
WANG ET AL.: NEIGHBORHOOD-AWARE NAS 1

Neighborhood-Aware Neural Architecture
Search

Xiaofang Wang, Shengcao Cao*,
Mengtian Li*, Kris M. Kitani
{xiaofan2,shengcao,mtli,kkitani}@cs.cmu.edu

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

Existing neural architecture search (NAS) methods often return an architecture with
good search performance but generalizes poorly to the test setting. To achieve better
generalization, we propose a novel neighborhood-aware NAS formulation to identify
flat-minima architectures in the search space, with the assumption that flat minima gen-
eralize better than sharp minima. The phrase “flat-minima architecture” refers to archi-
tectures whose performance is stable under small perturbations in the architecture (e.g.,
replacing a convolution with a skip connection). Our formulation takes the “flatness” of
an architecture into account by aggregating the performance over the neighborhood of
this architecture. We demonstrate a principled way to apply our formulation to existing
search algorithms, including sampling-based algorithms and gradient-based algorithms.
To facilitate the application to gradient-based algorithms, we also propose a differen-
tiable representation for the neighborhood of architectures. Based on our formulation,
we propose neighborhood-aware random search (NA-RS) and neighborhood-aware dif-
ferentiable architecture search (NA-DARTS). Notably, by simply augmenting DARTS
with our formulation, NA-DARTS outperforms DARTS and achieves state-of-the-art per-
formance on established benchmarks, including CIFAR-10, CIFAR-100 and ImageNet.

1 Introduction
The process of automatic neural architecture design — neural architecture search (NAS),
is a promising technology to improve performance for deep learning applications [17, 29,
30]. NAS methods typically minimize the validation loss to find the optimal architecture.
However, directly optimizing such an objective may cause the search algorithm to overfit
to the search setting, i.e., finding a solution architecture with good search performance but
generalizes poorly to the test setting. This type of overfitting is a result of the differences
between the search and test settings, such as the length of training schedules [29, 30], cross-
architecture weight sharing [17, 18], and using proxy datasets during search [17, 29, 30].

To achieve better generalization, we propose a novel NAS formulation that searches for
“flat-minima architectures”, which we define as architectures that perform well under small
perturbations of the architecture (Figure 1). One example of architectural perturbations is to
replace a convolutional operator with a skip connection (identity mapping). Our work takes
inspiration from prior work on neural network training [10], which shows that flat minima

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
* indicates equal contribution.

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Hochreiter and Schmidhuber} 1997

2 WANG ET AL.: NEIGHBORHOOD-AWARE NAS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1 0.500

0.750
1.000

1.250

1.500

1.750

1.750

2.0
00

2.000

2.250

2.250

2.500

2.500

2.750

2.750

3.000

3.250

3.500

3.7
50

4.000

4.250

4.500

4.750

5.000

5.250

Validation Loss

(a) Standard formulation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1

0.750

1.000

1.000

1.250

1.250

1.250

1.500

1.500

1.750

1.750

2.000

2.000

2.250
2.250 2.500

2.750
3.000

3.250

3.5
00

3.750

Validation Loss

(b) Neighborhood-aware formulation
Figure 1: Loss landscape visualization of the found architecture. We project architectures
(instead of the network weights) onto a 2D plane. The architectures are sampled along two
prominent directions (the two axes, λ0 and λ1), with (0,0) denotes the found architecture.
We see that our found architecture (right) is a much flatter minimum than that found with the
standard formulation (left). We provide visualization details in supplementary materials.

of the loss function correspond to network weights with better generalization than sharp
ones. We show that flat minima in the architecture space also generalize better to a new data
distribution than sharp minima (Sec. 3.3).

Unlike the standard NAS formulation that directly optimizes single architecture perfor-
mance, i.e., α∗ = argminα∈A f (α), we optimize the aggregated performance over the neigh-
borhood of an architecture:

α
∗ = arg min

α∈A
g(f (N (α))) , (1)

where f (·) is a task-specific error metric, α denotes an architecture in the search space A,
N (α) denotes the neighborhood of architecture α , and g(·) is an aggregation function (e.g.,
the mean function). Note that we overload the notation of the error metric f (·) and define
f (·) to return a set of errors when the input is a set of architectures in the neighborhood:
f (N (α)) = { f (α ′) | α ′ ∈N (α)}. Common choices for f (·) are validation loss and negative
validation accuracy. We will discuss more details of neighborhood N (α) and aggregation
function g(·) in the following text.

