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Abstract

Although the adoption rate of deep neural networks (DNNs) has tremendously in-
creased in recent years, a solution for their vulnerability against adversarial examples
has not yet been found. As a result, substantial research efforts are dedicated to fix this
weakness, with many studies typically using a subset of source images to generate ad-
versarial examples, treating every image in this subset as equal. We demonstrate that,
in fact, not every source image is equally suited for this kind of assessment. To do
so, we devise a large-scale model-to-model transferability scenario for which we metic-
ulously analyze the properties of adversarial examples, generated from every suitable
source image in ImageNet by making use of three of the most frequently deployed at-
tacks. In this transferability scenario, which involves seven distinct DNN models, in-
cluding the recently proposed vision transformers, we reveal that it is possible to have
a difference of up to 12.5% in model-to-model transferability success, 1.01 in average
L2 perturbation, and 0.03 (8/225) in average L∞ perturbation when 1,000 source im-
ages are sampled randomly among all suitable candidates. We then take one of the
first steps in evaluating the robustness of images used to create adversarial examples,
proposing a number of simple but effective methods to identify unsuitable source im-
ages, thus making it possible to mitigate extreme cases in experimentation and support
high-quality benchmarking. In support of future research efforts, we make our code
and the statistics for all evaluated source images as well as the list of identified frag-
ile source images publicly available in https://github.com/utkuozbulak/
imagenet-adversarial-image-evaluation.

1 Introduction
Thanks to recent advances in the field of deep neural networks, a wide range of problems
that were once thought to be hard challenges found easy-to-adopt solutions [32, 55]. Indeed,
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Figure 1: A number of studies that work with images taken from the ImageNet validation
set, grouped based on the number of source images used for creating adversarial examples.

many deep learning libraries now come with built-in solutions and pre-trained models, fur-
ther increasing the adoption rate of such networks in the area of computer vision [1, 27, 45].
In spite of receiving a large amount of research attention, a number of fundamental flaws of
DNNs still remain unsolved. One of those flaws is their vulnerability to adversarial attacks,
where small changes in inputs may lead to large changes in predictions [52].

Although adversarial attacks have been recognized to be a threat for all domains that
make use of DNNs, the domain of vision in particular is said to be the one that suffers
from adversarial attacks the most, since the perturbation is often invisible to the bare eye.
Moreover, continuous deployment of DNNs for mission-critical tasks such as self-driving
cars and medical diagnosis tools further amplify this threat since the adversarial examples
are not easily detectable [9, 16, 39, 56].

In recent years, numerous adversarial defenses were proposed in order to prevent adver-
sarial attacks or detect adversarial examples [19, 30, 36, 46]. Proposed defenses often claim
a certain level of robustness against adversarial examples that have an amount of perturba-
tion less than a selected norm [11]. Since the topic of adversariality is closely linked with
security, reproducibility of newly proposed techniques is of utmost importance. As a result,
there have been a number of impactful studies that analyze the correctness and reliability of
newly proposed adversarial defenses [2, 3, 7, 53]. In this context, Carlini and Wagner [7],
for instance, demonstrated that most of the defenses proposed for MNIST [34] do not even
generalize to CIFAR [31]. This observation prompted research on the suitability of datasets
for adversarial research [35], with Carlini and Wagner further suggesting that the usage of
larger datasets such as ImageNet [48] may be necessary, given the lack of generalization of
defenses proposed for smaller datasets [7].

Even though the results obtained with ImageNet are more convincing, working with Ima-
geNet is much more challenging than, for example, working with MNIST or CIFAR. Indeed,
not only does ImageNet contain more images than the other two, the images themselves are
also larger. In addition, DNNs that achieve state-of-the-art results for ImageNet are also
much bigger than their counterparts that achieve state-of-the-art results for MNIST or CI-
FAR, thus posing a challenge in terms of computational power needed. As a result, most of
the studies that work with ImageNet only use a subset of images in order to create adver-
sarial examples, unless that research is performed by a large industry lab that can afford the
computational power (see Figure 1).

