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Abstract

We propose an approach for semantic segmentation with weak supervision using
bounding box annotations. Most previous work relies on segmenting bounding boxes
into the object and the background. Each box is segmented independently from the other
boxes. We argue that the collection of boxes for the same class naturally provides a
dataset from which we can learn a model to segment that object class. Learned model,
in turn, leads to a better segmentation of each individual box. Thus for each class, we
propose to train a segmentation CNN from the dataset consisting of the bounding boxes
for that class. This step transforms the bounding box weak supervision into to several
image-tag weak supervision tasks. Each image-tag weak supervision task is on a dataset
with a single object class. After we train these single-class CNNs, we apply them back to
the training bounding boxes to obtain object/background segmentations and merge them
to construct pseudo-ground truth. The obtained pseudo-ground truth is used for training
a standard segmentation CNN. We improve the state of the art on Pascal VOC 2012
benchmark in bounding box weak supervision setting. Our code is publicly available at
https://github.com/Jerryji007/Box2TagBack-bmvc2021.

1 Introduction

Semantic segmentation with CNNs [6, 7, 8, 14, 35, 47, 48] achieves excellent performance
in fully supervised setting. However, the effort that goes into dataset labeling is formidable.
Thus there is a significant interest in weakly supervised semantic segmentation.

There are various types of weak supervision. In image-tag annotation [1, 18, 21, 26, 29],
only the classes contained in each image are given. In “scribble" supervision [24, 38, 39, 41,
44], a small set of pixels is annotated in each image. In this paper, we consider supervision
with bounding boxes [9, 17, 20, 23, 26, 36, 44], where annotation is in a form of bounding
box with the corresponding class label placed around each object from the class of interest.
Bounding boxes take approximately only 7 seconds per image to annotate [25], whereas
pixel-precise annotations can take more than 4 minutes per image [3, 11].

Previous approaches to weak supervision with bounding boxes [9, 17, 20, 23, 26, 36, 44]
consist of two stages. In the first stage, they construct pseudo-ground truth from bounding
boxes. In the second stage, they train a segmentation CNN, with pseudo-ground truth in-
stead of ground truth [20, 36]. When constructing pseudo-ground truth, a popular approach
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Figure 1: Overview of our approach. First we construct single object class datasets by
cutting out the bounding boxes from the annotated training images and separating them by
class. Then we train CNN in image-tag weakly supervised setting on each dataset. The
next step is to apply the trained CNN back to the training bounding boxes. The obtained
segmentations are combined with conflict resolution to construct pseudo-ground truth. The
final step (not illustrated) is to train a standard segmentation CNN on pseudo-ground truth.

is to use an object/background segmentation algorithm such as GrabCut [33] on each box
independently, and then paste the segmented foreground back to form pseudo-ground truth.

Our approach is also based on constructing pseudo-ground truth from bounding boxes.
However, we observe that segmenting each bounding box separately is sub-optimal, since
each box has a rather limited information about object appearance. Instead we should use
data from all boxes of the same class collectively, to construct a better appearance model
for that class. The better appearance model, subsequently, can be used to segment each
bounding box of that class more accurately, leading, in turn, to a more accurate pseudo-
ground truth. In particular, for each object class, we propose to train a segmentation CNN
using the bounding boxes from that class as training data. Note that this step transforms the
collection of bounding boxes (for each class separately) into a dataset for weak supervision
with image-tag annotations. Each such dataset contains only one object class of interest.

While there are many methods for image-tag weak supervision [1, 18, 21, 26, 29], we
chose [40] as particularly suited for our task. Its advantage over previous work is that it
does not require Class Activation Maps [34, 49], which have a limited object coverage. In
addition, [40] is designed specifically for datasets which have a single object class of interest
(as in our setting) and shows state of the art performance in this setting. Furthermore, the
loss function in [40] can be redesigned to better suit bounding box datasets.

