground truth
point and the second term is the average distance of all ground truth points to the closest
predicted point. The Earth-Mover’s distance dEMD factors in the point-to-point assignment
problem. Let φ : Ŝ→ S be a bijection, i.e. for all s ∈ S, there is a uniquely matched point
s ∈ Ŝ. The optimal bijection is unique and invariant over the above point sets.

dEMD(Ŝ,S) = min
φ :Ŝ→S

∑
s∈Ŝ

||s−φ(s)||2. (2)

Initialization Templates: The original FoldingNet initializes the template point set on a
2D lattice grid (see Fig. 1(d)). The decoder then “folds” these points into a 3D surface struc-
ture. Using a 2D lattice grid is well-suited for class- or 3D-shape-agnostic reconstruction
since it makes no prior assumptions. However, we posit that it is non-ideal and inefficient
for 3D hand shape estimation. It is more direct to initialize the point set to follow some
canonical 3D hand. Therefore, we propose a 3D hand template initialization (see Fig. 1(e)).
By fixing the initial spatial distribution to follow a hand, we simplify the learning of the de-
coder as it reduces the extent of folding required. The comparison of different initialization
can be found in Supplementary Sec. 3.

Local Reconstruction: We further modify the FoldingNet decoder to do reconstruction
locally. In particular, we are interested in high-fidelity reconstructions of the fingers because
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they contain much of the pose information. It is therefore intuitive to offer separate repre-
sentations to each of the fingers. To that end, we assign a local decoder to the palm and each
of the fingers (see Fig. 1(f)) and apply the Chamfer and Earth Mover’s distance to these local
point cloud sets. We leverage the (ordered) MANO vertices to separate the point cloud into
individual components and their associated ground truths (see Sec. 3.3). To ensure that the
components fit together, we also apply the two distances globally across the complete point
set to arrive at the loss in Eq. 3.

Similar to other point cloud reconstruction methods [5, 20, 24, 37], we use the above
two distance to learn the point cloud reconstruction. Specifically, we apply the distances in a
global sense, i.e. dG to the point cloud set of the entire hand, as well as in a local manner, i.e.
dL to a subset of points that correspond to the local components. The final loss on the point
cloud Lpc is a sum of these distances, i.e.

Lpc = ∑
i

(
dLi

CD +dLi
EMD

)
+dG

CD +dG
EMD, (3)

where i indexes the local components. While we can introduce weighting hyperparameters
to the terms in Eq. 3, we keep them equally weighted out of simplicity and as what have been
done in [37].

3.3 Generating Ground Truth Point Clouds

Existing RGB-based hand pose benchmarks have ground truth 3D poses but no point cloud
information. As an alternative, we leverage the MANO [29] model and sample from the
fitted mesh surface to obtain a set of 3D points. More specifically, MANO parameterizes
a triangular mesh M ∈ RN×3 with parameters {~β ,~θ}, where ~β ∈ R10 signify the shape
parameters and ~θ ∈ RK×3 are pose parameters. Similar to [19], we fit the MANO model
JMANO ∈ R21×3 to the ground truth 3D poses Jgt ∈ R21×3 by minimizing the following L2
objective: min~β ,~θ ||Jgt−JMANO||2. Based on the fitted mesh vertices, we upsample and then
randomly downsample to obtain a set of 3D points distributed on the hand surface.

Local Component Assignment: A local reconstruction requires assigning each template
point to a fixed local component, i.e. which points in the ground truth should be used to
evaluate each local reconstruction? For the MANO-generated point clouds, we manually
split the 778 vertices into six semantic portions corresponding to the palm, thumb, and four
fingers (see Fig. 2(a)). Real point clouds, however, are unordered. To assign points, we firstly
estimate the 3D pose and the MANO parameters. We then apply a simple k-nearest neighbor
classifier (k= 3) to match each point to a MANO vertex and give it the same component as
the MANO vertices’ partition. We can also re-sample as necessary (see Fig. 2 (b) and (c)).

