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Abstract

A unified neural network structure is presented for joint 3D object detection and point
cloud segmentation in this paper. We leverage rich supervision from both detection and
segmentation labels rather than using just one of them. In addition, an extension based on
single-stage object detectors is proposed based on the implicit function widely used in 3D
scene and object understanding. The extension branch takes the final feature map from
the object detection module as input, and produces an implicit function that generates
semantic distribution for each point for its corresponding voxel center. We demonstrated
the performance of our structure on nuScenes-lidarseg, a large-scale outdoor dataset. Our
solution achieves competitive results against state-of-the-art methods in both 3D object
detection and point cloud segmentation with little additional computation load compared
with object detection solutions. The capability of efficient weakly supervised semantic
segmentation of the proposed method is also validated by experiments.

1 Introduction

3D object detection and scene understanding are two major perception tasks for 3D com-
puter vision. The former task provides position and dimension information for dynamic
objects of interest, while the latter task helps to understand the environment, which is usu-
ally accomplished by semantic segmentation of the sensor data. These tasks are important
for autonomous driving and mapping. The detected 3D bounding boxes are useful for ob-
ject behavior prediction, while the semantic information is useful for lane-keeping and static
obstacle avoidance. Significant prior works exist using lidar (Light Detection and Ranging)
sensors for these tasks thanks to their superior ranging precision and robustness to certain
environmental factors such as low/high lighting.

During the past decade, techniques for object detection and segmentation have advanced
significantly. Convolutional Neural Networks (CNN) have been widely used, including [13,
33, 36] for 2D object detection, [6, 16, 46] for 2D semantic segmentation, [31, 44, 49] for
3D object detection and [47, 51] for 3D semantic segmentation.
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Few of these works combine the detection and segmentation tasks, several follow the
panoptic segmentation scheme proposed by [18]. Examples include [39] on 2D images,
and [51] on 3D point clouds. The simultaneous multi-task learning strategy is favorable for
real-time applications, since it’s usually computationally efficient to generate detection and
segmentation results simultaneously, as some computations can be re-purposed.

Figure 1: An example of simultaneous object detection and segmentation.
Legend of point clouds: B Pedestrian B Vegetation B Sidewalk
Best viewed in color and zoomed in.

It’s worth remembering that 3D detection is different from 2D detection in the sense
that a 2D bounding box is usually a tight bound of corresponding instance mask, while 3D
detection (in outdoor scenes) provides object shape and orientation. Instance segmentation in
2D is also inherently different from 3D instance segmentation in terms of overlap, since there
may exist occluded objects in 2D images where pixels of one object may locate inside the
bounding box of another object, which is not the case in 3D point clouds, where bounding
boxes should not overlap under normal situations. These differences make the design of
panoptic segmentation methods different between 2D and 3D data.

In this paper, we propose a method called VIN (Voxel-based Implicit Network), which
takes a 3D lidar point cloud as input and reports both 3D object detection and semantic
segmentation results as the outputs. To the best of our knowledge, this is one of the first
papers that perform lidar-based 3D object detection and point cloud segmentation through a
single network. Our main contributions include:

1. A semantic branch from a voxel-based 3D object detector which adds little computa-
tion overhead for the additional output. The semantic branch can be trained with weak
supervision. The performance with just 0.1% semantic labels, after some training,
was found to be on par with a model trained with full supervision.

2. A strategy to fix inconsistency between bounding boxes and point-wise semantic la-
bels, validated by our experiments.

3. Improved semantic and panoptic segmentation quality compared with state-of-the-art
methods based on the results from the nuScenes-lidarseg dataset.

The remainder of the paper is organized as follows: Section 2 introduces related work
in 3D object detection and segmentation, Section 3 describes the structure of the proposed
network, Section 4 presents the settings and performance metrics of our experiments. Finally,
Section 5 concludes this paper.
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2 Related Work

2.1 3D Object Detection

Due to the wide availability of various datasets including [4, 12, 14], 3D object detection
has become a hot topic in computer vision. Grouped by the modality of sensors used in the
detection, the methods in literature can be categorized as image only [5, 7, 27, 40], point
cloud only [31, 34, 42, 44, 49] and multi-modal fusion [26, 35]. Among the lidar-based
detection algorithms, the approaches include feature extraction by points, voxels, projected
images, and combinations [20, 34]. The point-based approaches [31] apply Multi-Layer
Perceptron (MLP) and gather feature from points in the same group, while the voxel-based
methods [35, 44, 49] first assign the point cloud into voxel grids, and then convolutional
neural network (CNN) modules are applied to the voxels. The projection-based methods
[26] project the point cloud into images in a perspective view and then features are extracted
using 2D CNN models. After the feature extraction, these methods usually generate 3D
bounding boxes in a single-staged or two-staged manner ([22] and [33] respectively).