Although the studies of [51, 53] hinted that not all source images may be equally suitable
for adversarial example creation, most of the studies that work with adversarial examples
often randomly sample source images among the ones that are correctly classified. As such,
any image that is correctly classified by the models of interest is thought to be suitable and
equal in terms of model-to-model transferability and the required perturbation to achieve
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adversariality. To the best of our knowledge, an in-depth analysis of source image suitability
of adversarial examples in large-scale model-to-model scenarios has not been conducted
yet. Hence, approaching the problem of adversarial examples from a different angle and
following the directions of [17, 51, 53], instead of analyzing the effectiveness of attacks, the
durability of defenses, or the robustness of models, our study focuses on the source images
used to create adversarial examples, hereby investigating the impact of image selection on (1)
the success of model-to-model adversarial transferability and (2) the required perturbation
to achieve this transferability.

With the help of large-scale experiments, we demonstrate that, even when the most-
studied adversarial attacks for benchmarking are used, model-to-model transferability suc-
cesses of adversarial examples, as well as the amount of required perturbation to achieve this
transferability, heavily depend on the source images used to create those adversarial exam-
ples. Moreover, we present a case study that shows how the experimental results obtained
may lead to misleading conclusions when making use of certain subsets of source images.

2 Adversarial attacks
Assuming an M-class setting in which a data point and its categorical association are defined
as xxx ∈ Rk and yyy ∈ RM , respectively, with yc = 1 and ym = 0 ,∀m ∈ {0, . . . ,M}\{c}, let g
be a classification function that maps inputs onto categorical predictions. In this setting, we
define the output g(θ ,xxx) ∈ RM as the logits obtained by a prediction model/classifier using
the parameters θ . The given data point is then classified into the category with the largest
logit value: G(θ ,xxx) = argmaxt(g(θ ,xxx)t). If G(θ ,xxx) = argmaxt(yyyt), then this classification
is correct.

For the given setting, a perturbation ∆x bounded by the Lp ball centered at xxx with a
radius ε , formulated as B(xxx)p

ε := {x̂xx : ||∆x||p := ||xxx− x̂xx||p ≤ ε}, is said to be an adversarial
perturbation if G(θ ,xxx) 6= G(θ , x̂xx). In this case, x̂xx is also said to be an adversarial example.

Since the discovery of adversarial examples, a plethora of attacks using a wide range
of perturbation generation methods has been proposed [41, 47, 60]. Early research ef-
forts in the field mostly made use of L-BFGS optimization [52], Fast Gradient Sign Method
(FGSM) [18], and Iterative Fast Gradient Sign Method (IFGSM) [33]. However, Projected
Gradient Descent (PGD) [38] , the Carlini & Wagner’s Attack (CW) [6], and Momentum
Iterative Fast Gradient Sign Method (MI-FGSM) [12] have taken the place of the aforemen-
tioned attacks in recent research efforts, thanks to the superior results obtained by the latter
three. Following these findings, the study presented in this paper also uses these three attacks
for examining the fragility of source images.

PGD can be seen as a generalization of FGSM and IFGSM. In particular, this attack aims
at finding an adversarial example x̂xx that satisfies ||x̂xx−xxx||∞ < ε , where the perturbation is de-
fined within an L∞ ball centered at xxx with a radius ε . The adversarial example is iteratively
generated as follows: [x̂xx]n+1 = Πε

(
[x̂xx]n−α sign

(
∇xJ(g(θ , [x̂xx]n)c)

))
, with [x̂xx]1 = xxx, where

the perturbation is calculated using the signature of the gradient of the cross-entropy loss,
sign(∇xJ(g(θ , [x̂xx])c)), originating from the target class c. In this setting, α controls the ex-
ercised perturbation at each iteration and Πε is a function that controls the L∞ limit imposed
on the perturbation.

