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Abstract

In this paper we address the problem of automatically discovering atomic actions
from instructional videos. Instructional videos contain complex activities and are a rich
source of information for intelligent agents, such as, autonomous robots or virtual assis-
tants, which can, for example, automatically ‘read’ the steps from an instructional video
and execute them. However, videos are rarely annotated with atomic activities, their
boundaries or duration. We present an unsupervised approach to learn atomic actions
of structured human tasks from a variety of instructional videos. We propose a sequen-
tial stochastic autoregressive model for temporal segmentation of videos, which learns to
represent and discover the sequential relationship between different actions of the task,
and provides automatic and unsupervised self-labeling. We evaluate on the breakfast,
50-salads and narrated instructional videos datasets. Code will be open sourced.

1 Introduction
Instructional videos cover a wide range of tasks: cooking, furniture assembly, repairs, etc.
The availability of online instructional videos for almost any task provides a valuable re-
source for learning, especially in the case of learning robotic tasks. However, instructional
videos are rarely annotated with atomic action-level instructions. Several works have studied
weakly-supervised settings where the order or presence of actions per-video is given, but not
their duration [12, 23]. In this work, we propose a method to learn to segment instructional
videos in atomic actions in an unsupervised way, i.e., without any annotations. To do this,
we take advantage of the structure in instructional videos: they comprise complex actions
which inherently consist of smaller atomic actions with predictable order. While the tem-
poral structure of activities in instructional videos is strong, there is high variability of the
visual appearance of actions, which makes the task, especially in its unsupervised setting,
very challenging. For example, videos of preparing a salad can be taken in very different
environments, using kitchenware and ingredients of varying appearance.
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Figure 1: Overview: Our model generates multiple sequences for each video which are
ranked based on several constraints (colors represent different actions). The top ranked
sequence is used as self-labels to train the action segmentation model. This processes is
repeated until convergence. No annotations are used.
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Figure 2: Overview of the stochastic recurrent model which generates an output action per
step and a latent state (which will in turn generate next actions). Each time the model is run,
a different rule is selected, thanks to the Gumbel-Softmax trick, leading to a different action
and state. This results in multiple sequences (see text for more details).

The central idea is to learn a stochastic model that generates multiple, different candidate
sequences, which can be ranked based on instructional video constraints. The top ranked
sequence is used as self-labels to train the action segmentation model (Figure 1). By iterating
this process in an EM-like procedure, the model converges to a good segmentation of actions.

We evaluate the approach on multiple datasets and compare to previous methods on
unsupervised action segmentation. We also compare to weakly-supervised and supervised
baselines. Our unsupervised method outperforms all state-of-the-art models, in some cases
considerably, with performance at times outperforming weakly-supervised methods.

Our contributions are (1) a stochastic model capable of capturing multiple possible se-
quences, (2) a training method that is able to learn to segment actions without any labeled
data, (3) a new state-of-the art in unsupervised segmentation for instructional videos.

2 Related Work

Studying instructional videos has gained a lot of interest recently [1, 6, 21, 34], largely fueled
by advancements in feature learning and activity recognition for videos [5, 8, 26, 35, 36].
However, most work on activity segmentation has focused on the fully-supervised case [29,
38], which requires per-frame labels of the occurring activities.

Since it is expensive to fully annotate videos, weakly-supervised activity segmentation
has been proposed. Initial works use movie scripts to obtain weak estimates of actions
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[17, 20] or localize actions based on related web images [9, 10, 33]. [3] perform weakly-
supervised segmentation when assuming the ordering was given, both during training and
test time. Temporal ordering constraints [12] or language [2, 28, 37] have also been applied
to learn segmentation. Related ‘set-supervised’ learning [7, 18, 24] only assumes the actions
in the video are known, but not the ordering.

Several unsupervised methods have also been proposed [1, 16, 27, 31]. Alayrac et al. [1]
learn action segmentation without segmentation supervision, using text in addition to video
data. [16] uses k-means clustering to do a time-based clustering of features and the Viterbi
algorithm segment the videos based on the clusters. [27] uses a GMM to learn a transition
model between actions. We propose a fully differentiable unsupervised action segmentation,
which works from RGB inputs only.

Several datasets for learning from instructional videos have been introduced recently:
Breakfast [14], 50-salads [32], the Narrated Instructional Videos (NIV) [1], COIN [34],
HowTo100m [21], CrossTask [39] and PROCEL [6].