2.2 Point Cloud Semantic Segmentation

Point cloud semantic segmentation is an emerging research field taking advantage of datasets
including [2, 4]. Similar to 3D object detection using point clouds, the segmentation algo-
rithms also can use different approaches. PointNet[29] and its successors [30, 37] directly
operate on a point cloud array and report point-wise semantics. Voxel-based frameworks
[1, 9, 11] extract features for voxel grid convolution and reports voxel-wise semantics. Due
to the cubic growth of computational cost with the number of voxel grids, sparse convolution
[9, 42] is widely applied for these methods. Voxels are usually sliced in the 3D Cartesian
coordinate, while there are also methods [17, 48, 51] in the polar or cylindrical coordinate
systems. Methods using projected images [41] for semantic segmentation take advantage of
well-explored techniques developed for the 2D segmentation.

Different representations for point clouds have respective strengths and drawbacks. Point-
wise feature operation preserves the granularity of the original point cloud, but suffers from
heavy computation cost. Voxel-wise feature operations are fast, but suffer from lower preci-
sion introduced by the rasterization. Projection-based methods can take advantage of handy
2D convolution structures and their efficiency but need to learn to reconstruct the 3D object
shape. In this paper, we enhance the voxel-based framework for its efficiency, by using the
implicit representation introduced in Section 3, to enable precise point-wise predictions.

Recently, many researchers [15, 23, 24] work to advance the ability of point cloud se-
mantic segmentation with fewer labels, namely weakly or semi-supervised semantic seg-
mentation. Most of them depend on unsupervised algorithms [15, 23] to cluster the point
cloud, or depends on consistency between data frames [24]. In this paper, we propose a
method that can handle weak supervision with the help of object detection results.

2.3 Joint 3D Detection and Segmentation

Both 3D object detection and environment segmentation are important tasks for autonomous
driving. Relatively few papers combine the two tasks to provide richer information for down-
stream modules. [26] achieved joint 3D object detection and point cloud segmentation by
combining the features from the lidar point cloud and camera image and extrinsic projection
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to collect additional point cloud features from the image feature map. [38] improved seman-
tic segmentation performance by adding object detection as an auxiliary downstream stage
for additional supervision, which shares a similar structure as this paper, but they started
from a point-based semantic backbone. In addition, the two approaches cited above only
produce results in a field of view limited by the camera. In this paper, we aim to develop
detection and segmentation results without this limitation.

There are many other methods [17, 51] that produce panoptic segmentation results of
a point cloud, which is different from joint 3D detection and segmentation as discussed in
Section 1. [17] proposed a shifting network module to predict whether a point belongs to a
certain instance or not by location regression. [51] proposed a panoptic segmentation frame-
work based on a cylindrical representation of the point cloud augmented by asymmetrical
convolutional modules. Compared with these methods, our method achieves panoptic seg-
mentation by generating instance labels with predicted bounding boxes.

2.4 Implicit Representation

Many recent computer vision algorithms use 2D or 3D grids which result in loss of data
granularity. To preserve precision, a possible solution is to operate on the raw points, and
another way is to use implicit representation such as signed distance functions [25, 28].
The key insight behind the implicit representation is to learn a function to represent the
input location, instead of learning the collection of per-location predictions given the feature
map input. The prediction can be occupancy of the location as used in [25], or a direct
semantic label as what we used in this paper. A major benefit of this approach is that we can
predict continuously, i.e. prediction can be obtained for arbitrary query positions, whether
it’s aligned with the original data or not.

3 Methodology

Different from most methods mentioned in Section 2, our goal is to generate 3D bounding
boxes and point-wise semantic labels simultaneously given a point cloud input. On top
of these results, panoptic segmentation predictions can be generated easily. First, We will
describe the backbone applicable to our algorithm in Section 3.1. Then the details of the
proposed semantic branch will be elaborated in 3.2. The panoptic segmentation will be
covered in Section 3.3. Figure 2 illustrates the structure of the proposed method.