CW, on the other hand, is a complex attack that aims to find a perturbation within a
small L2 norm as follows: minx̂xx f (x̂xx,c) + ||x̂xx− xxx||2 , where f is a preferred loss function.
Given [6, 51], we use the following loss: f (x̂xx,c) = maxk{maxc6=k{g(θ , x̂xx)c−g(θ , x̂xx)k}−κ} ,
selecting the target class with c and adjusting the confidence of the attack with κ .
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The overall structure of MI-FGSM is similar to that of PGD and IFGSM. However,
instead of adding perturbation directly to the image, it integrates the gradient of the cross-
entropy loss into a variable that acts as a momentum term: [τττ]n+1 = µ[τττ]n +

J(g(θ ,[x̂xx]n)c)
||J(g(θ ,[x̂xx]n)c)||1

,
where µ is the multiplier for already-accumulated gradient in past iterations. Unlike the
previous two attacks, the perturbation is generated from this momentum term τττ instead of the
gradient itself, and iteratively added to the image as follows: [x̂xx]n+1 =Πε

(
[x̂xx]n−α sign(τττ)

)
,

with [x̂xx]1 = xxx.
Given that adversarial examples are trivial to generate in white-box cases [2, 7], and given

the recent focus on the importance of adversarial evaluation in black-box scenarios [26, 54],
our study mainly focuses on analyzing the properties of adversarial examples that achieve
model-to-model transferability. In this context, an adversarial example created by a model
is said to achieve model-to-model adversarial transferability if it is also incorrectly classified
by another model, provided that the source image used to create the adversarial example is
initially correctly classified by both models.

3 Experimental setup
Models – In this study, we use five different deep learning architectures that see frequent

use in the literature. The considered models are: AlexNet [32], SqueezeNet [25], VGG-
16 [50], ResNet-50 [22], and DenseNet-121 [24]. In addition to these models, we also
include two recently proposed vision transformer models that achieve state-of-the-art re-
sults on ImageNet [14]: Vision Transformer Base/16−224 (ViT-B) and Vision Transformer
Large/16−224 (ViT-L). From here on, each model will be denoted by its set of parameters
θi, i ∈ {1, . . . ,7}, and multiple models will be denoted by Θ = {θ1, . . . ,θ7}.

Data – We follow the approach used by previous studies on adversariality, leveraging the
images in the ImageNet validation set for generating adversarial examples. In this paper,
these unperturbed images are referred to as source images. Further adopting previously used
methods, we only rely on images that are correctly classified by all selected models in order
to conduct trustworthy experiments on adversarial transferability, thus ensuring G(θi,xxx) =
argmaxt(yyyt),∀i ∈ {1, . . . ,7}. By doing so, we filter out images that are hard to correctly
classify for at least one of our models, thus limiting the hypothesis space and allowing us to
perform a best-case analysis. After this filtering operation, we are left with a set of 19,025
source images, which approximately corresponds to 38% of the ImageNet validation set. We
will refer to this set of 19,025 source images as:

S= {xxx | G(θi,xxx) = argmax
t
(yyyt); i ∈ {1, . . . ,7}} . (1)

Adversarial perturbation – Although the methods used to identify perturbation in im-
ages are not a perfect match for how humans perceive noise, Lp norms (with p ∈ {0,2,∞})
are commonly used since the early days of research on adversarial examples [6, 17, 44].
We adopt both L2 and L∞ norms for measuring the added perturbation. In terms of the
used L∞ perturbation budget, another large-scale study on adversarial transferability [51]
uses ε[0,1] ∈ {0.1,0.2,0.3}, which approximately corresponds to ε[0,255] ∈ {25,45,67} in
discretized settings. We observed that using ε[0,255] ≥ 45 leads to adversarial examples that
come with large perturbation budgets. In light of this observation, we limit the perturbation
on an L∞ ball to 38 (i.e., ε[0,255] = 38, ε[0,1] = 0.15), thus ensuring that the perturbation is
not excessive. Further details on the calculation of Lp norms and the employed attacks, as
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well as a comparison of perturbation visibility, can be found in the supplementary material
(Section A).