(a) MANO-generated (b) Depth map-based (c) Depth downsampled

Figure 2: Segmentation Transfer from the MANO vertices to real depth point clouds.
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STB RHD FreiHand YouTube3D MVHand
Modality real rgbd syn. rgbd real rgb real rgb real rgbd

Resolution 640×480 320×320 240×240 mixed 640×480
Hands single two single single single

Subjects 1 20 32 − 4
Viewpoints 2 1 1 1 4

MANO params 7 7 3 3 3

Frames 36K 44K 36K 51K 83K
Table 1: Comparison of proposed MVHand Dataset with other RGB benchmarks.

3.4 MVHand Dataset

Methods of generating point clouds based on MANO are straightforward approaches to add
point cloud data to the current RGB datasets. However, they are not fully representational, as
the MANO mesh is a smoothed approximation of a genuine hand’s surface. Real-world point
clouds from the multi-view depth maps are dense and noisy; variations between the two may
be observed in Fig. 2. To verify that our framework also works on real-world point clouds,
we need a multi-view RGB-D dataset, i.e. RGB images as input and multi-view depth for
constructing ground truth point clouds. The only such dataset to date is the NYU Hand Pose
Dataset [33]. However, this dataset does not provide camera extrinsics, so it is not possible
to composite the views into complete point clouds. Furthermore, the recordings were done
by Kinect V1 sensors and the depth maps are very noisy.

To cover this gap, we record a new multi-view RGB-D dataset, which we call MVHand.
Similar to the BigHand [41] and Ho3D [13] datasets, we record our dataset with Inter Re-
alSense D415 cameras. We use four cameras, each at a range of approximately 50cm from
the hand. This is within the manufacturer’s recommended range of 45cm to 2m, which is
then specified to have a depth error of < 2%1. At this distance we observe that manually
labelled 2D keypoints in one view (see Fig. 3) can accurately project onto the other views.

To obtain the point clouds, we firstly segment the hand in the depth image via thresh-
olding, and then project the four views into a complete hand. The final complete 3D point
cloud ground truth is obtained by sampling from these depth maps. Specifically, we remove
any isolated outlier points via filtering. Additionally, we downsample the points in overlap-
ping areas from the different views to ensure that the points in the point cloud are evenly
distributed. Fig. 4 shows some sample point clouds from our dataset; our point clouds well-
represent the original hand shape and are close to fitted MANO mesh vertices. The mean
per-point Chamfer distance from point cloud to mesh vertex 7.88mm, with a standard devi-
ation of 0.72 mm. We direct the reader to the Supplementary for further details.

The 3D hand poses are annotated using the same 21-joint hand model as [32, 47]. We
use a semi-automated method, combining human annotations (around 7% of frames) with
the self-supervision method of [34] (see Supplementary 1.2 for details). The automatically
labelled frames have an estimated average joint error of 4.69mm when evaluated against
manually labelled samples, which is close to the manual label errors of Megahand [14].

Table 1 compares the statistics of MVHand with various hand benchmarks. MVHand
provides RGB and depth maps from the four views, 3D joint positions, fitted MANO pa-
rameters, hand masks, and all camera intrinsics and extrinsics. Fig. 3 shows sample frames;
more visualizations can be found in the Supplementary.

1https://www.intelrealsense.com/depth-camera-d415/
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Figure 3: Left: Different distances for annotation settings. Top row shows that recording
with a larger distance between hand and camera. Bottom row shows that distance is smaller
than 50 cm. Our manual annotations are based on the first column image and project into
other three views. Right: Samples from our proposed MVHand dataset. We highlight the
error region with red box.

Figure 4: MVHand dataset point clouds visualization. These four rows show RGB images,
mesh vertices, our complete point clouds, our point clouds segmentation by using K-Nearest
Neighbors algorithm based on mesh vertices.

4 Experiments
Datasets and Metrics: We test on four standard RGB-based hand post estimation bench-
marks in addition to our own recorded MVhand dataset. RHD [47] is a synthetic dataset
of rendered hands with 42k training images and 2.7k testing images. STB [44] features
videos of a single person’s left hand in front of 6 real-world indoor backgrounds. We use
the 15k/3k training/test split proposed in [47]. FreiHAND [48] is a challenging multi-view
RGB dataset of hand-object interactions. YouTube3D Hands-in-the-Wild [19] features im-
ages curated from Youtube videos with a 47k/1.5k/1.5k image training/validation/test split.