After training single-class CNNs, we apply them back to each bounding box in the train-
ing dataset to obtain pixel precise object masks. Then we develop and evaluate two strategies
for constructing pseudo-ground truth from the obtained masks. Finally we train a standard
semantic segmentation CNN on our pseudo-ground truth. In essence, we reduce bounding
box supervision to image-tag supervision and apply the results back for the original bounding
box supervision task. See Fig. 1 for an overview of our approach.

We are the first to explore the information across all bounding boxes of the same class
to learn a better object appearance model for that class. The advantage of our approach over
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prior work is its simplicity. We use standard CNN architecture, our loss function is intuitive
and easy to interpret, there is a natural pipeline with no complex stages. Our approach sets a
new state-of-the art in weak segmentation with bounding boxes on Pascal VOC [11].

This paper is organized as follows. Sec. 2 reviews prior work, Sec. 3 explains the
method [40] for image-tag weak supervision, Sec. 4 presents our approach to semantic seg-
mentation from bounding boxes, and experiments are in Sec. 5.

2 Related Work

Most common types of weak supervision are image-level tags [1, 2, 5, 12, 12, 13, 16, 18,
21, 26, 28, 29, 37, 45, 46], image scribbles [24, 38, 39, 41, 44], and bounding boxes [9,
17, 20, 23, 26, 36, 44]. Out of image-level tag approaches, the one in [13] is most related.
They use a salient instance detection algorithm to find candidate instances across a dataset,
and then a clustering algorithm to cluster instances that are likely to belong to the same
class, thus performing tag assignment to the detected salient instances. This approach is
related to our work in the sense that they use information across different images for ground
truth generation. However, their approach is different from ours since they do not leverage
information across different images to learn a better appearance model for each class, like we
do. Thus any segmentation errors in an instance mask do not have a chance to be improved.
Bounding Box Weak Supervision

The bounding box approaches consist of two main stages. The first stage is to construct
pseudo-ground truth. The second stage is to train a semantic segmentation CNN, such as [7],
using pseudo ground truth instead of ground truth. When generating pseudo ground truth,
a pixel that does not belong to any bounding box can be safely marked as the background.
There are different approaches for dealing with pixels inside the boxes.

A simple approach is to consider each pixel inside the bounding box as a positive example
for the corresponding object class [26]. Conflicts, i.e. pixels that fall inside two bounding
boxes, are usually resolved by assuming the smaller box is in front of the larger box. One
can also consider only a certain percentage of pixels centrally located in the box as positive
examples, and to label the rest as a void class [17]. While simple, these approaches are less
accurate, as they are based on a crude approximation of an object with a bounding box.

To get a more accurate estimate of the object in a box, one can apply an object/background
segmentation algorithm. DenseCRF [19], GrabCut [33], MCG [30], or their combination
have been used in prior work [9, 17, 23, 26]. All of these approaches segment a box into
object/background separately from the other boxes, unlike our approach.

Instead of cross entropy, one can design a loss that is better suited for handling noisy
pseudo-ground truth [20, 36]. In [36] they first use denseCRF [19], separately in each box,
to segment the object from background. From these segmentations, they compute the class
specific filling rate, which is the object size relative to its box, averaged over the correspond-
ing class. The loss function for training the final CNN uses a fraction of the most confident
pixels in the box, and this fraction is equal to the class filling rate. Filling rate computation
does use information across different boxes of the same class, but in a rather limited way, i.e.
for computing the average area of an object. We use information across boxes in a more sub-
stantial way, to model class appearance, and, even with a simpler loss, we outperform [36].

In [20], they generalize the loss from [36] and develop not only class specific, but also
image specific filling rate loss and attention mechanism. The first stage is still based on
segmentation masks obtained from each box using GrabCut [33], independently from the
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other boxes. We could use the loss function from [20]' to possibly improve our performance,
but again, even with our simpler cross entropy training, we outperform [20].
Regularized Loss for Weak Supervision

Regularized loss has been used for weak supervision with scribbles [38, 39] and image-
tags [40], but has not been used for weak supervision with bounding boxes. Scribbles provide
a definitive set of pixels that belong to an object class, and can be used with cross entropy in
an objective function. With bounding boxes, there are no pixels that definitely belong to the
object class and thus our method is substantially different from [38, 39]. Our method uses a
modified version of [40] for image-tag weak supervision. We review [40] in detail in Sec. 3.