For PGD and MI-FGSM, we perform the attack with 50 iterations and allow a perturba-
tion budget of ε[0,1] = 0.15. For MI-FGSM, we follow the work of [12] and use µ = 1. For
CW, we use κ = 20 (as suggested by the authors of the attack). Using a randomly selected
class that differs from the true class of the source image, we perform the aforementioned
attacks on source images. In order to avoid cases where the image/target class combination
is challenging, if an attack does not succeed within the allocated number of iterations, we
select another class, and we perform the attack on the same image up to five times. At each
iteration of the adversarial attack, we analyze whether or not the prediction for the image
changed for the other six models (i.e., evaluating the non-targeted transferability) and then
save the adversarial examples with the smallest perturbation. By doing so, we aim at finding
the least-required perturbation, as exercised by all three attacks, that is sufficient to convert
a source image into an adversarial one.

Non-adversarial perturbation – In addition to the adversarial attacks, we also make use
of commonly used image distortion techniques in order to measure the robustness of source
images. For this analysis, we employ (1) uniform noise, (2) Gaussian noise, and (3) change
in contrast to create “adversarial examples”, where all of these additive types of noise respect
the L∞ limit put in place for the adversarial attacks. Details on the usage of these operations
can be found in the supplementary material (Section B).

4 Methodology for the source image analysis
In this section, we explain the notation and methodology used for the analysis of source im-
ages in adversarial scenarios. We denote by x̂xx(A):i→ j an adversarial example that is created
through the addition of adversarial perturbation with the attack (A)∈{PGD,CW,MI-FGSM},
calculated from the model θi, but that is misclassified by model θ j, thus achieving adversar-
ial transferability. We then denote the set of all adversarial examples that achieve adversarial
transferability, created through the usage of source image xxx, as follows:

X̂ (A) := {x̂xx(A):i→ j | i, j = 1, . . . ,7; i 6= j} . (2)

We measure the added perturbation with L{2,∞} norms. Moreover, we denote the least
amount of perturbation required to convert a source image into an adversarial example for a
particular target model ( j), regardless of which other model it is generated from, by:

dp(θ j, X̂ (A)) = min
i∈{1,...,7}\{ j}

||xxx− x̂xx(A):i→ j||p , (3)

where p denotes the selected norm. We also measure the minimum amount of perturbation
required to convert a source image into an adversarial example for any model as follows:

Dp(Θ, X̂ (A)) = min
j∈{1,...,7}

dp(θ j, X̂ (A)) . (4)

Another important benchmark is the transferability count of adversarial examples created
from individual source images. Since we have seven models, and since we are only inter-
ested in model-to-model transferability, we count the successful model-to-model transfers
for adversarial examples generated from a source image xxx and the attack A as follows:

T (Θ, X̂ (A),yyy) =
7

∑
i, j=1, i6= j

1{G(θ j , x̂xx(A):i→ j) 6=argmaxt (yyyt )}
. (5)
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Figure 2: Proportion of source images in (left) S, (center) S f , and (right) Sh that achieved
(untargeted) adversarial transferability with the usage of PGD.

For each source image and attack, this (untargeted) transferability count T (Θ, X̂ (A),yyy) can
take a value between 0 and 42. In this context, having zero model-to-model transferabil-
ity means that none of the adversarial examples generated from a particular source image
achieved adversarial transferability and 42 means that the adversarial examples created from
a source image achieved adversarial transferability in all model-to-model scenarios.

5 Experimental results
Through the methodology described above, we successfully created 825,005 adversarial
examples that achieve adversarial transferability for at least one model-to-model scenario
(excluding white-box cases). Specifically, 173,542, 115,688, and 535,775 adversarial ex-
amples were produced with PGD, CW, and MI-FGSM, respectively. In the remainder of this
paper, we provide and discuss experimental results for these 825,005 adversarial examples,
as well as for the 19,025 source images used to obtain them.

