
RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY 1

Collision Replay: What Does Bumping Into
Things Tell You About Scene Geometry?

Alexander Raistrick
alexrais@umich.edu

Nilesh Kulkarni
nileshk@umich.edu

David F. Fouhey
fouhey@umich.edu

University of Michigan
Ann Arbor, MI

Abstract

What does bumping into things in past scenes tell you about scene geometry in a new
scene? In this paper, we investigate the idea of learning from collisions. At the heart of
our approach is the idea of collision replay, where after a collision an agent associates
the pre-collision observations (such as images or sound collected by the agent) with the
time until the next collision. These samples enable training a deep network that can map
the pre-collision observations to information about scene geometry. Specifically, we use
collision replay to train a model to predict a distribution over collision time from new
observations by using supervision from bumps. We learn this distribution conditioned
on visual data or echolocation responses. This distribution conveys information about
the navigational affordances (e.g., corridors vs open spaces) and, as we show, can be
converted into the distance function for the scene geometry. We analyze our approach
with a noisily actuated agent in a photorealistic simulator.

1 Introduction
Suppose you bump into something. What does the collision reveal? You know your current
position is on the edge of occupied space, but it is not clear what is known about other loca-
tions. If you consider where you were k steps earlier, and replay this observation, there must
be a k-step path to some obstacle, but this does not rule out a shorter path to another obstacle.
Our goal is to use this replaying of a collision (Collision Replay) to convert the local collision
to supervision for scene geometry for other modalities like vision or sound. Specifically, we
will investigate systems that learn from pairs consisting of a pre-collision observation (an
image, or image-like data such as a sound spectrogram) and a corresponding time until col-
lision. These pairs can supervise deep networks that predict time-to-collision information,
which can be further converted into information about the geometry of the scene. Our key
observation is that one collision in one scene is of limited value, but multiple collisions over
multiple training scenes provide sparse but strong supervision. Once a network is trained
to map observations to information about time-to-collision, this information can be used to
infer geometric properties in new environments.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY

Training Time – Collision Time Samples Test Time – Predict in Unseen Environments

(A) Held-out

Environment
(B) Predicted

Distribution at point

(C) Predicted

Distance Function

…

…

Figure 1: Overall approach. (Left) At train time, our models learn to predict time-to-
collision from samples of collisions across many scenes. We show training trajectories (dots)
that end in a collision at a red x. The remaining time to collision is represented as the color
and serves as a learning target. (Right) (A) At test time, the learned model receives an
observation. (B) As output, our model produces a distribution over times to collision at
a query point on the floor in a given direction. We show this distribution, conditioned on
image features at the query point and heading direction. We plot it as a function of heading
direction (radius: distance; angle: angle; color: probability of collision). This distribution
can be predicted for each point on the floorplane. (C) One can obtain a distance function on
the floor by finding the minimum distance per-point.

We operationalize this idea in Sec. 3 with a method that can predict distributions over
time-to-collision from image observations. The key to unlocking this supervision is a mod-
eling of a distribution over times to collision (often studied in stochastic processes [10]).
The modeling of a distribution enables the model to account for the chance that a training-
time collision resulted from a suboptimally short path. We demonstrate our approach on
three image-like observations: normal resolution RGB images, low-resolution RGB images,
and binaural echo-response spectrograms (which can be treated as an image).

Our embracing of the learning signal of collisions separates our work from the consider-
able effort usually spent in vision and robotics trying to avoid collisions. Approaches range
from building detailed geometric maps [15, 32, 34], to using these signals to learn depth esti-
mation models [8, 13, 30, 41], to learning navigation systems [7, 14, 40] to everything in the
middle. Our work complements this literature by showing how an agent could self-supervise
a range-like sensor via cheap-to-sense collisions. Further, while many of our experiments
produce geometric information from images (where there are many other approaches), our
approach can be used for general modalities, which we demonstrate with audio spectrograms.