3 Method

Our goal is to discover atomic actions from a set of instructional videos, while capturing and
modeling their temporal structure. Formally, given a set of videos V = {V 1,V 2, ...} of a task
or set of tasks, the objective is to learn a model that maps a sequence of frames V i = [It ]Tt=1
from any video to a sequence of atomic action symbols [at ∈ O]Tt=1 where O is a set of
possible action symbols (we drop the index i for simplicity).

Supervised approaches assume that each frame is labeled with an action, and most weakly
supervised approaches assume the actions per video are given in their correct order, but with-
out start and end times. In the unsupervised case, similar to previous works [1, 16], we
assume no action labels or boundaries are given. To evaluate the approach, we follow the
previous setting using the Hungarian algorithm to match predicted actions to ground truth
labels. While previous methods used additional data such a subtitles or text [1], the proposed
approach does not use such information. Our model, however, works with a fixed k-the num-
ber of actions per task (analogous to setting k in k-means clustering), and we run it with a
range of values for k. This is not a very strict assumption as the number of expected atomic
actions per instruction is roughly known, e.g., about 10 actions for doing CPR, or 40 actions
when making a salad. For example, a video of making a fried egg will contain the same
atomic actions: e.g., cracking the egg, heating a pan, frying the egg, and serving. However,
the temporal order, duration and appearance of the actions will vary across videos.

3.1 Sequential Stochastic Autoregressive Model

Our method is based on a sequential stochastic autoregressive model (e.g., [4, 22]). The
model consists of three components: (H,O,R) whereH is a finite set of states, O is a finite
set of output symbols, andR is a finite set of transition rules mapping from a state to an out-
put symbol and next state. Importantly, this model is stochastic, i.e., each rule is additionally
associated with a probability of being selected, and thus the sum of the rule probabilities for
a given state is 1. Note that during training, O is just a set of symbols with no semantic
meaning or connection to the ground truth labels. For evaluation, following previous works
([16]), we use the Hungarian algorithm to match these to ground truth symbols.
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To implement this method in a differentiable way, we use fully-connected layers and the
Gumbel-Softmax trick [13, 19]. Specifically, we use several FC layers taking the current
state as input and outputting a vector of logits, representing probabilities of each rule being
selected. Next, using the Gumbel-Softmax trick, the model differentiably samples one of the
rules. Each time this function is run, a different rule can be selected, learning to generate
different sequences (Figure 2). This property is important for the learning of dependencies
in sequences.

For a full video V = [I1, I2, I3, . . . , IT ] as input, where each It is an RGB image frame from
the video, we process the frames by some CNN (e.g., ResNet, I3D [5], AssembleNet [26],
we use the latter), resulting in a sequence of feature vectors, [ f1, f2, . . . , fT ]. These fea-
tures are used as input to the model, which will generate a sequence of output symbols
S = [a1,a2, . . . ,aT ] as follows:

a1,N1 = G(N0, f1),

a2,N2 = G(N1, f2),

aT ,NT = G(NT−1, fT )

(1)

The model takes each feature as input and concatenates it with the state which is used
as input to G to produce the output. Once applied to every frame, this results in a sequence
of actions. We note that the size of O, k, is a hyper-parameter and controls the number of
atomic actions expected in the videos.

Crack egg Fry Egg Serve EggFlip Egg

Crack eggFry Egg Serve 
EggFlip Egg

Crack eggServe 
Egg

Fry EggFlip Egg

Candidate Sequences

Fry Egg

Figure 3: Multiple candidate sequences
are generated and ranked. The best se-
quence according to the ranking function
is chosen as the labels for the iteration.

Input 
Video

CNN

Feature

States

Sequential 
Model

Actions

Crack egg Fry Egg Serve EggFlip Egg

Best Candidate Sequence:

Figure 4: Once the best candidate se-
quence is selected, it is used to train the
model using standard backpropagation.
Both the state sequence model as well
as the FC-layers generating frame predic-
tions are trained.

3.2 Learning by Self-Labeling of Videos
In order to train the model without ground truth action sequences, we introduce an approach
of learning by ‘self-labeling’ videos. The idea is to optimize the model by generating self-
supervisory labels that best satisfies the constraints required for atomic actions. Notably, the
stochastic ability to generate multiple sequences is key to this approach. As a result of the
learning, a sequence with better constraint score will become more likely to be generated
than the sequences with worse scores.

We first generate multiple candidate sequences, then rank them based on the instructional
video constraints, which importantly require no labeled data. Since the Gumbel-Softmax
adds randomness to the model, the output can be different each time G is run with the same
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Epoch 0 Epoch 50 Epoch 100 Epoch 400Epoch 300Epoch 200

Figure 5: Candidate sequences at different stages of training. The sequences shown are the
top 5 ranked sequences (rows) at the given epoch. The top one is selected as supervision for
the given step. The colors represent the discovered action (with no labels).