To implement our formulation, one must define the neighborhood N (α) and specify an
aggregation function g(·). How to define the neighborhood of an architecture is an open
question. One possible method to obtain neighboring architectures is to perturb one or more
operations in the architecture and the degree of perturbation defines the scope of the neigh-
borhood. This method can be applied to sampling-based search algorithms, e.g., random
search and reinforcement learning. However, it cannot be directly used to generate neigh-
boring architectures for gradient-based search algorithms (a.k.a, differentiable NAS), where
the neighboring architectures themselves also need to be differentiable with respect to the
architecture being learned. To address this issue, we propose a differentiable representation
for the neighborhood of architectures, which makes the objective function differentiable and
allows us to apply our formulation to gradient-based algorithms, e.g., DARTS [17]. Properly
choosing the aggregation function g(·) can help the search algorithm identify flat minima
in the search space. Our choice of g(·) (e.g., mean) is inspired by the definition of the flat-
ness/sharpness of local minima in previous work [4, 8, 12].

We summarize our contributions as follows:

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes, Sagun, and Zecchina} 2017

Citation
Citation
{Dinh, Pascanu, Bengio, and Bengio} 2017

Citation
Citation
{Keskar, Mudigere, Nocedal, Smelyanskiy, and Tang} 2017

WANG ET AL.: NEIGHBORHOOD-AWARE NAS 3

1. We propose a neighborhood-aware NAS formulation based on the flat minima as-
sumption, and demonstrate a principled way to apply our formulation to existing
search algorithms, including sampling-based algorithms and gradient-based algo-
rithms. We empirically validate our assumption and show that flat-minima archi-
tectures generalize better than sharp ones.

2. We propose a neighborhood-aware random search (NA-RS) algorithm and demon-
strate its superiority over the standard random search on NAS-Bench-201 [9].

3. We propose a differentiable neighborhood representation so that we can apply our
formulation to gradient-based NAS methods. By augmenting DARTS [17] with our
formulation, the propoesd algorithm NA-DARTS outperforms DARTS by 1.18% on
CIFAR-100 and 1.2% on ImageNet, achieving state-of-the-art performance.

2 Related Work
Flat Minima. Hochreiter & Schmidhuber [10] show that flat minima of the loss function of
neural networks generalize better than sharp minima. Flat minima are also used to explain the
poor generalization of large-batch methods [12, 26], where large-batch methods are shown
to be more likely to converge to sharp minima. Previous work mentioned above focus on
flat minima in the network weight space. However, we study flat minima in the architecture
space, which is discrete and fundamentally different from the continuous weights studied in
previous work. This makes it non-trivial to apply the flat minima idea to NAS.

Zela et al. [27] observes a strong correlation between the generalization error of the archi-
tecture found by DARTS [17] and the flatness of the loss function at the found architecture.
They propose several regularization strategies to improve DARTS, such as early stopping
before the loss curvature becomes too high. Our flat minima assumption is motivated by
their observation and our method can be combined with their regularization strategies.

NAS - Search Algorithm. Various search algorithms have been applied to solve NAS,
including sampling-based and gradient-based algorithms. Representative sampling-based
algorithms include random search [14], reinforcement learning [1, 28, 29, 30], Bayesian
optimization [3, 11], evolutionary algorithms [19, 20, 22], and sequential model-based op-
timization [16]. To make NAS more computationally efficient, weight sharing across archi-
tectures is proposed to amortize the training cost of candidate architectures [2, 18]. Based
on weight sharing, gradient-based algorithms are proposed to directly learn the architecture
with gradient descent [17, 23]. Our focus is not proposing novel search algorithms but re-
visiting the standard NAS formulation. Our proposed formulation can be applied to both
sampling-based algorithms and gradient-based algorithms.

Our work is relevant to SDARTS [5] as both methods take the neighborhood of archi-
tectures into consideration. But the goals of the two methods are fundamentally different.
SDARTS aims to smooth the loss landscape by finding network weights that are not only
good for the current architecture but also the neighborhood of this architecture. However,
our goal is to find flat-minima architectures, i.e., finding a solution architecture that not only
performs well itself but also has a neighborhood with good performance.

NAS - Search Space. Search space is crucial for the performance of NAS. One of the
most widely used search spaces is the cell search space [30], which searches for a cell that
can be stacked multiple times to form the entire network. Our proposed neighborhood-aware
formulation is agnostic to the search space, and we specifically showcase our formulation on
the cell search space.

Citation
Citation
{Dong and Yang} 2020

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Hochreiter and Schmidhuber} 1997

Citation
Citation
{Keskar, Mudigere, Nocedal, Smelyanskiy, and Tang} 2017

Citation
Citation
{Yao, Gholami, Lei, Keutzer, and Mahoney} 2018

Citation
Citation
{Zela, Elsken, Saikia, Marrakchi, Brox, and Hutter} 2020

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Li and Talwalkar} 2019

Citation
Citation
{Baker, Gupta, Naik, and Raskar} 2017

Citation
Citation
{Zhong, Yan, Wu, Shao, and Liu} 2018

Citation
Citation
{Zoph and Le} 2017

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Cao, Wang, and Kitani} 2019

Citation
Citation
{Kandasamy, Neiswanger, Schneider, Poczos, and Xing} 2018

Citation
Citation
{Real, Moore, Selle, Saxena, Suematsu, Tan, Le, and Kurakin} 2017