3 Regularized Loss for Single Object Class

In [40] they develop an approach for training segmentation CNN for a single object class.
They design a loss function that models prior knowledge about likely object shape properties
and thus can be used to train CNN without pixel precise ground truth. Their loss function is
called regularized because it is based on certain regularity properties of real world objects.

Let x be the output of segmentation CNN, and x, be CNN output for pixel p. The last
layer of CNN is softmax, and, therefore, x,, € (0,1). The object is 1, and the background is
0. The most important part of regularized loss is Sparse-CRF, defined as

LCrf( ) |rP| Z Wpq* |x17 xq| (D
(P )N
Here P is the set of image pixels, A is the set of neighboring pixel pairs, and w,, =
2
exp( —%), where C), is the color of pixel p, and o controls edge scale. There is a loss
of wy, if neighboring pixels are in different classes, assuming that x,x, are close to O or 1.
Sparse-CRF is low when segment boundaries are shorter and align with image edges [4].
To prevent a trivial solution (everything segmented as object or background), regularized
loss must have other parts. The next part is volumetric loss. It assigns a high value to trivial
solutions. First let us define the normalized object size X = ﬁ Y. pep Xp- Let the batch outputs

be x1,...,Xx;,. The volumetric loss is:
1l —_ 2
Lv(xl e =A Z [xz < smm] : ( Smm + (% in _05) )
i

Here H is 0 if the argument is false and 1 otherwise, s, is the minimum object size, and
As is the relative weight. The first sum in Eq. (2) is non-zero for any x; that has normalized
object size less than s,,;,. Thus it penalizes any segmentation where an object is too small
(i.e. less than s.;,). The second sum in Eq. (2) has a low penalty if the object size, averaged
over a batch, is not too far from half of the image size. Averaging over a batch allows
deviation in size for an individual image without a severe penalty.

The last regularized loss part is the positional loss that gives additional cues for the
more likely spatial locations of the object/background. Since there is only one object class
of interest, the center pixel is likely to be object, and the border pixels are likely to be
background. Let B be the border of the image of width w = 3. Let C be the pixels in the
central box of the image of side size ¢ = 3. The positional loss L, (x) is

Ly(x) = <|lB|prxp)2 + (é“;cxp — 1)2. ©)

IThey plan to release the code but it is not publicly available yet.
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The complete regularized loss is a weighted combination of the losses above
Lreg (%) = Aerf Loy () + ML) 4 AL (1), )

If negative images (i.e. images containing only background pixels) are available, then
they can also be included in the training with negative loss:

Lneg( neg |,P| Z Xp @)

peP
The parameter settings are: Spin = 0.15, Ae,p = 100,A, =4, =1, A, =5, Ay =1, 0 =0.15.

4 Our Approach

In this section we describe our approach. It has the following pipeline. First we take the
training dataset with bounding box annotations, crop out the bounding boxes, separate them
by class, thus constructing a single class dataset for each object class. Next we train a single
class CNN for each class in image-tag supervision setting, thus creating a corresponding
object segmentation CNN. Next we construct pseudo-ground truth by applying trained single
class CNNss to the bounding boxes and combining the results with conflict resolution (three
different conflict resolution approaches are evaluated). Finally, we train a standard multi-
class CNN on pseudo-ground truth to obtain a semantic segmentation CNN.

We describe single object class dataset construction in Sec. 4.1, our approach for weakly
supervised single class CNN training in Sec. 4.2, and the pseudo-ground truth construction
in Sec. 4.3. The final step of training a standard segmentation CNN with our pseudo-ground
is described in Sec. 5.