Since MI-FGSM is able to create a large number of adversarial examples that achieve
model-to-model transferability compared to the other two attacks, experimental results ob-
tained through the usage of all adversarial examples may be skewed towards adversarial
examples created with MI-FGSM. For the sake of precise experimentation, when we inspect
all adversarial examples for an experiment, we provide the same experiment in the supple-
mentary material using adversarial examples created with individual attacks.

5.1 Model-to-model transferability
In Figure 2a, we show the model-to-model transferability success ratio of adversarial exam-
ples generated with PGD. Specifically, we provide details for the source and target models
of all 173,542 adversarial examples that achieved (untargeted) adversarial transferability.

In order to answer the question of whether or not adversarial transferability success can
be influenced by source image selection, let us continue with an unusual experiment. In
Figure 3a, we show the number of source images that had their predictions changed for the
models listed on the x-axis through the application of the non-adversarial perturbations listed
on the y-axis. Surprisingly, relying on common noise generation methods that do not require
any special setup, we observe that a large portion of source images have their classification
changed in a limited L∞ ball setting. Specifically, 9,615 unique source images, correspond-
ing to approximately 50% of the source images (S), become “adversarial examples” for at
least one model through the introduction of non-adversarial noise.
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Figure 3: (left) Number (proportion) of source images that became “adversarial examples”
through the addition of non-adversarial noise and (right) histogram of transferability count
of source images of source images and their transferability count according to T (Θ, X̂ (A),yyy).

Combining the two experiments (Figure 2a and Figure 3a) that have been discussed thus
far, let us divide S into two sets S f and Sh, where the former contains fragile source im-
ages that had, at least once and for any model, their prediction changed with the application
of non-adversarial noise (9,615 source images) and where the latter contains the remaining
images (9,410 source images), with S = S f ∪Sh. According to this separation, we provide
Figure 2b and Figure 2c, where we show the model-to-model transferability of the adver-
sarial examples originating from the source images in S f and Sh, respectively. As can be
seen, even though we use a similar number of source images taken from the same dataset
for both S f and Sh, we obtain outcomes that are completely different in terms of adversarial
transferability success. We present detailed versions of all transferability matrices, as well
as the results obtained for CW and MI-FGSM, in the supplementary material (Section C).

The reason for the large discrepancy between the results presented in Figure 2b and Fig-
ure 2c is the fragility of a subset of the source images. Compared to the other, non-fragile
images, these fragile source images have their predictions easily changed for a large number
of models, even when other conditions are held the same (e.g., attacks and models). In order
to lay bare the fragility of these source images, we perform an aggregate analysis of their av-
erage transferability per attack, leading to a histogram of T (Θ, X̂ (A),yyy) for all source images
in S, as shown in Figure 3b. This histogram illustrates that, with one of the employed attacks,
a large portion of the adversarial examples achieve adversarial transferability between 10 to
20 times. However, an intriguing observation can be made for the leftmost and the rightmost
side of this figure, where 585 source images achieve adversarial transferability less than 5
times and where 1,743 sources images achieve transferability more than 25 times. These
images that, through the added perturbation, do not easily become adversarial examples,
as well as the fragile source images, which easily change predictions between models and
which achieve unnaturally high model-to-model transferability, will be our main focus for
the remainder of this paper.

5.2 Adversarial perturbation

Another important aspect of model-to-model adversarial transferability is how easy a source
image becomes an adversarial example, since the robustness of adversarial defenses, as well
as recently proposed models, are certified under an Lp norm perturbation. In Figure 4, we
perform a correlation analysis between T (Θ, X̂ (A),yyy) and the minimum required Lp pertur-
bation to achieve adversarial transferability D{2,∞}(Θ, X̂ (A)). In this context, we observe a
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Figure 5: Source images that achieved adversarial transferability to ViT-B are selected based
on transferability count, with T (Θ, X̂ (PGD),yyy)≥{1,20,30}. The minimum amount of pertur-
bation required for creating adversarial examples from these source images is histogrammed,
measuring the perturbation using dp(xxx, X̂ (PGD)), with p ∈ {2,∞}. The median perturbation,
as well as the 25th and the 75th percentile, are provided in order to improve interpretability.

mild negative correlation between added noise and transferability count, where the adver-
sarial examples originating from source images that achieve higher transferability counts are
also the ones that require less perturbation. These results hint that the fragile images we have
identified do not only achieve high adversarial transferability, but that they also do so with
smaller perturbation budgets.