Method F1 score

Supervised Baselines

VGG [30], from Alayrac et al. [1] 0.376
I3D, Carreira et al. [5] 0.472
AssembleNet, Ryoo et al. [26] 0.558

Weakly-supervised

CTC, Huang et al. [12] +AssembleNet [26] 0.312
ECTC, Huang et al. [12] +AssembleNet [26] 0.334

Unsupervised

Uniform Sampling 0.187
Alayrac et al. [1] 0.238
Kukleva et al [16] 0.283
JointSeqFL, Elhamifar et al. [6] 0.373
Ours 0.457

Table 1: Results on the NIV dataset

input, which is key to the approach. Specifically, the model is run M times, giving M po-
tentially different sequences of actions. We then define a cost function to rank each of the
M sequences. The top ranked sequence is selected as the labels which are used for learning.
This ranking function constrains the possible generated sequences. The ranking function we
propose to capture the structure of instructional videos has multiple components: (1) Ev-
ery atomic action must occur once in the task. (2) Every atomic action should have similar
lengths across videos of the same task. (3) Each symbol should reasonably match the pro-
vided visual feature (Figure 3). They are all modeled by losses in our approach, as shown
below, and can be relaxed if needed, e.g. if more than one occurrence is expected:

Action Occurrence: Given a sequence S of output symbols (i.e., actions), the first con-
straint ensures that every action appears once. Formally, it is implemented as C1(S) =
|O|−∑a∈O App(a), where App is 1 if a appears in S otherwise it is 0. This constraint is
optional, but we include it as it is a property of instructional videos that can be leveraged.

Modeling Action Length: The constraint ensuring each atomic action has a similar
duration across different videos can be implemented in several different ways. The simplest
approach is to compute the difference in length compared to the average action length in the
video (the exact equation is in the appendix).

Another way to model length is by considering the duration of an action to be drawn
from a distribution (e.g., Poisson or Gaussian).

C2(S) = ∑
a∈O

(1− p(L(a,S))), (2)

Modeling Action Probability: The third constraint is implemented using the separate
classification layer of the network p(a| f ), which gives the probability of the frame being
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Method MoF

Supervised Baselines

VGG [30] [1] 60.8
I3D [5] 72.8
AssembleNet [26] 77.6

Weakly-supervised

CTC [12] 11.9
HTK [15] 24.7
HMM + RNN [23] 45.5
NN-Viterbi [25] 49.4
Ours, weakly supervised 1 53.7

Unsupervised

Kukleva et al [16] 30.2
Ours 39.7

Table 2: Results on the 50-salads dataset.

Method MoF Jaccard

Supervised Baselines

VGG [30], [1] 62.8 75.4
I3D, [5] 67.8 79.4
AssembleNet, [26] 72.5 82.1

Weakly-supervised

OCDC, [12] 8.9 23.4
ECTC, [12] 27.7 -
HMM + RNN, [23] 33.3 47.3

Unsupervised

SCV, [18] 30.2 -
SCT, [7] 30.4 -
Sener et al [27] 34.6 47.1
Kukleva et al [16] 41.8 -
Ours 43.5 54.4

Table 3: Results on the Breakfast dataset.

classified as action a. Formally, C3(S) = ∑
T
t=1(1− p(at | ft)), which is the probability that the

given frame belongs to the selected action. This constraint is separate from the sequential
model and captures independent appearance based probabilities.

We can then compute the rank of any sequence as C(S) = γ1C1(S)+ γ2C2(S)+ γ3C3(S),
where γi weights the impact of each term. In practice setting γ2 and γ3 to 1

|S| and γ1 = 1
|O|

works well.
Learning Actions: To choose the self-labeling, we sample K sequences, compute each

cost and select the sequence that minimizes the above cost function. This gives the best
segmentation of actions (at this iteration of labeling), based on the defined constraints.

Ŝ = argminSC(S). (3)

We note that this cost function does not need to be differentiable. The cost function is
only used to choose the self-labels. Once the labels are selected, the standard cross-entropy
loss function with backpropagation is used to train the model. The cost function gives a
strong prior for how to choose the labels without any annotations, and allows unsupervised
learning.

L(Ŝ,A,P) =−∑
i∈O

T

∑
t=1

ât,i log(at,i)+ ât,i log(pt,i). (4)

This loss trains both the classification layer as well as the model.
We also allow a null class to indicate that no actions are occurring in the given frames.