4.1 Single Object Dataset Construction

For each semantic class, we crop out its boxes and put them into a separate single object class
dataset. When cropping a box, we take a border of 3 pixels in width from the surrounding
image outside the box. The border is used for the positional loss, which encourages border
pixels to be the background. If pixels in the border region contain boxes of another object, we
mark them as void. The void class is ignored during loss calculation. Border pixels provide
examples of the background class and make it easier to learn to segment the object from the
background. Strictly speaking, this makes training on our single class dataset a mixture of
image-tag and scribble supervision, where scribbles are provided for the background class
only, and only at the border of each sample. Still, we refer to this setting as image-tag weak
supervision, as the main source of supervision is through image-tags’.

Suppose we are constructing a single object class dataset for, say, class cat. We could
take all the boxes for the class cat. Some of the boxes for class cat intersect boxes of objects
of other classes. In case of intersection with another class, the box of class cat may have
pixels of that other object class. Learning appearance of the cat class is made harder by
presence of another class, since we are learning only with image-tag annotations. Therefore,
we only take the boxes for the class that do not intersect with boxes from the other classes®

2In fact we could still learn without the border pixel labels, similar to how it is done in [40]. But since the box
annotation data does provide labels for the pixels outside any box, it is advantageous to make use of it.

3Note that in Pascal VOC [11] dataset which we use for evaluation, there are objects from the classes of interest
without a bounding box annotations around them. Thus any box which does not have an intersection with a box
from another class in the annotation, still may have pixels from the other classes.
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Intersection with its own class does not present difficulties, since no mixing between different
classes occurs in such case. Thus, for example, if a box of class cat intersects with another
box of class cat, we still include it in the single class dataset for object cat.

Lastly, we take boxes in the single class dataset only if their longer side is bigger than 50
pixels. Otherwise a box is too small in resolution and is less helpful for learning appearance.
We rescale all cropped boxes to be of size 256 by 256 for training CNN.

4.2 Single Object Class Training

We train a single class CNN with a regularized loss function, which we redesign from [40]
to better suit a single object class dataset derived from bounding box annotations.

In [40], they observe that in a single class dataset, the central pixel is likely to be the
object. Since they deal with general images, the object size can be rather small. Therefore,
they use a rather modest prior, only the small central patch is encouraged to be the object. In
contrast, for bounding boxes, we observe that the bounding box is likely to cover the object
rather tightly, and can use a stricter, and, therefore, more useful prior on the object position.

We replace the central pixel prior by a tight box prior, inspired by [22]. Our tight box
prior encourages either every row or every column in the box to contain at east one object
pixel. This means that the object fills out the full width or the full height of the box. We do
not expect the object to fill out both width and height, since often bounding boxes are placed
around the object more loosely than that, for example, see the box for the plant in Fig. 1,
bottom left. However, usually a box is tight in at least horizontal or vertical dimension.

An additional modification is also to the positional prior. In [40], the border of the image
is not guaranteed to be the background since they consider general images. Therefore, they
used mean squared loss, which penalizes mistakes less. Since we cropped the border of
each sample from the outside of a bounding box, we know the border region belongs to the
background, so we use cross entropy instead of a mean squared loss.

For a training image, let 3 be the border region (cropped from the outside of the corre-
sponding bounding box), and R be the inner region (corresponding to the actual bounding
box). Our positional prior, replacing the one in Eq. (3) is

= Z log (1 (max{l Z max xp, Z max x,} —1)%,  (6)

|B‘ pEB rowe R *PETOW L()[GRxPEL()I

where r and c are the row and column lengths.

The last change to the regularized loss is to raise the minimum size requirement for the
object to s,,;;, = 0.3 in Eq. (2), since the size of an object relative to its bounding box is large.

Finally, we add the negative loss in Eq. (5) to the regularized loss in Eq. (4). Although
we collect non-overlapping boxes in our single class datasets, still, for a box of some object
class, there can be pixels from other object classes due to the limited precision of box anno-
tations. With negative loss, when we train for a class, the datasets for all the other classes
are used in Eq. (5), thus reducing sensitivity to objects of other classes.