3.1 Backbone Network

Our method can work with any voxel-based detectors that predict bounding boxes based on
a feature map. To show the effectiveness of our semantic branch, we use CenterPoint[44] as
our backbone. CenterPoint follows the VoxelNet[49] structure, consisting of voxel feature
extraction (VFE) layers, a 3D convolutional backbone, a bird’s eye view 2D convolutional
backbone and several detection heads (see the upper branch of Figure 2. After object propos-
als are generated for each location, they are passed through a Non-Maximum Suppression
(NMS) or Circular NMS module to collect final predictions.
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Figure 2: The overall structure of the proposed joint 3D object detection and semantic seg-
mentation framework

3.2 Semantic Rendering Branch

Inspired by [19], we propose a semantic rendering branch that learns a continuous func-
tion to generate semantic distribution prediction for each input position and reduce raster-
ization error. The semantic branch prevents granularity loss by using an implicit function.
This process is achieved by using a lightweight MLP module with inputs coming from both
point positions and local voxel features. Different from PointRend which uses both coarse
and fine-grained features, we only use the original global feature map from the convolu-
tional backbone since our base framework is a single-stage detector instead of the two-stage
MaskRCNN[16] used in [19]. In our experiment, the MLP of the semantic branch consists
of 4 layers with 256, 128, 64, and 32 channels, respectively.

Given a query point ¢ = (xy,y4,24) from the point cloud input and backbone feature map
M € REP*HXW e first find the grid position (i, j, k) € NP*H>*W in the feature map where
the query point lies, then the semantic distribution s, € RS with S classes of the point are
generated by the MLP module f : R3¢ — RS formulated as

5q = softmax (f( [xq —CXi Vg — CYj Zg — CZk M.,-J-k} ) (D
where (cx;,cyj,czi) € RDP>*H*W represents the real-world center of the grid in the feature
map indexed by (i, j, k). If the query point is outside of the voxel grid, then the voxel closest
to the point is selected. This module f will be supervised by the point-wise semantic labels
from the dataset.

Since only the position of the query point is fed into the function, unlike the method
used in [51], the semantic branch can predict points that are not in the original point cloud.
The decoupling between feature extraction and querying is beneficial when semantics are
required to be extrapolated between points, which will be further discussed in Section 4.4.
Note that in our backbone, the 3D voxel features are flattened and processed by a 2D convo-
lutional network, therefore in our case D = 1. The proposed branch can be applied directly
to a 3D voxel grid if the backbone framework produces a 3D tensor to the detection head.

With the network structure defined above, we define the loss function as

L = 0tysLess + aregLreg + QsemLsem 2

where we use focal loss with Gaussian kernels for the classification loss L.;; on the heatmap,
and Ly loss for the regression loss L., on box parameters, both of which are inherited from
the backbone method we adopted from [44]. For semantic supervision, we use a combi-
nation of Lovasz oss [3] and weighted cross-entropy loss for the semantic loss Lg,,.In our
experiment, the parameters for the weight loss are 0t.;; = Ggery = 1, Creg = 0.25.
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3.3 Panoptic Post-processing

After bounding boxes and point-wise semantic labels are generated, panoptic segmentation
results can be generated by assigning instance ids of the boxes to the points inside them.

Aside from panoptic label generation, object bounding boxes and semantic labels can
be used to mutually recover the error in predictions. Inspired by the strategy introduced in
[47], we developed a novel procedure named InConsistency Suppression (ICS) to first fix
inconsistent labels of the bounding boxes using a estimated label from point-wise semantic
outputs and then inconsistent points will be fixed. The algorithm is described in the pseu-
docode (Algorithm 1) below. The inputs for the procedure are the collection of predicted
bounding boxes B and semantic point clouds P. Each box b € B has an object classification
K () with confidence score s(b), and each point p € P has semantic classification K (p) with
confidence score s(p). b also denotes the area inside the box. In the procedure description,
Kin denotes the thing categories.