To evaluate 3D pose accuracy, we use area under the curve (AUC) on the percentage
of the correct keypoint (PCK) score, where PCK is calculated using various error thresh-
olds [47]. We also evaluate the mean 3D joint distance (mm) to ground truth according
to mean-per-joint-position-error (MPJPE). To evaluate the reconstructed point clouds, we
compute the mean Chamfer and Earth-Mover’s distances as per Eq 1 and 2.

Implementation Details: We optimize using ADAM to train the point cloud reconstruc-
tion firstly and then for 3D pose estimation. For RGB to point cloud encoder-decoder, we use

Citation
Citation
{Zimmermann and Brox} 2017

Citation
Citation
{Zhang, Jiao, Chen, Qu, Xu, and Yang} 2016

Citation
Citation
{Zimmermann and Brox} 2017

Citation
Citation
{Zimmermann, Ceylan, Yang, Russell, Argus, and Brox} 2019

Citation
Citation
{Kulon, Guler, Kokkinos, Bronstein, and Zafeiriou} 2020

Citation
Citation
{Zimmermann and Brox} 2017



8 Z. YU ET AL.: LOCAL AND GLOBAL POINT CLOUD RECONSTRUCTION

Method RHD STB
Zimm.’17 [47] 30.42 8.68
Spurr’18 [31] 19.73 8.56
Yang’19a [36] 19.95 8.56
Bouk.’19 [2] 16.78∗ 9.76

Yang’19b [37] 13.14 7.05
Iqbal’18 [15] 13.82 8.01∗

Ours(w/o rec.) 15.80 7.72
Ours(full) 13.38 6.71

Method FreiHand YouTube3D MVHand
Zimm.’19 [48] 11.0 − −
Bouk.’19 [2] 23.43∗ 19.24∗

Chen’21 [42] 11.8 − −
Choi’20 [4] 7.6 − −

Yang’19b [37] 12.35∗ 18.76∗ 15.12∗

Iqbal’18 [15] 13.52∗ 19.32∗ 15.27∗

Ours(w/o rec.) 13.90 22.50 17.80
Ours(full) 9.60 18.50 14.50

Table 2: Comparison of MPJPE (mm) with SOTA. "w/o rec." means without using our point
cloud reconstruction pipeline, otherwise, "full". The best score is marked in bold. * indicates
results based on released source code of [2] and [37], and our re-implementation of [15].

an initial learning rate of 0.001, a weight decay of 1e-6 and a batch size of 32. Afterwards,
we fine-tune the RGB encoder while learning the 3D pose decoder, using an initial learning
rate of 0.0001 and weight decay of 1e-6.

Figure 5: 2D and 3D pose visualization. Left to right column: Bouk.’19 [2], Iqbal’18 [15],
Yang’19b [37], Ours(w/o rec.), Ours(full), ground truth. We highlight the differences among
predictions and the ground-truth poses with red boxes.

4.1 Comparison of Pose Estimates
Table 2 compares our 3D pose estimation accuracy. On RHD, our proposed framework sur-
passes most other approaches [15, 31, 36, 47]. Our MPJPE is comparable to Yang et al. [37]
despite their use of perspective correction and additional modalities like 2D heatmaps. On
STB, we have the lowest MPJPE. Figure 6 (a) and (b) compare the 3D PCK curve on RHD
and STB respectively. On both datasets, our proposed method obtains the highest AUC.
There are very few published results on Freihand and YouTube3D. For FreiHand, our MPJPE
(9.6mm) is lower than [2, 48]. Choi’20 [4] reports 7.6mm, however, they use 2D poses from
other pre-trained models as input. YouTube3D does not provide the hand scale, so we use
40mm as reference bone length 2 to evaluate their test set. Table 2 also compares pose esti-

2Reference bone length as defined by Freihand; 40mm comes from the STB dataset
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Figure 6: Comparisons with state-of-the-art methods on RHD [47] and STB [44] .