Except for s, other parameter settings are the same as in Sec. 3 for all single class
datasets. We train CNN for each object class separately. CNN architecture is the same as
in [40]*. They use Unet [32] with ResNeXt [43] fixed features in the encoder. The fea-
tures are pretrained on Imagenet [10]. After single CNN classifiers are trained for each

4https://github.com/morduspordus/SingleClassRL
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class #boxes MCG denseCRF grabcut salient ours ours(T) ours(T+N)
aero 608  63.72 70.97 67.12 88.43 87.13 88.88 89.12
bike 243 5841 69.56 69.60 80.00 84.37 85.59 85.74
bird 827 67.32 76.54 70.69  90.07 91.16 91.57 91.70
boat 444 65.73 76.68 76.58 77.57 8491 87.26 87.14
bottle 376  78.61 85.19 84.97 8250 89.28 92.45 92.68
bus 310 76.75 89.32 87.04 9271 9144 94.73 94.60
car 909  72.07 86.27 81.99 88.00 89.23 9254 92.90
cat 901 73.86 86.49 80.44 84.62 92.69 94.71 94.73
chair 1003 58.73 69.41 63.48 68.28 7471 75.99 78.64
cow 428  72.54 84.99 75.01  87.17 91.42 92.56 92.53
table 65 6245 83.63 82.22 63.32 7526 79.59 79.69
dog 953  72.58 85.95 7940 89.25 93.98 94.36 94.42
horse 359  66.57 79.22 71.00 8822 90.26 91.35 91.53
mbike 248  59.30 80.60 7592 8548 87.95 89.61 89.61
person 4029  70.02 80.01 7829 84.60 85.83 88.02 89.05
plant 437  63.13 81.24 76.10 74.62 8259 87.51 87.69
sheep 548  73.95 84.66 76.78 8522 88.67 91.42 91.68
sofa 256  70.07 78.13 73.04  66.04 78.79 81.59 81.99
train 445  68.64 83.94 7891 85.89 87.86 92.05 92.08
tv 455  82.09 86.96 85.00 83.52 88.18 92.20 92.36
mean Fj 68.83 81.00 76.68  82.28 86.79 89.20 89.50

Table 1: Comparison of segmentation accuracy on training boxes from Pascal VOC 2012 us-
ing MCG [26], denseCRF [19] GrabCut [33], salient object detection [31] and three versions
of our method, see text for explanation. Performance metric is F score (higher is better).

object class, they are applied back to the bounding boxes and a segmentation into ob-
ject/background is obtained, which is used for constructing pseudo-ground truth (Sec. 4.3).
We now compare the accuracy of our box segmentations with those obtained by MCG [30

]

denseCRF [19], and GrabCut [33] on Pascal VOC 2012 [11] dataset, as all of these have been

used for pseudo-ground truth construction by previous work. Please see supplementary ma-

terials for implementation details of MCG, denseCRF, and GrabCut. In addition, we also

evaluate salient object detection for segmenting a box. We use BasNet [31]°. Note that Bas-
Net was trained on pixel precise ground truth from salient object benchmarks. We use Fp

performance metric, defined as Fg = with B2 =0.3.

(1+B2)precisionxrecall

B2 x precision+recall ’

The comparison is in Table 1. There are three versions of our method: ours uses the
original positional loss in Eq. (3) from [40], ours(T) uses our new positional loss based
on the tight box assumption (Eq. (6)), and ours(T+N) uses our new positional loss and
the negative loss (Eq. (5)). Our new tight box positional loss significantly outperforms the

positional loss from [40]. Performance is improved for all classes. The largest improvement,

by over 4 points, is for the table and plant classes. The appearance of these classes is harder to
model in weakly supervised setting, so having a stronger prior helps them the most. Adding

negative loss improves the performance for almost all classes, but only slightly.
All three versions of our method outperform MCG, denseCRF, GrabCut and salient ob-

ject detection by a large margin in terms of the mean Fg score. Saliency, although not

previously used for bounding box segmentation, performs best out of methods other than

ours. Some classes are naturally more salient than others, for example, the bird class. Here

saliency achieves almost the same performance as we do. However, some classes, such as

Shttps://github.com/xuebingin/BASNet
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overlap-small overlap-void overlap-back-void

a) bounding boxes  b) box segmentations c) pseudo ground truth, three options d) ground truth

Figure 2: Illustrates pseudo-ground truth construction, see text for a description.

sofa and table, are far from salient, and the difference in Fﬁ score is almost 15.