We test our approach in Section 4 using simulated [24] indoor environments [3, 39]
with realistic actuation noise. We focus on estimating the scene’s distance function on the
floor or from an egocentric view. Here, modeling the full distribution outperforms other
approaches, and despite sparse supervision, the performance nearly reaches strongly super-
vised methods. Our experiments furthermore illustrate advantages of collision replay. First,
collisions require a buffer of observations and noisy action estimates rather than an explicit
scene reconstruction. As Sec. 4.4 shows, this enables collisions to be used as supervision for
observations from low resolution images and spectrograms where reconstruction may not be
feasible. Second, the distribution provides a good descriptor of the navigational affordances,
which Sec. 4.3 shows contains information that distinguishes different parts of rooms.

2 Related Work
Our goal is to take a single unseen image and infer the distribution of steps to collision. This
distribution is informative about scene shape and local topography, and we show that we can

Citation
Citation
{Feller} 1950

Citation
Citation
{Hartley and Zisserman} 2000

Citation
Citation
{Scharstein and Szeliski} 2002

Citation
Citation
{Thrun} 2002

Citation
Citation
{Eigen and Fergus} 2015

Citation
Citation
{Godard, {Mac Aodha}, and Brostow} 2017

Citation
Citation
{Ranftl, Lasinger, Hafner, Schindler, and Koltun} 2020

Citation
Citation
{Zhou, Brown, Snavely, and Lowe} 2017

Citation
Citation
{deprotect unhbox voidb@x protect penalty @M {}Vries, Shuster, Batra, Parikh, Weston, and Kiela} 2018

Citation
Citation
{Gupta, Davidson, Levine, Sukthankar, and Malik} 2017

Citation
Citation
{Yang, Wang, Farhadi, Gupta, and Mottaghi} 2018

Citation
Citation
{{Manolis Savva*}, {Abhishek Kadian*}, {Oleksandr Maksymets*}, Zhao, Wijmans, Jain, Straub, Liu, Koltun, Malik, Parikh, and Batra} 2019

Citation
Citation
{Chang, Dai, Funkhouser, Halber, Niessner, Savva, Song, Zeng, and Zhang} 2017

Citation
Citation
{Xia, R.protect unhbox voidb@x protect penalty @M {}Zamir, He, Sax, Malik, and Savarese} 2018

RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY 3

learn this distribution from collisions of a randomly-walking agent.
Estimating occupancy and distance to obstacles has long been a goal of vision and

robotics. Collision replay provides a principled method to derive sparse noisy training signal
from random walks. Models resulting from collision replay are able to predict these quanti-
ties from a single image observation of an unseen environment, which separates it from the
large body of work that aims to build models of a specific environment over experience, e.g.,
via SLAM [2, 9, 15, 34] or bug algorithms [25] that use cheap sensors and loop closure.
Instead, this puts our work closer to the literature in inferring the spatial layout [21, 42] of a
new scene. In this area, the use of collisions separates it from work that predicts floor plans
from strong supervision like ground-truth floor plans [18, 29, 33] or RGB-D cameras [4, 14].
This lightweight supervision puts us most closely to work on self-supervised depth or 3D es-
timation, such as work using visual consistency [13, 35, 36, 38, 41]. Bumps offer an alternate
source of supervision that does not depend on 3D ray geometry and therefore (as we show)
can be used with different modalities, such as sound [12] and low-resolution images.

Our supervisory signal, time to collision, requires a few sensors and no human expertise.
This is part of a trend in autonomous systems, where learning-based systems are trained on
large-scale, noisy datasets of robots performing tasks often with a randomized policy. This
has been successfully applied to learning to fly by crashing[11] or with a proximity sensor
[20], grasping [27], poking [1], identifying when humans will collide with the robot [23],
understanding surfaces through bounce trajectories [28], understanding robot terrain [17],
and understanding parts of the image as navigable by labeling regions travelled by the robot
as floor [37]. Our work is inspired by this research and applies it by modeling the time to col-
lision with the objects in the world (unlike [23], which modeled collision with a pedestrian).
The most similar to us is LFC [11] and [20]. These aim which predicts whether a drone will
crash in the next k steps from egocentric views. Our work differs by: using a random, not
targeted, policy, and by outputting an angle- and location- conditioned distribution of steps
to collision as opposed to a single probability of collision in a fixed time. Finally, we also
predict on remote scene points rather than just egocentric views.