Citation
Citation
{Real, Aggarwal, Huang, and Le} 2019

Citation
Citation
{Xie and Yuille} 2017

Citation
Citation
{Liu, Zoph, Neumann, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2018

Citation
Citation
{Bender, jan Kindermans, Zoph, Vasudevan, and Le} 2018

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Xie, Zheng, Liu, and Lin} 2019

Citation
Citation
{Chen and Hsieh} 2020

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

4 WANG ET AL.: NEIGHBORHOOD-AWARE NAS

3 Neighborhood-Aware Formulation

We propose a neighborhood-aware NAS formulation (Eq. 1) to identify flat minima in the
search space. Our formulation builds upon the assumption that flat-minima architectures
usually generalize better than sharp ones. In this formulation, the optimal architecture is
selected according to the aggregated performance g(f (N (α))) of neighbors of an architec-
ture, instead of the standard criterion, i.e., single architecture performance f (α) only. We
now introduce the neighborhood of an architecture N (α) and the aggregation function g(·).

3.1 Neighborhood Definition and Cell Search Space

Formally defining the neighborhood requires a distance metric between architectures, which
largely depends on how an architecture is represented and how the search space is con-
structed. We adopt the cell search space [30] as it has been widely used in recent NAS
methods [16, 17]. Instead of the entire architecture, we search for a cell that can be stacked
multiple times to form the entire architecture. The number of times the cell is stacked and
the output layer are manually defined prior to the search.

A cell is defined as a directed acyclic graph (DAG) consisting of n nodes. Each node
represents a feature map. Each directed edge (i, j)(1 ≤ i < j ≤ n) is associated with an
operation used to transform the feature map at node i, and passes the transformed feature
map to node j. The feature map at one node is the sum of all the feature maps on the
incoming edges to this node: x(j) = ∑(i, j)∈E ∑

m
k=1 α

(i, j)
k ok(x(i)), where E denotes the set of

edges in the cell, x(i) is the feature map at node i, and ok is the kth operation among the
m available operations. α(i, j) is a m-dim one-hot vector, indicating the operation choice for
edge (i, j). A cell is then represented by a set of variables α = {α(i, j)}. Note that α(i, j) being
a one-hot vector means that only one operation is chosen for edge (i, j). On a side note, the
one-hot constraint on α(i, j) can be relaxed in differentiable NAS methods [17, 23].

We define the distance between two cells α and α ′ as:

dist(α,α ′) = ∑
(i, j)∈E

δ (α(i, j),α ′(i, j)), (2)

where δ (·, ·) is the total variation distance between two probability distributions: δ (p,q) =
1
2 ||p− q||1 = 1

2 ∑
m
k=1 |pk− qk|. Here p and q are both m-dim probability distributions. The

total variation distance is symmetric and bounded between 0 and 1. It also offers the fol-
lowing property: δ (α(i, j),α ′(i, j)) = 0 implies that the two cells have the same operation at
edge (i, j) and δ (α(i, j),α ′(i, j)) = 1 implies that they have different operations at edge (i, j).
Note that instead of directly counting the edge differences, we adopt total variation distance
to accommodate relaxed α that is later used in differentiable NAS methods [17, 23].

The neighborhood of a cell α is defined as:

N (α) = {α ′ | dist(α,α ′)≤ d}, (3)

where d is a distance threshold. Due to the property of the total variation distance, when d is
an integer, the neighborhood contains all the cells that have at most d edges associated with
different operations from α . For clarification, our definition of neighborhood includes the
reference architecture α itself.

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Liu, Zoph, Neumann, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2018

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Xie, Zheng, Liu, and Lin} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Xie, Zheng, Liu, and Lin} 2019

WANG ET AL.: NEIGHBORHOOD-AWARE NAS 5

3.2 Aggregation Function
Given an architecture α , the flatness of its neighborhood is determined by how much the
performance (e.g., validation loss) of its neighboring architectures varies compared to α

itself. Intuitively, when α is a flat minimum, its neighboring architectures should perform
similarly to α . However, when α is a sharp minimum, the loss of architectures around α

increases drastically compared to α .
Based on this intuition, we set g(·) as the mean function, since the mean validation loss

of architectures around a flat minimum is expected to be lower than those around a sharp
minimum. Importantly, minimizing mean(f (N (α))) ensures that α is a local minimum and
at the same time has a flat neighborhood. For a similar reason, median and max are also valid
choices for g(·) to differentiate between flat minima and sharp minima. We provide more
discussions of the aggregation function in supplementary materials.

3.3 Justification of Flat Minima Assumption
3.3.1 Flat Minima Generalize Better
Flat minima in the network weight space are shown to generalize better than sharp ones [10].
However, we focus on flat minima in the architecture space, which is discrete and funda-
mentally different from the continuous weights studied in previous work. So we conduct
experiments to verify that flat minima in the architecture space also generalize better.