The total training time for our method for all classes is 33.7 hours, which is less than
training the final CNN on pseudo-ground truth, see Sec. 5. This is because single class CNNs
have a lighter architecture compared to the final CNN (deepLab [7]). Also note that with our
approach if one wishes to add new classes, previous classes do not have to be retrained.

4.3 Pseudo Ground Truth Construction

We now describe how we construct pseudo-ground truth after training a single-class CNN
for each class. First, to each bounding box in the training data, we apply the single-class
trained CNN corresponding to the class of the box and obtain the segmentation of that box
into the object and the background. Note that at this stage, we apply trained CNN to all
bounding boxes in the training data, whether they overlap the other boxes or not, in order to
obtain a denser pseudo ground truth. Each box is scaled to 256 x 256.

Next, we combine box segmentations for pseudo-ground truth with conflict resolution.
Pixels that do not belong to any box are marked as background. A pixel that gets segmented
as an object in one box, or in several boxes of the same class, is assigned the box class.

Next we need to resolve conflicts for pixels that get labeled as an object in two or more
boxes (i.e. overlap pixels) that belong to different object classes. We test three strategies, see
Fig. 2(c). The first strategy is to assign overlap pixels to the class of the smaller object in the
overlapping boxes [17], we call this approach overlap-small, Fig. 2(c), left. This heuristic
assumes that an object in front of another one tends to be smaller. It does result in errors
when the object in front is larger. To reduce errors, at the cost of a less dense pseudo-ground
truth, our second approach is to label the overlap pixels as void, to be ignored during training.
We call this approach overlap-void, Fig. 2(c), middle. Void pixels are in white.

Our last approach is to label as void not only the overlap pixels, but also pixels that
are labeled as background in any box, Fig. 2(c), right. We call this approach overlap-back-
void. The motivation is as follows. Some pixels inside boxes are assigned to background
erroneously, i.e. they are false negative. Labeling the background inside a box as void
removes all false negative errors, at the cost of having less background samples. However,
we already do have many background samples from pixels that do not fall into any box.

In Table 2 we show the accuracy, in terms of miou metric of our pseudo-ground truth
for all three cases, as well as the percentage of new void pixels we introduce during pseudo-
ground truth construction. Thus we do not include the void pixels already present in Pascal
VOC dataset in the count. As expected, overlap-small is the least accurate but has no void
pixels, overlap-back-void is highly accurate at the cost of having almost a quarter of void
pixels, and overlap-void has middle accuracy with only a small number of void pixels.
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method mloU-Train % void
Ours (overlap-small) 71.3 0
Ours (overlap-back-void) 90.2 23.5
Ours (overlap-void) 79.9 3.1

Table 2: Accuracy of pseudo ground truth for our method, in terms of miou metric, and the
percentage of void pixels. These results are computed on Pascal VOC 2012, training set.

method backbone mloU-Val mloU-Test | mIoU-Val FullS
WSSL (CRF)[26] VGG-16 60.6 62.2 67.6
BoxSup (CRF) [9] VGG-16 62.0 64.6 63.8
SDI (CRF) [17] Resnet-101 65.7 - 69.1
BCM (CRF) [36] Resnet-101 70.2 - 74.5
GCMCG [23] Resnet-101 74.3 75.5 773
Box2Seg [20] Resnet-101 74.9 - -
Box2Seg (CRF)[20] Resnet-101 76.4 - -
Ours (overlap-small)  Resnet-101 76.1 76.0 77.8
Ours (overlap-back-void) Resnet-101 75.7 75.5 77.8
Ours (overlap-void) Resnet-101 77.1 76.1 77.8

Table 3: Comparison of our approach to previous bounding box supervised methods on PAS-
CAL VOC 2012 validation and test sets. Here (CRF) means the method uses denseCRF [19]
post-processing. Performance metric is mloU. The last column is performance of the corre-
sponding method using full supervision on Pascal VOC 2012 validation set.