3 Method

The heart of our approach is modeling the distribution over time to collision conditioned
on an observation and heading angle. We introduce our formulation (Section 3.1) before
describing the particular implementations for scenes and egocentric views (Section 3.2).

3.1 Formulation

We begin with an illustration of collision-times in a simple noiseless 2D grid world shown
in Fig 2 (although note that the agent does not have access to an overhead view but instead
its position and whether it has bumped into something). The agent is at a position x and
has heading α and can rotate in place left/right or take a single step forward. Let us assume
the agent follows a random walk policy. For simplicity in Figure 2, we will assume the
agent selects one of forward, rotate left, or rotate right with probability (1

3 ,
1
3 ,

1
3). In practice,

agents may execute other policies that are subsumed under this framework, for instance, a
forwards-only policy that will rapidly find the distance to the nearest surface in the forward
direction. We see thinking of the agent as on a random walk as useful for accounting for
noise: practically, actuation noise may convert a forwards-only policy into a random walk

Citation
Citation
{Cadena, Carlone, Carrillo, Latif, Scaramuzza, Neira, Reid, and Leonard} 2016

Citation
Citation
{Endres, Hess, Sturm, Cremers, and Burgard} 2013

Citation
Citation
{Hartley and Zisserman} 2000

Citation
Citation
{Thrun} 2002

Citation
Citation
{McGuire, deprotect unhbox voidb@x protect penalty @M {}Croon, and Tuyls} 2019

Citation
Citation
{Lee, Badrinarayanan, Malisiewicz, and Rabinovich} 2017

Citation
Citation
{Zou, Colburn, Shan, and Hoiem} 2018

Citation
Citation
{Katyal, Popek, Paxton, Burlina, and Hager} 2019

Citation
Citation
{Ramakrishnan, Al-Halah, and Grauman} 2020

Citation
Citation
{Shrestha, Tian, Feng, Tan, and Vaughan} 2019

Citation
Citation
{Chaplot, Parisotto, and Salakhutdinov} 2018

Citation
Citation
{Gupta, Davidson, Levine, Sukthankar, and Malik} 2017

Citation
Citation
{Godard, {Mac Aodha}, and Brostow} 2017

Citation
Citation
{Tulsiani, Zhou, Efros, and Malik} 2017

Citation
Citation
{Tung, Tung, Yumer, and Fragkiadaki} 2017

Citation
Citation
{Watson, Firman, Brostow, and Turmukhambetov} 2019

Citation
Citation
{Zhou, Brown, Snavely, and Lowe} 2017

Citation
Citation
{Gao, Chen, Al-Halab, Schissler, and Grauman} 2020

Citation
Citation
{Gandhi, Pinto, and Gupta} 2017

Citation
Citation
{Lamers, Tijmons, Deprotect unhbox voidb@x protect penalty @M {}Wagter, and deprotect unhbox voidb@x protect penalty @M {}Croon} 2016

Citation
Citation
{Pinto and Gupta} 2016

Citation
Citation
{Agrawal, Nair, Abbeel, Malik, and Levine} 2016

Citation
Citation
{Manglik, Weng, Ohn-Bar, and Kitani} 2019

Citation
Citation
{Purushwalkam, Gupta, Kaufman, and Russell} 2019

Citation
Citation
{Kahn, Abbeel, and Levine} 2020

Citation
Citation
{Ulrich and Nourbakhsh} 2000

Citation
Citation
{Manglik, Weng, Ohn-Bar, and Kitani} 2019

Citation
Citation
{Gandhi, Pinto, and Gupta} 2017

Citation
Citation
{Lamers, Tijmons, Deprotect unhbox voidb@x protect penalty @M {}Wagter, and deprotect unhbox voidb@x protect penalty @M {}Croon} 2016

4 RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY

(A) Environment

GT

Map

MeanMin

28

22

(C) Results By Sample Count

1

3

2

4

(B) Angle-Conditioned

Distributions at Points

1 2

3 4

Figure 2: A toy grid-cell environment shown in overhead view, with free-space shown in
black (A). We use this grid-world environment to illustrate the general idea of learning from
collisions and how the distribution over collisions carries information about nearby surfaces.
We sample random walks at each grid cell for each heading α . The distribution of hitting-
times (B, in log-scale) reflects the environment. Estimates of the scene distance function (C,
showing one corner) converge quickly.

with a heavy bias towards forward motion. The random walk formulation can account for
the resulting samples occasionally being inaccurate due to an elongated path. Similarly, an
agent may accomplish other objectives that move it over the scene, which may be well-
approximated by a random walk. Finally, a walk requires no particular skill, compared e.g.,
to searching each direction, which requires being able to reset the robot to a previous state.