This class is not used in any of the above constraints, i.e., it can occur wherever it wants,
for as long as needed and as many times as needed. We omit frames labeled with the null
class when calculating the cost function and find that the constraint encouraging each action
to occur once eliminates the solution where only the null class is chosen.

Cross-Video Matching: The above constraints work reasonably well for a single video,
however when we have multiple videos with the same actions, we can further improve the
ranking function by adding a cross-video matching constraint. The motivation for this is
that while breaking an egg can be visually different between two videos, the actions are the
same. Given a video segment the model labeled as an action fa from one video, a segment
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Method NIV 50-Salads Brkfst

Supervised 0.558 77.6 72.5

CTC 0.312 42.8 38.7
RNN + CTC 0.388 47.9 42.4
Ours + CTC 0.480 52.8 45.3

Table 4: Comparing different weakly-
supervised models. All using AssembleNet
features. The supervised counterpart at the
top.

Cost 50-Salads Brkfst

Randomly pick candidate 12.5 10.8
No Gumbel-Softmax 10.5 9.7

Occurrence (C1) 22.4 19.8
Length (C2) 19.6 17.8
p(a| f ) (C3) 21.5 18.8

C1 +C2 27.5 25.4
C1 +C3 30.3 28.4
C2 +C3 29.7 27.8
C1 +C2 +C3 33.4 29.8

Table 5: Ablation with cost function terms2

f̂a the model labeled as the same action from a second video, and a segment fb the modeled
labeled as a different action from any video, we can measure the cross-video similarity using
a triplet loss

LT ( fa, f̂a, fb) = || fa− f̂a||2−|| fa− fb||2 +α, (5)

or a contrastive loss

LC( fa, f̂a, fb) =
1
2
|| fa− f̂a||2 +

1
2

max(0,α−|| fa− fb||2). (6)

As these functions are differentiable, we can directly add this to the loss function (Eq. 4)
or to the cost function (e.g. as an additional cost term similar to C2 in Eq. 2) or both. By
adding this to the cost function, we are ensuring that the chosen labeling of the videos is most
consistent for feature representations. By adding it to the loss function, we are encouraging
the learned representations to be similar for the actions with the same selected labels and
different for other actions. We experimentally compare these in the supplemental material.

3.3 Self-labeling Training Method
Using the previous components, we now describe the full training method, which follows
an EM-like procedure. In the first step, we find the optimal set of action self-labels, given
the current model parameters and the ranking function. In the second step, we optimize the
model parameters, and optionally some ranking function parameters, for the selected self-
labeling (Figure 4). After taking both steps, we have completed one iteration. Following
standard neural network training, we do each step for a mini-batch of 32 samples. The
model is trained for 500 epochs. Due to the iterative update of the labels at each step, we
observe that this method requires more epochs than supervised learning.

Learning action length: As an optional training phase, we update some parameters of
the ranking function. The particular parameters to learn are those determining the length of
each action, since some atomic actions will be longer than others and we often do not know
the actual length of the action. To do this, we modify the length model so that it has a λa or
µa,σa to represent the length of each action a. To estimate these values, after the backprop-
agation of the gradients, we run the model in inference mode to obtain a segmentation of the
video. For each action, we then compute its average length (and optionally variance) which
we can use to update λa or µa,σa.

Segmenting a video at inference: CNN features are computed for each frame and the
model is applied on those features. While running the SAM, we greedily select the most
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Method chng CPR repot make jump Avg.
tire plant coffee car

Alaryac et al. [1] 0.41 0.32 0.18 0.20 0.08 0.238
Kukleva et al. [16] - - - - - 0.283
Ours VGG 0.53 0.46 0.29 0.35 0.25 0.376
Ours AssembleNet 0.63 0.54 0.381 0.42 0.315 0.457

Table 6: Comparison on the NIV dataset of the proposed approach on VGG and Assem-
bleNet features. Our approach outperforms others, even when using weaker VGG features.

probable rule to generate the action labels. Future work can improve this by considering
multiple possible sequences (e.g., following the Viterbi algorithm).