In order to solidify these observations regarding perturbation and transferability, we part
from an aggregate analysis to a more granular one and investigate the perturbations of ad-
versarial examples that achieve transferability for each model individually. In Figure 5, we
provide for ViT-B the smallest required L{2,∞} perturbation for source images progressively
filtered with T (Θ, X̂ ,yyy) ≥ {1,20,30}. Note that, as T (Θ, X̂ ,yyy) increases, the distribution
of the perturbation shifts towards zero, thus confirming our previous observations. These
results indicate that source images that achieve high transferability counts are, most likely,
also the ones that require less perturbation. Similar results, as available in the supplementary
material (Section D and Section E), can be observed for the other models.

6 Source image suitability
Our experiments indicate that, while a certain portion of images never becomes adversarial,
another portion of images can be easily turned into adversarial examples using relatively
small perturbation budgets. Given the importance of research reproducibility, this leads to
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Table 1: Correlation coefficients between various estimates of errors in source image predic-
tions and properties of adversarial examples (transferability and perturbation) created from
those source images are given for PGD, CW, and MI-FGSM.

Error
measurement

PGD CW MI-FGSM

T (·) d2(·) d∞(·) T (·) d2(·) d∞(·) T (·) d2(·) d∞(·)

Q(P(θ ,xxx)) 0.58 −0.64 −0.58 0.57 −0.59 −0.66 0.42 −0.54 −0.54
1−max(P(θ ,xxx)) 0.61 −0.60 −0.57 0.57 −0.54 −0.63 0.43 −0.58 −0.57
MSE(P(θ ,xxx),yyy) 0.56 −0.57 −0.53 0.56 −0.51 −0.61 0.37 −0.51 −0.53
WD(P(θ ,xxx),yyy) 0.33 −0.35 −0.37 0.33 −0.32 −0.37 0.29 −0.38 −0.38

the question of how much variance can be observed when randomly sampling source images.
In order to answer this question, we randomly sample 1,000 source images from S (since this
number seems to be the most commonly selected number in Figure 1), subsequently inspect-
ing the transferability success and L{2,∞} perturbation norms of the adversarial examples
generated for the individual model-to-model transferability cases. We perform the afore-
mentioned routine 10,000 times. As a result, we calculate the lowest, the highest, and the
average transferability, as well as the L{2,∞} perturbations. Overall, we observe that, while
the average case closely matches the usage of all available source images, it is possible to
have differences between the lowest and the highest case of up to 12.5% in transferability,
1.01 in L2 norm perturbation, and 0.03 (i.e., 8/255) in L∞ norm perturbation. These results
indicate that, even when random sampling is used, it is indeed possible to have conflicting
results, depending on the source images selected.

In Section 5.1, we demonstrated that one way to identify source images that are fragile
to adversarial attacks is to perform a large-scale analysis of model-to-model transferability
using all possible source images. However, such an approach is not scalable, unless an abun-
dance of computational power is available, thus forcing us to investigate alternate methods
for the identification of these atypical source images. An important piece of information we
have for each source image is the vector of prediction probabilities obtained through the soft-
max function, P(θ ,xxx) = [eg(θ ,xxx)c/∑

M
k=1 eg(θ ,xxx)k ]c∈{1,...,M}. The softmax output in conjunction

with various error quantification methods has seen a significant use in recent research efforts
on measuring the robustness and calibrated nature of DNNs [20]. Relying on the knowledge
obtained from these studies, we use the following error quantification methods for evaluat-
ing the suitability of source images: the error made for the correct class, as calculated by (1)
1−max(P(θ ,xxx)), (2) mean squared error (MSE), (3) Wasserstein distance (WD), and (4) the
ratio of probabilities (Q) (that is, the second-largest to the largest one). Details on the way
the different errors are calculated can be found in the supplementary material (Section F).