If we let T ∈ {0,1, . . .} be a random variable for the number of forward steps the agent
takes until it bumps into part of the scene. The distribution over the number of forward
steps until the next bump is the hitting time in the study of stochastic processes and Markov
chains [10]. Our work aims to learn this distribution conditioned on location x and heading
α . If we condition on location and angle, the probability mass function over T , or PT (t|x,α),
gives the likelihood for the number of steps to a collision starting at a location and heading
angle. For instance, in Fig 2, point 1, the agent is likely to bump into the walls if it heads
East or West. If the agent sets out at point 3, going West will quickly collide while going
East will take longer.

One can convert this distribution into other quantities of interest, including the distance
function to obstacles as well as a floor-plan. The distance function at location x is the first
time t with support at any of heading angles α , or DF(x) = mint t s.t. maxα PT (t|x,α) > 0.
The maxα is not necessary if the agent can rotate and rotation does not count as a step. This
distance can be converted to a floorplan by thresholding.

In practice, we would like to be able to infer distributions over hitting times in new
scenes. We therefore learn a function f (φ(x),α) that characterizes PT (t|x,α) as a distri-
bution. φ(x) are image features at location x and α is the camera-relative heading an-
gle. We frame the problem as predicting a multinomial distribution over k+ 1 categories:
0, . . . ,k− 1 and finally k or more steps. In other words f (φ(x),α) is a discrete distribu-
tion with k+1 entries. If f is learnable, one can train it to match the predictions of f
to PT (t|x,α) by minimizing the expected negative-log-likelihood over the distribution, or
Es∼PT (t|x,α) [− log f (φ(x),α)s]. Typically, networks estimate a distribution with something
like a softmax function that makes all values non-zero. Thus in practice, we take the first
time t where the cumulative probability exceeds a hyperparameter ε , or the minimum t such
that maxa(∑

t
i=0 f (φ(x),α)i) ≥ ε . An alternate approach is predicting a scalar, e.g., via the

Citation
Citation
{Feller} 1950

RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY 5

steps to

collision

Egocentric

Image

Random

Walk

Loss
-

9

0

°

+

9

0

°

α

=

0

°
1

2

1

3 4

2

3 4

1

0
Sampled Location & Heading

Figure 3: Overview of training and inference: Left: Our approach takes a point, x, on a
random walk and predicts the distribution of times to collision conditioned on features φ(x)
and the heading angle α . The prediction is supervised by the labels generated for the sampled
point using collision replay. Right: We run our predictor for α ∈ [0,2π) and visualize the
distribution over steps to collision for specific points (1, 2, 3, 4) on the ground plane

MSE (which would minimize the expected time to collision).
Distributions like PT (t|x,α) are well-studied: in 1D, our setting is the classic Gambler’s

Ruin [10] problem for which many results are known. A full description is in the supplement
since the formulae are unwieldy, but we summarize two salient results. First, the expected
time (predicted by the MSE) overestimates the distance by a policy-dependent factor; second,
approximately short paths (e.g., a few steps longer) are surprisingly likely.

3.2 Learning to Predict Collision Times
Our core idea is that one can derive supervision from sequences containing observations
(e.g., images) and collisions, and learn a mapping from the observation to the time until the
next collision. At train time, our agent collects many sequences. If a collision occurs at step
k, a past step j (with j<k) can be labeled with the time to collision k− j. In the egocentric
case, this entails training a deep network using observation j as input and the value k− j as
label. For remote points, we reason about a point on the floor, and predict the value for the
point at j as seen from a past location i (with i< j<k). In other words, to an agent, remote
prediction entails learning that another location is k− j steps away from collision.
Predicting Remote Locations: Our primary setting is predicting the time to collision for
a remote location on the ground-plane. This distribution can be converted into a distance
function or floorplan for the scene. We predict the distribution using a PIFu [31]-like archi-
tecture shown in Fig. 3, in which a CNN predicts image features used to condition an implicit
function for each camera ray. In our case, we condition on a heading angle α and projected
depth represented in the egocentric frame (instead of only projected depth as in [31]). Thus,
φ(x) is the feature map vector predicted at the location.