NAS-Bench-201 [9] provides a simulated environment for NAS experiments. Using
NAS-Bench-201, we search on CIFAR-10 and evaluate the found architectures not only on
CIFAR-10, but also on CIFAR-100 and ImageNet-16-120 to better assess the generalization
performance of architectures. We select 100 architectures from NAS-Bench-201 that have
the lowest validation error on CIFAR-10 to represent local minima in the search space. Next,
we show that among these local-minima architectures, flat minima outperform sharp ones,
especially on CIFAR-100 and ImageNet-16-120.

We measure the flatness of each local-minimum architecture with its neighborhood vari-
ance: the variance of the search-time validation error of its neighboring architectures on
CIFAR-10. Based on their neighborhood variance, we divide the 100 architectures into 2
groups: (1) flat minima, which are the 50 architectures with a flat neighborhood (low neigh-
borhood variance), and (2) sharp minima, which are the other 50 architectures with a sharp
neighborhood (high neighborhood variance).

We observe that the average search-time validation error of flat minima and sharp minima
are almost the same (14.55% and 14.57%). But, as shown in Table 1a, the average test error
of flat minima is lower than sharp minima on all three datasets, especially on CIFAR-100
(1.10%) and ImageNet-16-120 (1.24%). This verifies that flat minima generalize better.

3.3.2 Aggregated Performance Gives a Better Ranking of Architectures

Our formulation suggests using the aggregated performance g(f (N (α))) as the criterion
to select optimal architectures, instead of the standard criterion f (α). The selection crite-
rion determines whether we can obtain an accurate ranking of candidate architectures dur-
ing search, and further determines the performance of found architectures. So, we evalu-
ate the estimated ranking given by different criteria on NAS-Bench-201 with the Kendall’s
Tau metric (rank correlation; the higher the better). Table 1b shows that that our criterion
g(f (N (α))) (g(·) = mean) gives a much more ranking of architectures than the standard
criterion f (α). Please see supplementary materials for more details and results.

Citation
Citation
{Hochreiter and Schmidhuber} 1997

Citation
Citation
{Dong and Yang} 2020

6 WANG ET AL.: NEIGHBORHOOD-AWARE NAS

CIFAR-10 CIFAR-100 ImageNet-16-120

Flat minima 6.23 28.90 55.17
Sharp minima 6.66 30.00 56.41

(a)

CIFAR-10 CIFAR-100 ImageNet-16-120

Baseline 0.66±0.03 0.66±0.02 0.64±0.03
Ours 0.76±0.03 0.77±0.03 0.74±0.03

(b)
Table 1: (a): Average test error of flat-minima architectures and sharp-minima architectures.
Flat minima consistently outperform sharp minima on all three datasets. (b): Kendall’s Tau
(rank correlation) of the standard criterion f (α) (baseline) and our criterion g(f (N (α))).
Our criterion gives a more accurate ranking of architectures on all three datasets.

4 Neighborhood-Aware Search Algorithms
We propose neighborhood-aware search algorithms by applying our formulation to random
search (sampling-based) and DARTS (gradient-based), respectively.

4.1 Neighborhood-Aware Random Search (NA-RS)
When applying our formulation to random search, we only need to change the criterion of
selecting optimal architectures from f (α) to the aggregated performance g(f (N (α))). At
each step, we randomly sample an architecture α and compute its aggregated performance
g(f (N (α))), and choose the one with the best aggregated performance as our solution. We
provide a detailed algorithm sketch of our algorithm NA-RS in supplementary materials.

In practice, the entire neighborhood may be large. Instead of using all the neighbors, we
sample a subset of nnbr neighboring architectures from the neighborhood. In our implemen-
tation, we always include the reference architecture itself in the sampled subset.

Note that since NA-RS evaluates a neighborhood of architectures at each step, for fair
comparison, we allow the standard random search (baseline) to run for more steps such that
the two methods evaluate the same number of architectures during search. Specifically, if
our NA-RS searches for T steps, the standard random searches for T ·nnbr steps.

While we only present NA-RS, the formulation is also applicable to other sampling-
based search algorithms, such as reinforcement learning (RL) and Bayesian optimization
(BO). Similar to NA-RS, when applying our formulation to RL or BO, we only need to
define the reward signal in RL or the objective function in BO as the aggregated performance
g(f (N (α))). Other components in RL or BO remain unchanged.

4.2 Neighborhood-Aware Differentiable Search
We now present how to apply our formulation to differentiable NAS methods. The key in
these methods [6, 17, 23] is to make the objective f (α) differentiable with respect to the
architecture α such that one can optimize α with gradient descent.