Chamfer Distance Earth Mover’s Distance
2D grid 3D hand local 3D 2D grid 3D hand local 3D

STB 0.26 0.25 0.24 1.75 1.71 1.68
RHD 0.59 0.55 0.45 2.01 1.84 1.78

YouTube3D 0.31 0.30 0.27 1.32 1.24 0.99
MVHand 1.20 1.15 0.99 − − −

Table 3: Mean CD and EMD per point; the best score is marked in bold.

mation accuracy on our proposed MVHand dataset. As a baseline, we follow [15] to directly
regress the 3D hand pose with the 2.5D pose representation using a hold-one-subject out
test split. Our full model’s MPJPE, at 14.5mm, surpasses this baseline by 0.77mm. More
qualitative results are shown in Fig. 5.

4.2 Ablation Studies

Point Cloud Decoder: We remove the point cloud decoder and directly learn an image-to-
pose encoder-decoder with the same architecture components as our current model. Table
2 shows that the setting (w/o rec.) results in a higher error than the full model with the
point-cloud decoder. This is the case for all benchmark datasets and our MVHand; on av-
erage, the error is 20% higher than the full model. These results verify that the point cloud
reconstruction helps to learn a better latent representation for 3D pose estimation.

Chamfer Distance Earth Mover’s Distance
[2] Ours (3D) [37](Sur.) Ours (Sur.) [2] Ours (3D) [37](Sur.) Ours (Sur.)

STB .367 .243 .146 .113 2.34 1.68 3.136 5.294
RHD .627 .450 .195 .299 1.95 1.78 4.434 5.134

Table 4: Mean CD and EMD per point; "Sur." indicates CD and EMD on a 2.5D space as
per [15], since [37] estimates only the camera-facing surface of the hand. The best score is
marked in bold. Surface result values are scaled by 1000.

Template Initialization: We compare the point cloud reconstructions from the 2D grid,
3D hand, and local 3D hand initialization in Table 3 using CD and EMD to evaluate; on both
distances, a smaller value is better. We omit EMD on our MVHand dataset as the number of
points (1038) is too large to compute within a feasible time. The results in Table 3 support
the strength of our local 3D hand initialization.
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Figure 7: Left: Reconstruction results compared with [37] for RHD and STB. Top to bottom:
RGB images, incomplete reconstructions from [37], our complete reconstruction from the
same viewpoint and opposite viewpoint. Right: Top to bottom: original RGB images from
five datasets, the component-wise point cloud reconstructions from our method, aggregated
into "Global" and its opposing view. Red points are close to the camera, and blue are far.

4.3 Point Cloud Reconstructions

We visualize sample reconstructions in Figure 7 for RHD and STB. Figure 7 also compares
to [37]’s method, which reconstructs the camera-facing surface point cloud. In Figure 7,
we visualize samples from five datasets and observe that our reconstruction results are not
only complete but also of higher quality, especially in distinguishing the individual fingers.
Furthermore, we also visualize our component-wise point cloud reconstruction results and
these results verify the effectiveness of our local and global framework in reconstructing
high fidelity point clouds.

As there are no other works that make complete point cloud reconstructions, we cannot
make any direct quantitative comparisons. Instead, we make two indirect comparisons in
Table 4. First, we compare with [2], which directly regresses MANO parameters. We project
the estimated MANO parameters into a 3D point cloud in the same way as described in
Sec. 3.3. We find that our 3D results are in both CD and EMD for the STB dataset and
better in CD for the RHD dataset. We also compare with [37], though as their method
only recovers surface poitn clouds, we project our complete point cloud into 2.5D space as
per [15]. Although our EMD results are worse than [37], we believe the projection process
accumulates some errors. When visualized, however, our point clouds are much cleaner and
of higher quality than [37] (see Fig. 7).

5 Conclusion

This paper proposed a framework for reconstructing a complete 3D point cloud from RGB
images. In learning an RGB-point cloud encoder-decoder, we also learned a rich latent rep-
resentation that can be decoded into an accurate 3D hand pose. To improve the quality of the
point clouds, we introduced two template initializations. To verify our method on real-world
hand point cloud data, we introduced MVHand, a new multi-view RGB-D dataset. Experi-
mental results showed that our proposed method achieves comparable or better performance
than existing 3D hand pose and shape estimation methods. In future work, we will explore
the use of point clouds to resolve self-occlusions of the hand.
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