Algorithm 1 InConsistency Suppression

1: procedure ICS(B,P) > Fix inconsistent labels in-place
B: labeled bounding boxes, P: labeled point cloud
Ca, Cy: tunable parameters with default value 1
m,,: score margin for overriding point label

2: Sort B descendingly by score
3: fori=1...|B| do > loop for fixing box label
4: P —{pePnbilK(p) #K(b;)Vj<i,pebj} > select inconsistent points
5: for k € Ky, do > for each semantic class k
6: Pt {p e P|K(p) =k} > select points with label &
7: oy < 1PH1/|p) > count criterion
8: Br <= Locpts(P) /1Y > score criterion
9: Yo = 1+5(bi) - Vg (i) B> correctness criterion
10: k* < arg maxyek,, 0% Yk > select the best class using the three criteria
11: if k* # K(b;) then > if the best class is not the predicted one
12: if3j>ist K(bj) =k* then
13: Swap K(b;) and K(b;) > swap label with a box with lower score
14: else
15: K(b;) + k* > override the box label by the best class
16: fori=|B|...1do > loop for fixing point labels
17: for p € {p € PNbj|s(p) < s(bi) —m,} do > for each point with low score
18: if3j <is.t. peb;Nb;then
19: Continue > ignore boxes with large overlap
20: K(p) < K(b;) > override the point label by box label

4 Experiment Results

Experiments are conducted on the nuScenes[4] dataset with nuScenes-lidarseg extension.
This dataset is selected because it provides labels for both 3D object detection and point
cloud semantic segmentation. The nuScenes dataset contains various labels for different
tasks, including 28k synchronized frames with multiple cameras, one lidar and multiple
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Table 1: Comparison of semantic segmentation performance using the nuScenes validation dataset.
For all metrics the higher the better, the best one is shown in boldface.

&
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< S ¥ Y ¥ S & & R & & & g
Method Source | mloU fwloU | & & & && Ny A &P R N
SalsaNext [10] 8] | 588 828 | 81.0 657 771 383 184 528 475 47 435 566 942 600 703 812 805
MinkNet42 [9] 8] | 608 827 | 771 622 774 425 230 556 551 83 500 631 940 672 686 837 808
(AFR-S3Net[8] | [8] | 622 830 | 80.0 674 823 422 200 590 620 126 490 603 942 680 686 829 824
VIN (ours) } 737 843 | 870 826 917 632 499 797 822 462 594 747 945 671 685 837 812
VIN +1CS (ours) | - 738 844 | 870 828 917 637 504 798 825 461 594 747 945 671 685 837 812
VIN (seg only) - 720 863 | 866 820 918 G618 459 803 686 307 452 754 958 738 726 853 833

radars for training, and 6k samples each for validation and testing. The nuScenes-lidarseg
extension provides point-wise semantic labels of 15 categories in total. It’s a challenging
dataset with adverse environment scenarios including dark nights and rainy days.

Our backbone method is CenterPoint[44] with a voxel size of 0.1m and without CBGS[50]
or other test-time augmentation due to our hardware limitation. Our model is trained with
2 NVidia V100 16G GPUs, using AdamW optimizer with cyclic learning rate scheduling
starting from le~* and weight decay of 0.01. Please refer to [44] and our code for details.

Selected qualitative results are shown in Figure 3. Our method is able to generate pre-
cise point-wise semantic labels while preserving the ability to predict accurate 3D bounding
boxes. However, our method still suffers from the problem of ambiguity due to the sparsity
of the lidar point cloud, common for all lidar-based detection or segmentation algorithms.

4.1 Quantitative Results

Semantic Segmentation Performance For segmentation performance, our method is com-
pared against state-of-the-art methods on the nuScenes lidar segmentation track. The main
metrics used for comparison are the intersection-over-union (IoU) for each category. Mean
IoU (mloU) and frequency-weighted IoU (fwloU) numbers are also provided by the nuScenes
benchmark. The results are presented in Table 1, compared with other methods, our ap-
proach performs significantly better in most "things" categories except for the traffic cones.
Our backbone method does not preserve details in each voxel, thus it may not work well with
small objects. On the other hand, existing methods outperform in many "stuff" categories,
because our network needs to focus on objects to learn object detection well. Overall, our
method outperforms the state-of-the-art methods by about 9.4 percentage points in mloU.

3D Object Detection Performance: For the lidar-only object detection performance,
we select a few other state-of-the-art methods on the nuScenes detection track. The overall
performance is measured by mean average precision (mAP) and the NDS score proposed by
nuScenes to capture not only precision performance, but also errors of other target properties.
From the results shown in Table 2, we found that although our method suffers performance
loss when adding a semantic branch, we still achieve good performance in most categories.
This indicates that our method can produce semantic segmentation labels without much loss
of detection performance. The most prominent gaps come from the "trailer", "bicycle" and
"construction vehicle" categories, all of which are rare in the dataset. It’s hard for the network
to maintain the same performance when it learns to solve an additional segmentation task.
Label balancing techniques can be applied in the future to solve the problem.