Similar to the case of random search, our formulation changes the objective from f (α)
to g(f (N (α))). With this change, the differentiability of g(f (N (α))) is not guaranteed.
Therefore, we propose a differentiable neighborhood representation forN (α) and set the ag-
gregation function g(·) to be mean (g can also be other differentiable functions). This makes
g(f (N (α))) differentiable and allows us to adopt prior gradient estimation techniques, e.g.,
the continuous relaxation in DARTS [17] or Gumbel-Softmax in SNAS [23], to derive the
gradient of g(f (N (α))). Other parts in the original NAS methods remain the same.

Specifically, we augment DARTS [17] with our formulation and adopt the continuous re-
laxation in DARTS to estimate the gradient. Therefore, we name our method neighborhood-

Citation
Citation
{Chen, Xie, Wu, and Tian} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Xie, Zheng, Liu, and Lin} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Xie, Zheng, Liu, and Lin} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

WANG ET AL.: NEIGHBORHOOD-AWARE NAS 7

aware DARTS (NA-DARTS). Note that our formulation is also applicable to other differ-
entiable NAS methods. Specifically, we apply our formulation to DARTS-ES [27] and PC-
DARTS [24] and present the results in Table 6.

4.2.1 Neighborhood-Aware DARTS (NA-DARTS)

We first briefly review DARTS and then introduce the formulation of our NA-DARTS.
DARTS. DARTS relaxes the discrete search space to be continuous so that the gradient

of the validation loss with respect to the architecture α can be estimated, allowing optimiz-
ing α with gradient descent. Concretely, α(i, j) is relaxed from a discrete one-hot vector
to a continuous distribution, and is parameterized as the output of the softmax function:

α
(i, j)
k =

exp(β (i, j)
k)

∑
m
k=1 exp(β (i, j)

k)
, where m is the number of available operations and β = {β (i, j)

k } is

the set of continuous logits to be learned. DARTS formulates NAS as the following bilevel
optimization problem:

min
α
Lval(w∗(α),α) s.t. w∗(α) = argmin

w
Ltrain(w,α), (4)

where w denotes network weights, w∗(α) denotes the weights minimizing the training loss
of architecture α . Ltrain(w,α) and Lval(w,α) are the training loss and validation loss of
architecture α with weights w, respectively.

NA-DARTS. We augment DARTS with our neighborhood-aware formulation:

min
α

g({Lval(w∗(α ′),α ′) | α ′ ∈N (α)}) s.t. w∗(α ′) = argmin
w
Ltrain(w,α ′), (5)

where N (α) is the neighborhood of architecture α and g(·) is an aggregation function.
An outline of our NA-DARTS algorithm can be found in Algorithm 1 in supplementary

materials. We first describe how to represent the neighboring architecture α ′ as a differen-
tiable function of α and, then discuss the gradient estimation for specific choices of g(·).

4.2.2 Differentiable Neighborhood Representation

When the one-hot constraint on α is relaxed, the neighborhood contains an infinite number of
neighboring architectures. We propose a method to sample a finite number of architectures
from the neighborhood. Importantly, our method allows each sampled neighbor α ′ to be
differentiable with respect to the reference architecture α .

We generate neighboring architectures of α by perturbing the operations associated with
the edges in α . We randomly sample d edges to be perturbed from the edges α and leave
the operation choice for remaining edges unchanged. This implies that the distance between
α and the neighboring architecture α ′ is at most d, thus as defined in Eq. 3, α ′ falls into the
neighborhood of α . Next, we present how to represent α ′ as a differentiable function of α .

Let edge (i, j) be an edge to be perturbed. Let q(i, j) be a m-dim real-valued noise vector
satisfying the following condition: |q(i, j)k | ≤ ε(0 < ε < 1) and α

(i, j)
k +q(i, j)k ≥ 0 for all k(1≤

k ≤ m). ε is the threshold of the noise. We randomly sample a noise vector q(i, j) and α ′(i, j)

is computed as:

α
′(i, j)
k =

α
(i, j)
k +q(i, j)k

∑
n
k=1(α

(i, j)
k +q(i, j)k)

. (6)

Citation
Citation
{Zela, Elsken, Saikia, Marrakchi, Brox, and Hutter} 2020

Citation
Citation
{Xu, Xie, Zhang, Chen, Qi, Tian, and Xiong} 2020

8 WANG ET AL.: NEIGHBORHOOD-AWARE NAS

CIFAR-10 CIFAR-100 ImageNet-16-120

Random Search (RS) 6.39±0.32 29.81±0.44 56.30±1.08
NA-RS (Ours) 6.20±0.35 28.33±1.22 54.72±0.96

Table 2: Test error of NA-RS and the standard random search (RS). NA-RS consistently
outperforms RS on all three datasets under the same computational budget.