At train time, collision replay unwinds the agent’s actuations to provide supervision at
previous steps. When predicting remote locations, we unwind twice: given three steps i, j,k
with i < j < k and a collision at k. We know that step j is (k− j) steps from a collision,
so we can project its location into the image at step i and give that pixel the label (k− j).
The reasoning is done assuming that the intended egomotion was executed without actuation
noise, which is incorrect but simply propagates the noise to the estimate of PT .
Predicting Current Locations: To show the generality of our method, we experiment with
predicting the time-to-collision distribution for the agent’s current location, conditioned on
the agent’s next action and current observation. This could be a small image in a low-cost
robot, sound, [12] or another localized measurement like WiFi signals. We demonstrate
this approach using input from two example sensors:first, a low-resolution (32× 32) RGB

Citation
Citation
{Feller} 1950

Citation
Citation
{Saito, , Huang, Natsume, Morishima, Kanazawa, and Li} 2019

Citation
Citation
{Saito, , Huang, Natsume, Morishima, Kanazawa, and Li} 2019

Citation
Citation
{Gao, Chen, Al-Halab, Schissler, and Grauman} 2020

6 RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY

0m

4m

Figure 4: Visualizations of the first step with > ε probability of collision for remote points
with heading angles α shown as arrows. Results are predicted by a model trained with noisy
random walks. Points are missing if they were predicted as occupied.

image, designed to simulate the variety of possible impoverished stimuli found on low cost
robots, and second, a binaural sound spectrogram, to simulate echolocation. In the remote
prediction case, the predictive model has the agent’s heading angle, letting it make heading-
specific predictions. In the egocentric case, we mirror this by giving the model the agent’s
next action, which enables similar action-conditioned predictions (i.e., “if I turn right”).
Implementation Details: Complete details appear in the supplement, but briefly: both net-
works are Resnet-18 [16], and the remote prediction network uses a FPN [22] followed by
a PIFu [31]-style encoder-decoder. All models are optimized with Adam [19]. Throughout,
we set a maximum label of k = 10 and clamp the labels; thus class 10 is 10 or more.
Simplifying Modeling Assumptions Made for Simulation: Our experiments test the idea
in simulation, and we therefore make a few simplifying modeling assumptions that may not
hold in a real-world deployment. First, we assume the agent actually collides. One might
handle scenarios in which real collisions are not safe by replacing collision with being close
(e.g., < 10cm) to an obstacle, measured with a proximity sensor. This approach has been
successfully used by [20] in a similar setting. Second, our agent’s policy at training time
is random while useful robots usually do useful things rather than randomly walk. We use
random policies to show that our system does not depend on a specialized policy, and to
tie our work with theory on random walks [10]. Different policies change PT instead of
precluding learning. In fact, goal-directed policies may lead to more nearly-short paths.

4 Experiments
We now describe experiments that test the proposed approach, done in simulations with
actuation noise (§ 4.1). We compare our approach with alternate ones and upper bounds
(§ 4.2) and then analyze the predicted time-to-collision distributions in (§ 4.3). We conclude
by using collision-replay with egocentric views and sound (§ 4.4), showing generality.