Panoptic Segmentation Performance Panoptic segmentation is a side product of our
method, however, it can be used to evaluate the combined performance of detection and
segmentation. The metrics proposed in [18] is leveraged in our experiment, which includes
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Figure 3: Qualitative results of VIN. First column: ground-truth semantic labels and bounding boxes;
Second column: estimated semantic labels and bounding boxes; Third column: error points of semantic
segmentation (labeled in red); Forth column: confidence score of the semantic segmentation (colors
vary from light green to dark blue for scores from low to high). Best viewed in color and zoomed in.

Table 2: Comparison of (lidar-only) 3D object detection performance on the nuScenes validation
dataset. All metrics are the higher the better, the best one is underlined.
Abbreviations: CV - construction vehicle, TC - traffic cone, Ped - Pedestrian, Motor - Motorcycle, R -

Reproduced
Method ‘ Source ‘ mAP  NDS ‘ Car  Truck Bus Trailer CV Ped Motor Bicycle TC  Barrier
PointPillars [21] [45] 282 468 | 755 316 449 237 40 496 14.6 0.4 8.0 30.0
3DSSD [43] [45] 426 564 | 812 472 614 30.5 126 70.2 36.0 8.6 31.1 47.9
CenterPoint [44] [45] 56.6 65.0 84.6 54.7 66.0 323 15.1 84.5 56.9 38.6 67.4 66.1
CenterPoint R 507 602 | 826 503  63.8 30.8 120 799 439 223 60.8 60.4
VIN (Ours) 452 570 | 821 483 613 18.7 35 734 50.4 22 56.1 559
VIN + ICS (Ours) 463 576 | 821 48.1 61.1 227 72 743 50.4 4.1 56.6 56.4

Panoptic Quality (PQ), Segmentation Quality (SQ) and Recognition Quality (RQ). SQ and
RQ are analog to point-averaged and instance-averaged IoU. We also adopt the replaced
Panoptic Quality (PQT) metric proposed by [17]. The performance of our algorithms is
compared with three baseline methods in Table 3. Our algorithms outperform these baseline
methods in most metrics except SQ. A possible fix is adding penalty terms for "stuff" points
inside object boxes and "thing" points outside object boxes in future work, thus explicitly let
the network distinguish between the environment and objects.

4.2 Ablation Study

Inconsistency Suppression The proposed ICS procedure is used to eliminate inconsistency
between bounding boxes and semantic labels, which is beneficial for downstream perception
modules. This is demonstrated in Table 1, 2 and 3. For fixing semantic and panoptic segmen-
tation labels, we set m, = 0.1 in Algorithm 1 and achieve slightly better results. On the other
hand, there is a large effect by ICS on detection performance, especially in the ‘barrier’,
‘construction vehicle’ and ‘bicycle’ categories, which indicate that ICS is effective. The
improvement comes from using point predictions to help determine the object classification.

Weakly supervised segmentation Weak supervision can help to reduce label efforts
when building datasets. Thanks to the nature of the implicit function representation, it
doesn’t require the full point cloud for supervision. Our method can handle weakly su-
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Table 3: Comparison of panoptic segmentation performance on nuScenes validation set. All metrics
are the higher the better, the best ones are highlighted in boldface.
Method | Source | PQ  PQ" RQ SQ | PQ" RQ"™ SQ" | PQ* RQ" SQ | mloU

Cylinder3D[48] + SECOND[42] [17] 40.1 484 473 842 | 290 336 844 | 585 70.1 837 58.5
Cylinder3D[48] + PointPillars[21] [17] 36.0 445 430 833 | 233 270 837 | 572 696 827 523
DS-Net[17] [17] 425 51.0 503 836 | 325 383 81 | 592 703 844 70.7

VIN +ICS (ours) 51.7 575 619 826

VIN (ours) - 517 574 618 826
457 538 836 | 61.8 754 809 73.8

457 537 836 ‘ 61.8 754 80.9‘ 73.7

Table 4: Comparison of detection and segmentation performance on nuScenes validation set with
different supervision levels. The label percentages denote the ratio of points used in training the
semantic branch. All metrics are higher the better.