Top-1 Test Error (%) Params (M)
Method CIFAR-10 CIFAR-100 ImageNet CIFAR ImageNet

DARTS 1st [17] 2.90±0.25 17.66±0.83 - 2.9 -
DARTS 2nd [17] 2.70±0.08 17.72±0.61 26.7 2.9 4.7
NA-DARTS (Ours) 2.63±0.12 16.48±0.13 25.5 3.2 4.8

Table 3: Test error of NA-DARTS and DARTS on CIFAR-10, CIFAR-100 and ImageNet.
Our NA-DARTS consistently outperforms DARTS on all three datasets.

Repeating the process for each edge to be perturbed will result in a neighboring architecture
α ′, which is differentiable with respect to α . Different noise vectors are sampled for different
edges. We term Eq. 6 as the additive representation of neighboring architectures.

With the additive representation, we can sample a set of neighboring architectures of α

and the sampled architectures are differentiable with respect to α . In practice, we uniformly
sample nnbr neighbors from the neighborhood and always include α itself in the sampled set.

4.2.3 Gradient Estimation

After sampling a finite set of neighboring architectures, we compute the validation loss of
each individual architecture α ′, where we use the current weights w as an approximation of
w∗(α ′). Then we pass the set of the validation losses to the aggregation function g(·).

As discussed before, the aggregation function g(·) needs to be differentiable, which im-
mediately rules out median. We choose mean over max due to its superior empirical per-
formance. We note that when using max, Eq. 5 becomes a minimax optimization problem
and one can approximate the gradient of the objective using Danskin’s Theorem [7]. For
completeness, we provide details of using max in supplementary materials.

5 Experimental Results

5.1 Neighborhood-Aware Random Search

We validate our NA-RS on NAS-Bench-201 [9]. Same as the experimental setup in Sec. 3.3,
we search on CIFAR-10 and evaluate on CIFAR-10 [13], CIFAR-100 [13], and ImageNet-
16-120 [9]. The number of search steps T in NA-RS is set to 100. We set the distance
threshold d to 1 and sample 10 neighbors (nnbr = 10) at each step.

As shown in Table 2, NA-RS consistently outperform RS on all three datasets, which
validates our neighborhood-aware formulation. Notably, NA-RS outperforms RS by 1.48%
on CIFAR-100 and 1.58% ImageNet-16-120. Note that the cell search space typically has
a narrow performance range [25], so the improvement brought by our NA-RS is non-trivial.
We include the ablation study of nnbr and the aggregation function in NA-RS in supplement.

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Danskin} 1967

Citation
Citation
{Dong and Yang} 2020

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Dong and Yang} 2020

Citation
Citation
{Yang, Esperança, and Carlucci} 2020

WANG ET AL.: NEIGHBORHOOD-AWARE NAS 9

Test Error (%) Params Search Cost Search
Method CIFAR-10 CIFAR-100 (M) (GPU days) Method

NASNet-A [30] 2.65 17.10* 3.3 1800 RL
AmoebaNet-A [20] 2.84* 17.16* 3.2 3150 Evolution
PNAS [16] 2.95* 17.29* 3.2 225 SMBO
ENAS [18] 2.54* 17.18* 3.9 0.5 RL

SNAS [23] 2.85±0.02 18.25* 2.8 1.5 Gradient
P-DARTS [6] 2.50 16.55 3.4 0.3 Gradient
PC-DARTS [24] 2.57±0.07 16.74* 3.6 0.1 Gradient
DARTS+ [15] 2.72* 16.85* 4.3 0.6 Gradient
SDARTS-ADV [5] 2.61±0.02 16.60* 3.3 1.3 Gradient

DARTS 1st [17] 2.90±0.25 17.66±0.83 2.9 0.3 Gradient
DARTS 2nd [17] 2.70±0.08 17.72±0.61 2.9 1.0 Gradient
NA-DARTS (Ours) 2.63±0.12 16.48±0.13 3.2 1.1 Gradient
* We train the reported architecture following the training setup in DARTS [17].

Table 4: Comparison with state-of-the-art NAS methods on CIFAR-10 and CIFAR-100.
Our NA-DARTS achieves the lowest test error on CIFAR-100. As all the architectures are
searched on CIFAR-10, this shows that architectures found by NA-DARTS generalize better.

Test Error (%) Params +× Test Error (%) Params +×
Method Top-1 Top-5 (M) (M) Method Top-1 Top-5 (M) (M)

DARTS [17] 26.7 8.7 4.7 574 AmoebaNet-A [20]* 27.0 8.9 5.0 584
P-DARTS [6]* 25.3 8.1 4.9 557 NASNet-A [30] 26.0 8.4 5.3 564
PC-DARTS [24]* 25.7 8.3 5.3 586 ENAS [18]* 26.1 8.6 5.2 576
DARTS+ [15]* 26.4 8.5 5.0 586 PNAS [16] 25.8 8.1 5.1 588
SDARTS-ADV [5]* 25.8 8.5 4.8 545 SNAS [23] 27.3 9.2 4.3 522

NA-DARTS (Ours) 25.5 8.2 4.8 557
* We train the reported architecture following the training setup in DARTS [17].