In Table 1, we provide the correlation between (a) the error measurement for the predic-
tion of source images and (b) the properties of adversarial examples originating from those
images (i.e., transferability and perturbation). Even though we use a large number of data
points for this analysis, we still find a moderate correlation between multiple error estimates
and adversarial properties. In particular, the simple approach of Q(·) has the largest correla-
tion when it comes to estimating perturbations, while having a comparably large correlation
with transferability. Based on Table 1, we observe that, when P(θ ,xxx) for a source image has
its second-largest prediction closer to the largest one, adversarial examples originating from
that source image are more likely to achieve adversarial transferability while requiring less
perturbation. This leads to the question whether or not these error estimates can be used to
identify fragile images, thus alleviating the need for large-scale experimentation. To answer
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this question, we devise the following experimental procedure.
In order to approximate the adversarial properties of source images, we group source

images according to the Q(P(θ ,xxx))-value obtained. Specifically, we sort S according to
Q(P(θ ,xxx)) and create subsets based on certain percentiles of Q(·). Doing so, we observe the
results for the same experimental routine described above (i.e., 1,000 source images sampled
10,000 times), but with a small difference: only the source images that have Q(·) larger than
the 75th and 90th percentile (SQ>{75,90}), as well as source images that have Q(·) smaller
than the 10th and 25th percentile (SQ<{10,25}), are selected.

We observe that source images with lower error estimates, as measured through Q(P(θ ,xxx)),
are harder to convert to adversarial examples, whereas the ones with higher Q(P(θ ,xxx)) es-
timates are easier to convert. Furthermore, the required amount of perturbation for creating
adversarial examples also differs greatly between the lower and the upper end of Q(·), with
source images having a lower Q(·) requiring more perturbation, and vice versa. These results
indicate that error estimates based on the prediction of source images can be used as a proxy
for the properties of adversarial examples originating from these source images.

Finally, we measure the adversarial properties obtained with source images filtered from
both ends, with S\ (SQ<P∪SQ>100−P). Using this approach, overall, we are able to reduce
the difference between the highest and the lowest transferability from 12.5% to 7.6%, the
difference in L2 norm perturbation from 1.01 to 0.71, and the difference in L∞ norm pertur-
bation from 0.03 to 0.01, thus pointing to a more stable experimentation that is closer to the
average case. Moreover, when we filter the same number of images from both ends (e.g.,
S\ (SQ<10∪SQ>90)), the average transferability goes down slightly compared to using all
available source images, while the average amount of required perturbation goes up slightly.
These results indicate that the usage of Q(·) is more reliable in identifying fragile (easy)
source images than hard source images. Consequently, we believe that the way error mea-
surements are performed can be further improved, for instance through the usage of more
complex analysis that takes into account the categories of source images.

Comprehensive experimental results for the experiments detailed in this section are pro-
vided in the supplementary material (See Table I to Table VI).

7 Conclusions and outlook
With the help of large-scale experiments, we exposed the fragility of a subset of source
images to adversariality, with the adversarial examples created from these fragile images
achieving high transferability rates for relatively small perturbation budgets. We then took
one of the first steps to identify unusual source images that are either very hard or very easy
to convert to adversarial examples, with the goal of supporting high-quality experimentation.

Given the security concerns associated with adversarial examples, an important item for
future work is to evaluate how the observations made in this paper extend to adversarial
defenses. In particular, we believe that the fragile images we have identified, given the
properties discussed in this paper, can easily be leveraged to circumvent adversarial defenses.

We noted that a large number of adversarial examples are misclassified into categories
that are semantically close to the categories of their source image counterparts, thus achiev-
ing untargeted adversarial transferability. In the supplementary material (Section G), we
provide a number of qualitative examples of such cases. In that regard, we believe a detailed
investigation of this topic, involving the semantic relationships between different categories,
is also a promising item for future work, and where this future work item could make use of
the hierarchies available in the WordNet database [40].
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