4 Experiments
We evaluate our unsupervised atomic action discovery approach on multiple video segmen-
tation datasets, establishing a new state-of-the-art for unsupervised segmentation. Our qual-
itative results confirm too that the self-generated action annotations form meaningful action
segments. We note that there is only a handful of methods that have attempted unsupervised
activity segmentation. More results can be seen in the supplemental materials. Thus, we also
compare to several fully-supervised methods and to weakly-supervised ones.
Datasets: We compare results on the 50-salads dataset [32]. The videos contain the same
set of actions (e.g., cut lettuce, cut tomato, etc), but the ordering of actions is different in
each video. We compare on Narrated Instructional Videos (NIV) dataset [1], which con-
tains 5 different tasks. Finally, we use the Breakfast dataset [14] which contains videos of
people making breakfast dishes from various camera angles and environments. We chose
these datasets as they cover a wide variety of approaches focused on unsupervised, weakly-
supervised, and fully-supervised action segmentation, allowing a comparison to them.
Evaluation Metrics: We follow all previously established protocols for evaluation in each
dataset. We first use the Hungarian algorithm to map the predicted action symbols to action
classes in the ground truth. Since different metrics are used for different datasets we report
the previously adopted metrics per dataset.

4.1 Comparison to the state-of-the-art
In Tables 1, 2, 3, we compare our approach to previous state-of-the-art methods. While
there are few works on the fully unsupervised case, we note that our approach, together with
strong video features, provides better segmentation results than previous unsupervised and
even weakly-supervised methods (JointSeqFL [6] uses optical flow and does not provide
results on 50-salads or Breakfast).

For full comparison we include strong supervised baselines, e.g., I3D [5], and Assem-
bleNet [26]. We also use implementations of the CTC [11] and ECTC [12] methods using
the AssembleNet backbone [26]. Our unsupervised approach outperforms many weakly-
supervised ones too (Tables 1, 3).
Qualitative Analysis In Figure 5, we show the generated candidate sequences at differ-
ent stages of learning. Initially, the generated sequences are entirely random and over-
segmented. As training progresses, the generated sequences start to match the constraints.

1For the weakly-supervised setting, we use activity order as supervision, equivalent to previous works.
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Break On Get things out Start Loose Jack Up Unscrew Put on Wheel Tighten Wheel Put Away

1 2 3 4 5 6 7 8

Get things 
out Start Loose Jack Up Unscrew Put On Tighten WheelJack 

DownScrew Wheel

1 2 3 4 5 86 7

Figure 6: Two example videos from the ‘change tire’ activity. The ground truth is shown in
grey, the model’s top rank segmentation is shown in colors. NIV dataset.
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Figure 7: F1 value for varying the number of actions used, compared to prior work. The
number in parenthesis indicates the ground-truth number of actions for each activity.
After 400 epochs, the generated sequences show similar order and length constraints, and
better match the ground truth (as shown in the evaluation). Figure 6 shows example results
of our method.

4.2 Ablation experiments
Effect of sequential models for weak-supervision. We conduct a set of experiments to
determine the effect of learning temporal information in different ways. The CTC loss, which
bases the loss on the probability of the sequence occurring [11], can be applied directly on
per-frame features, without any underlying RNN or temporal model. In Table 4, we compare
the effect of using the CTC loss with per-frame CNN features, an RNN, and our model.
Effects of the cost function constraints. To determine how each cost function impacts
the resulting performance, we compare various combinations of the terms. The results are
shown in Table 5. We find that each term is important to the self-labeling of the videos2.
Generating better self-labels improves model performance, and each component is beneficial
to the selection process. We also compare to other baselines.
Methods for cross-video matching. In the supplemental material, we compare the results
for the different methods of cross-video matching on the 50-salads dataset. We find that
using the contrastive as part of the training loss performs the best, as this further encourages
the learned representation to match the chosen labels.
Methods for length modeling. In the supplemental material, we compare the different
methods to model the length of each action. We find that learning the length of each action
is most beneficial.
Varying the number of actions. As O is a hyper-parameter controlling the number of
actions to segment the video into, we conduct experiments varying the number of actions to
evaluate the effect of this hyper-parameter. The results are shown in Figure 7. We find that
the model is not overly-sensitive to this hyper-parameter, but it does have some impact on
the performance due to the fact that each action must appear at least once in the video.

2These ablation methods do not use our full cross-video matching or action duration learning, thus the perfor-
mances are slightly lower than the our best results.
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Feature comparisons. As our work uses AssembleNet [26] features, in Table 6 we compare
the proposed approach to previous ones using both VGG and AssembleNet features. As
shown, even using VGG features, our approach outperforms previous methods.

Conclusion
We present a novel approach for unsupervised action segmentation for instructional videos,
which learns to effectively self-label and learn a segmentation of actions. Our work demon-
strates strong results and outperforms the state-of-the-art. Code will be open sourced.
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