Method | mAP  NDS | mloU fwloU mloU" mloU* | PQ PQ" PQ"™ PQ"
Ours (full supervision) | 452  57.0 | 73.7 84.3 71.3 783 | 517 574 457 618
Ours (10% label) 457 574 | 744 84.8 72.3 780 | 527 582 463 634
Ours (1% label) 447 566 | 726 84.6 69.5 779 | 504 559 428 63.1
Ours (0.1% label) 451 570 | 723 84.5 69.1 715 | 506 560 432 629
Ours (0.02% label) 445 566 | 706 83.8 67.1 765 | 490 545 413 618

pervised segmentation tasks by feeding fewer labels during the training process. A key
difference between our proposed method and single-task segmentation methods is that our
method only get auxiliary information from the bounding box labels. The efficacy of our
method is illustrated in Table 4. It can be seen that our method achieves robust segmentation
performance even with just 0.1% semantic labels. However, the performance is not increased
monotonically with the amount of available labels, which is unexpected and requires further
experiments to explain.

4.3 Inference Efficiency

A major motivation to combine detection and segmentation in a single network is to re-
duce inference time and achieve better real-time efficiency when deployed. We compare our
method with baseline CenterPoint in terms of inference time. Measured on a single NVidia
2080Ti graphics card, the original CenterPoint network with 0.1m voxel size achieves 6.0
FPS, while our method with the same voxel size and backbone configuration achieves 5.9
FPS but with the additional semantic segmentation results. This is much better than having
a separate segmentation implementation. For example, a state-of-the-art method [8] alone
takes 0.27 seconds (reported on nuScenes leaderboard, on an NVidia Tesla V100). When de-
ploying our method on a vehicle, further optimization, including network distillation, refac-
toring using a highly efficient inference framework (e.g. TensorRT) can be implemented.

4.4 Utilizing the Implicit Function

Thanks to the fact that our semantic branch is merely based on the feature map produced by
the convolutional backbone, semantics queries can be conducted at arbitrary positions in the
space, as mentioned in Section 3.2.

Here we demonstrate two use cases of the query ability, semantic prediction on down-
sampled point cloud and dense semantic map generation. The experiment results for the
former case are reported in table 5. The down-sampling strategy is useful for reducing on-
board latency or helping generate off-board labels for autonomous vehicles. In this exper-
iment, only partial points (down-sampled from the original point cloud) are fed into the
trained detection backbone and the semantics of the remainder of the original point cloud is
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Figure 4: Two examples of generated dense semantic map on the Nuscenes dataset. The input point
cloud is colored by the height. Please refer to Figure 3 for the color legend.

Table 5: Comparison of segmentation performance with partial point cloud input on Nuscenes. The
best ones are highlighted in boldface.

Method mloU (random sample) mloU (beam sample)

etho 100%  75%  50% | 32beams 24beams 16 beams
Ours 73.7 733 72.5 73.7 72.5 70.2
Nearest Neighbor 73.7 73.1 722 73.7 64.6 559
(Inference time) ‘ 169ms  133ms  104ms ‘ 169ms 125ms 96ms

predicted by either the semantic branch or nearest neighbor querying. It can be concluded
from the experiment that our model can better capture the semantics in region with no lidar
measurements when the original point cloud is down-sampled to reduce the inference time.

On the other hand, it’s also possible to generate a dense semantic map by querying se-
mantics at grid points with the semantic branch. Figure 4 shows the semantic prediction of
the scenes at certain height (the bilinearly interpolated height of the point cloud is used to
create the figure). This dense map can be used as a bird’s eye view semantic map, which
standalone models have been proposed in the literature (e.g. [32]) to estimate. It’s useful for
finding the semantics boundary for different areas and better interpreting the performance of
the deep learning model.

5 Conclusion

In this paper, a novel framework for joint 3D object detection and semantic segmentation
using lidar point clouds is proposed, which is more efficient than two separate implemen-
tations. A semantic branch learning implicit representation of spatial semantic properties is
proposed. This modification can be applied to any voxel-based 3D object detectors. Exper-
iments using the nuScenes dataset confirm the efficacy and efficiency of our algorithm by
comparing it with state-of-the-art methods on semantic and panoptic segmentation tasks.
Currently, our method still struggles to detect and segment partially occluded objects and
small objects with few lidar reflections, which are the strengths of camera images, but lidar-
based algorithms work better in dazzling and dark scenarios. Future work can incorporate
image data to improve the accuracy of both detection and segmentation of the framework.
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