Table 5: Comparison with state-of-the-art NAS methods on ImageNet. Our NA-DARTS
obtains the second lowest test error on ImageNet.

5.2 Neighborhood-Aware DARTS
DARTS Search Space. Following DARTS [17], we search on CIFAR-10 [13] and evaluate
on three datasets: CIFAR-10 [13], CIFAR-100 [13] and ImageNet [21]. The performance on
CIFAR-100 and ImageNet are more important, which reflects how well the found architec-
ture can generalize to new datasets. For our NA-DARTS, we sample 10 neighbors at each
step, i.e., nnbr = 10. We include more details and ablation results in supplement.

We first compare our NA-DARTS with DARTS. This comparison directly verifies the
effectiveness of our neighborhood-aware formulation. As shown in Table 3, NA-DARTS
consistently outperforms DARTS on all three datasets. Notably, NA-DARTS outperforms
DARTS by 1.18% on CIFAR-100 and 1.2% on ImageNet. Compared with other state-of-
the-art NAS methods, NA-DARTS obtains the lowest test error on CIFAR-100 (Table 4) and
the second lowest on ImageNet (Table 5).

Note that the cell search space used in DARTS has a narrow performance range [25], e.g.,
the top-1 error on CIFAR-100 mostly fall around 17%. So the performance gap between our
NA-DARTS and DARTS is non-trivial. We also have compared NA-DARTS and DARTS on
a different search space and observe a bigger gap (see Table 6).

S3 Search Space. Zela et al. [27] identifies a set of search spaces where DARTS [17]
can successfully minimizes the validation loss during search, but the found architectures

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Real, Aggarwal, Huang, and Le} 2019

Citation
Citation
{Liu, Zoph, Neumann, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2018

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Xie, Zheng, Liu, and Lin} 2019

Citation
Citation
{Chen, Xie, Wu, and Tian} 2019

Citation
Citation
{Xu, Xie, Zhang, Chen, Qi, Tian, and Xiong} 2020

Citation
Citation
{Liang, Zhang, Sun, He, Huang, Zhuang, and Li} 2019

Citation
Citation
{Chen and Hsieh} 2020

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Real, Aggarwal, Huang, and Le} 2019

Citation
Citation
{Chen, Xie, Wu, and Tian} 2019

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Xu, Xie, Zhang, Chen, Qi, Tian, and Xiong} 2020

Citation
Citation
{Pham, Guan, Zoph, Le, and Dean} 2018

Citation
Citation
{Liang, Zhang, Sun, He, Huang, Zhuang, and Li} 2019

Citation
Citation
{Liu, Zoph, Neumann, Shlens, Hua, Li, Fei-Fei, Yuille, Huang, and Murphy} 2018

Citation
Citation
{Chen and Hsieh} 2020

Citation
Citation
{Xie, Zheng, Liu, and Lin} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M {}al.} 2015

Citation
Citation
{Yang, Esperança, and Carlucci} 2020

Citation
Citation
{Zela, Elsken, Saikia, Marrakchi, Brox, and Hutter} 2020

Citation
Citation
{Liu, Simonyan, and Yang} 2019

10 WANG ET AL.: NEIGHBORHOOD-AWARE NAS

CIFAR-10 CIFAR-100

DARTS [17] 4.13±0.98 22.49±2.62
NA-DARTS (Ours) 2.97±0.18 18.86±0.49

DARTS-ES [27] 3.71±1.14 19.21±0.65
NA-DARTS-ES (Ours) 2.49±0.02 17.03±0.41

PC-DARTS [24] 2.66±0.14 17.38±0.45
NA-PC-DARTS (Ours) 2.69±0.08 16.66±0.39

Table 6: Test error of architectures found from the S3 search space on CIFAR-10 and CIFAR-
100. Top: Our NA-DARTS significantly outperforms DARTS, e.g., 3.63% on CIFAR-100.
Mid & Bottom: Applying our formulation to other DARTS extensions, e.g., DARTS-ES
and PC-DARTS, can yield further improvement.

are usually degenerated and generalize poorly to the test setting. To further validate our NA-
DARTS, we conduct experiments on one search space suggested by Zela et al. [27] and show
that in this new search space, NA-DARTS can still generalize much better than DARTS.

The new search space is a subset of the original DARTS search space. The new search
space is exactly the same as the original search space, except that it only considers three
candidate operations, including 3× 3 separable convolution, skip connection, and the zero
operation. Following Zela et al. [27], we refer to the new search space as ‘S3 search space’.

We search architectures from the S3 search space on CIFAR-10 and then evaluate the
found architecture on both CIFAR-10 and CIFAR-100. We see from Table 6 that our NA-
DARTS easily outperforms DARTS on both datasets. Notably, NA-DARTS outperforms
DARTS by 3.63% on CIFAR-100.