S Experimental Results

We evaluate our approach on Pascal VOC 2012 dataset [11] with augmented annotations
from [15] for a total of 10,582 training images. The number of validation images is 1,449.
For pseudo-ground truth training, we use DeepLab-ResNet101 [7] pretrained on ImageNet [10].
We train on 513x513 images and use random horizontal flip, rescale, and Gaussian blur for
data augmentation. We use stochastic gradient descent with the same parameters as in [7],
except our initial learning rate is 1e —4. Training time is 46.6 hours. Our implementation is
in pytorch [27] and we use NVIDIA GeForce RTX 2080 Ti graphics card.

When we train on pseudo-ground truth which is overlap-small or overlap-void, we train

Figure 3: Example results (for overlap-void). In each image pair, the left is the ground truth,
the right is our result.
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with standard cross entropy for 200 epochs. When we train with overlap-back-void, because
the number of void pixels is large, we get slightly better results® if we add denseCRF loss
from [39]” to the cross-entropy loss. We use the same setting of denseCRF and its relative
weight as in [39]. When training with denseCRF loss, we use the same strategy as in [39]:
first we train only with cross-entropy (for 100 epochs), and then with both cross entropy and
denseCRF (for another 100 epochs). For comparison, we also train DeepLab-ResNet101
with pixel precise ground truth, for 200 epochs.

We compare the accuracy of our algorithm to the recent bounding box weakly supervised
methods in Table 3. The evaluation metric is mloU. Methods using Resnet-101 backbone
perform better. Most methods use denseCRF [19] as post-processing (marked with CRF
in parenthesis in the table), and do not report results without post-processing. Typically
performance with denseCRF post-processing improves the results by about 2 points of mloU.

We do not use denseCRF post-processing. Previously best method on validation set is
Box2Seg [20], their mloU = 74.9 without post-processing. Note that [20] uses UPerNet [42],
which significantly outperforms DeepLab. All our results are better than Box2Seg [20] with-
out post-processing. Our result with overlap-void is slightly better than Box2Seg [20] with
post-processing. We are using a standard cross-entropy loss. They use a loss function that
better handles noisy pseudo-ground truth. It is likely that if our masks learned with image-
tag weak supervision are used in conjunction with the loss in [20]®, the performance would
improve. Our results are also the best of previously reported on the Pascal test set.

The last column in Table 3 is the performance of the same CNN architecture for each
method but trained with pixel precise ground truth. Our method is only 0.7 points of mloU
measure behind training with full supervision.

‘We now compare the performance on the final task, semantic segmentation, if we use the
loss function in [40] instead of our loss. In particular, we test the performance we get when
constructing pseudo ground truth from boxes in column 7 of Table 1 instead of column 9.
We use the overlap-void method for constructing the ground truth and train deepLab with the
same parameters as before. The resulting mloU is only 71.2, significantly worse than 77.1
using our modified regularized loss. Such a large gap in performance is due to the accuracy
of the pseudo-ground truth. We computed mloU of pseudo ground truth using the results of
the loss in [40], and it is only 73.4, vs. mloU = 79.9 using our loss. The percentage of void
pixels is around 3 in both cases. Some examples of our results are in Fig. 3.

Conclusions

We proposed an approach for semantic segmentation with bounding box supervision that
takes advantage of the collective information in the boxes of the same class to learn the ap-
pearance of the corresponding class. This, in turn, is used to segment each bounding box
more accurately. All prior bounding box supervision methods make use of some segmenta-
tion method in each bounding box, independently of other boxes. Thus all prior work could
benefit from our approach for more accurate box segmentation. The advantage of our method
is that it is simple and based on an intuitive loss function. A disadvantage is training a sepa-
rate CNN for each object class. However, when adding a new class, the previous classes do
not need to be retrained. One promising direction for a further improvement is to add more
image-tag data for supervision, for example, by web image search on class names. Another
direction is to incorporate more complex losses for training, such as those in [20].

6See supplementary materials.
"https://github.com/meng-tang/rloss
8Their code is not available online yet.
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