4.1 Environment and Dataset

Our experiments use data collected from the Habitat simulator [24] and Gibson [39], except
for Table 2, which uses Matterport3D [3] to support sound simulation [6]. We use envi-
ronment splits provided by the datasets for train/val/test. In each environment, we perform
10 random walks of 500 steps, starting at a random location. At each time-step, we collect
collision state, sensor data (egocentric images or sound spectrograms), and ego-motion.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Lin, Doll{á}r, Girshick, He, Hariharan, and Belongie} 2017

Citation
Citation
{Saito, , Huang, Natsume, Morishima, Kanazawa, and Li} 2019

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Lamers, Tijmons, Deprotect unhbox voidb@x protect penalty @M {}Wagter, and deprotect unhbox voidb@x protect penalty @M {}Croon} 2016

Citation
Citation
{Feller} 1950

Citation
Citation
{{Manolis Savva*}, {Abhishek Kadian*}, {Oleksandr Maksymets*}, Zhao, Wijmans, Jain, Straub, Liu, Koltun, Malik, Parikh, and Batra} 2019

Citation
Citation
{Xia, R.protect unhbox voidb@x protect penalty @M {}Zamir, He, Sax, Malik, and Savarese} 2018

Citation
Citation
{Chang, Dai, Funkhouser, Halber, Niessner, Savva, Song, Zeng, and Zhang} 2017

Citation
Citation
{Chen, Jain, Schissler, Gari, Al-Halah, Ithapu, Robinson, and Grauman} 2020

RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY 7

Ground Truth Noisy Train Noiseless Train Ground Truth Noisy Train Noiseless Train

4m

0m

Figure 5: Examples of 2D scene distance functions from (left) the simulator; (middle) a
model trained on noisy walks; and (right) a model trained on noise-free walks.

Agent and Action Space: Our agent is a cylinder with radius 18cm and a binary collision
sensor. At each timestep, the agent selects one of four actions like Active Neural Slam [5]:
move forward (25cm), turn left (−10◦), turn right (10◦). We also give the agent a turn
around (180◦) action to use after a collision. We use the noise model from [5], which is a
set of Gaussian Mixture Models extracted from a LoCoBot [26] agent; we assume the turn
around action has distribution like turn left/right but with a mean rotation of 180. When
collecting data for egocentric prediction experiments, we increase the mean rotation of the
turn left and turn right actions to −45◦ and +45◦ respectively. This means the network is
not tasked with making fine-grained distinctions between angles given a small image while
also ensuring the space of possible turn angles covers the 90◦ field of view of the camera.
Policy: Our agent does a random walk by selecting from the set (move forward, turn left,
turn right) with probabilities (60%, 20%, 20%). On collision, the agent executes a turn
around action to avoid getting stuck at obstacles and walls. As explained in 3.1, this random
walk policy is chosen for its simplicity, and the method does not depend on this policy.

4.2 Predicting Remote Time-To-Collision
Qualitative Results: In Fig. 4 we show maps of collision times for specific heading angles
for all points within a 4 m x 4 m grid on the floor in front of the camera. We observe
that the model correctly varies the time-to-collision such that lower values are predicted
at points where the current heading value α faces towards an obstacle, and higher values
are predicted where the heading value faces into open areas. Fig. 5 shows the distance
function from our angle conditioned outputs with both noisy and (for comparison) noise-
free egomotion training. The model produces a distance function considering the closest
object in any direction to each point in the scene, rather than the distance in one direction of
interest as in Fig. 4. The distance function has high values in the middle of open spaces, and
smaller ones in enclosed spaces or near obstacles. Our model can generate the distribution
of steps to collision conditioned on the input heading angle α .
Comparisons: For fairness, unless otherwise specified, we use an identical ResNet-18 [16]
and PIFu [31] backbone as described in Section 3.2, changing only the size of the outputs
to accommodate different targets. Methods that produce only a floorplan are converted us-
ing a distance transform. We train multiple variants of the methods, and for each variant
report: (Angle) whether it does (3)/does not (7) consider the heading angle; (Noise) whether
the training data comes with (3)/without (7) actuation noise. Results are shown in Table 1
for: (Regression-L1): We use smoothed L1 loss to regress a scalar steps to collision value

Citation
Citation
{Chaplot, Gandhi, Gupta, Gupta, and Salakhutdinov} 2020

Citation
Citation
{Chaplot, Gandhi, Gupta, Gupta, and Salakhutdinov} 2020

Citation
Citation
{Murali, Chen, Alwala, Gandhi, Pinto, Gupta, and Gupta} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Saito, , Huang, Natsume, Morishima, Kanazawa, and Li} 2019

8 RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY

Table 1: Remote Prediction Results using the metrics described in § 4.2. Modeling distri-
butions (Classification) outperforms other baselines and is on par with methods with more
information (Supervised/Predicted Depthmap).