Combining with other DARTS extensions. Many NAS methods like DARTS-ES, P-
DARTS and PC-DARTS are all extensions of DARTS and our neighborhood-aware formu-
lation is also applicable to them. Their ideas to improve DARTS, e.g., the early stopping in
DARTS-ES or the partial-channel connection idea in PC-DARTS, can be combined with our
method for better performance.

To empirically verify this claim, we propose NA-DARTS-ES and NA-PC-DARTS by
applying our formulation to DARTS-ES [27] and PC-DARTS [24], respectively. As shown
in Table 6, NA-DARTS-ES outperforms DARTS-ES by 1.22% on CIFAR-10 and 2.18%
on CIFAR-100. NA-PC-DARTS performs similarly to PC-DARTS on CIFAR-10 but out-
performs PC-DARTS by 0.72% on CIFAR-100. As all the architectures are searched on
CIFAR-10, the improvement on CIFAR-100 demonstrates that architectures found by our
NA-DARTS-ES or NA-PC-DARTS generalize better than DARTS-ES or PC-DARTS.

6 Conclusion
To achieve better generalization, we propose a novel neighborhood-aware NAS formulation,
based on the assumption that flat-minima architectures generalize better than sharp ones.
Our formulation provides a new perspective for NAS that one should use the aggregated
performance over the neighboorhood as the criterion to select optimal architectures. We also
demonstrate a principled way to apply our formulation to existing search algorithms and
propose two practical search algorithms NA-RS and NA-DARTS. Extensive experiments on
CIFAR-10, CIFAR-100 and ImageNet validate the flat minima assumption, and demonstrate
the significance of our formulation and algorithms.

Citation
Citation
{Liu, Simonyan, and Yang} 2019

Citation
Citation
{Zela, Elsken, Saikia, Marrakchi, Brox, and Hutter} 2020

Citation
Citation
{Xu, Xie, Zhang, Chen, Qi, Tian, and Xiong} 2020

Citation
Citation
{Zela, Elsken, Saikia, Marrakchi, Brox, and Hutter} 2020

Citation
Citation
{Zela, Elsken, Saikia, Marrakchi, Brox, and Hutter} 2020

Citation
Citation
{Zela, Elsken, Saikia, Marrakchi, Brox, and Hutter} 2020

Citation
Citation
{Xu, Xie, Zhang, Chen, Qi, Tian, and Xiong} 2020

WANG ET AL.: NEIGHBORHOOD-AWARE NAS 11

Acknowledgement
This project was sponsored by Caterpillar Inc.

References
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural net-

work architectures using reinforcement learning. In ICLR, 2017.

[2] Gabriel M. Bender, Pieter jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. Understanding and simplifying one-shot architecture search. In ICML, 2018.

[3] Shengcao Cao, Xiaofang Wang, and Kris M. Kitani. Learnable embedding space for
efficient neural architecture compression. In ICLR, 2019.

[4] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi,
Christian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd:
Biasing gradient descent into wide valleys. In ICLR, 2017.

[5] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via
perturbation-based regularization. In ICML, 2020.

[6] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture
search: Bridging the depth gap between search and evaluation. In ICCV, 2019.

[7] John M Danskin. The theory of max-min and its application to weapons allocation
problems. Springer, 1967.

[8] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In ICML, 2017.

[9] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In ICLR, 2020.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 1997.

[11] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and
Eric P Xing. Neural architecture search with bayesian optimisation and optimal trans-
port. In NeurIPS, 2018.

[12] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and
sharp minima. In ICLR, 2017.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[14] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architec-
ture search. In UAI, 2019.

[15] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen
Zhuang, and Zhenguo Li. Darts+: Improved differentiable architecture search with
early stopping. arXiv preprint arXiv:1909.06035, 2019.

12 WANG ET AL.: NEIGHBORHOOD-AWARE NAS

[16] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural ar-
chitecture search. In ECCV, 2018.

[17] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture
search. In ICLR, 2019.

[18] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural
architecture search via parameters sharing. In ICML, 2018.

[19] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers.
In ICML, 2017.

[20] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution
for image classifier architecture search. In AAAI, 2019.

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. IJCV, 2015.

[22] Lingxi Xie and Alan Yuille. Genetic cnn. In ICCV, 2017.

[23] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural archi-
tecture search. In ICLR, 2019.

[24] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai
Xiong. Pc-darts: Partial channel connections for memory-efficient architecture search.
In ICLR, 2020.

[25] Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. Nas evaluation is frustrat-
ingly hard. In ICLR, 2020.

[26] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-
based analysis of large batch training and robustness to adversaries. In NeurIPS, 2018.

[27] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and
Frank Hutter. Understanding and robustifying differentiable architecture search. In
ICLR, 2020.

[28] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise
neural network architecture generation. In CVPR, 2018.

[29] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
In ICLR, 2017.

[30] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