Distance Function Floor
Angle Noise MAE RMSE %≤ δ IoU

Classification (Ours) 7 3 0.16 0.31 0.77 0.49
Regression-L1 7 3 0.25 0.38 0.66 0.47
Classification 3 3 0.11 0.21 0.83 0.47
Regression-L1 3 3 0.13 0.24 0.79 0.45
Free-Space 7 3 0.13 0.23 0.82 0.52

Classification (Ours) 3 7 0.10 0.20 0.86 0.54
Regression-L1 3 7 0.11 0.22 0.83 0.49

Supervised - 7 0.08 0.19 0.90 0.66
Simulated Depthmap - 7 0.09 0.20 0.87 0.57
Predicted [30] Depthmap - 7 0.16 0.32 0.75 0.27

for each point. We found L1 loss performs best for our task out of all regression losses we
tried. Additional comparisons to L2 loss are in the supplement. (Free-Space): We train a
binary classifier for colliding and non-colliding points. (Supervised Encoder-Decoder (Su-
pervised)): We train a model to predict floor plans using dense ground truth floor-plans
collected from the environments. This baseline is an upper-bound for our method because
it uses more supervision than our method. (Depthmap Projection (Sim Depthmap)): We use
simulator depth to predict free-space for visible regions in the scene by analytically project-
ing the depth maps onto the floor plane. (Predicted Depthmap): We also report results using
(MiDaS [30]) to predict depth and convert it to free-space by projection.
Metrics: We evaluate each timestep on a 642 grid of points covering a 4m × 4m square in
front of the agent. We compute the distance to the navigation mesh and the occupancy and
compute multiple metrics. To evaluate distance functions, we compare the ground-truth yi
and prediction ŷi and report: mean absolute error (MAE), 1

N ∑i |yi− ŷi|; root-mean squared

error (RMSE),
√

1
N ∑i(yi− ŷi)2; and percent within a threshold (δ) 1

N ∑i 1(|yi− ŷi|< δ). We
set δ = 0.25m, the average step distance. We evaluate floorplans with Floorplan IoU, the
intersection-over-union between predicted and ground truth floorplans.
Quantitative Results: Results in Table 1 compare performance of baselines against model-
ing the full-distribution of times to collision. We observe that despite significantly sparser
supervision, methods trained via collision replay produce results on par with the strongly
supervised approaches (using RGB input) and near analytically projecting the Simulator
depth (using RGBD input). Our method also outperforms predicted depth (MiDaS [30]).
Regression-L1 directly predicts the number of steps and is usually an over-prediction. Most
approaches do well on floor-plan IoU as its computation does not require modeling a distance
function. Unsurprisingly, training to predict free-space via collision replay outperforms sys-
tems that obtain the floorplan estimate by indirect analysis of the distance function. The
process of randomly walking around occasionally gives supervision for points behind walls
or obstacles. We tested whether collision-replay models can predict these points by eval-
uating MAE on the subset of test points that are both occluded by an obstacle (computed
via ground-truth depth maps) and freespace (≈22% of the data). Our collision-replay-based

Citation
Citation
{Ranftl, Lasinger, Hafner, Schindler, and Koltun} 2020

Citation
Citation
{Ranftl, Lasinger, Hafner, Schindler, and Koltun} 2020

Citation
Citation
{Ranftl, Lasinger, Hafner, Schindler, and Koltun} 2020

RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY 9

Query NN1 NN2 NN3 NN4

Figure 6: Nearest neighbor results: Examples of nearest neighbors using JSD on predicted
distributions, and selecting only one per-scene. Top: a doorway; Bottom: room corner.

methods do well: classification, regression, and free-space-predicting methods obtain MAEs
of 0.22/0.24/.23 respectively. These approach a strongly supervised method (MAE 0.20) and
do substantially better than chance, or training-set mean (MAE: 0.32).

4.3 Analysis of Learned Distributions

Qualitatively, we find that the angle-conditioned steps to collision distributions correlate
with underlying scene geometry: the distribution in a hallway is different from an empty
room. We thus analyze such information in distributions. Given a point in an image we aim
to evaluate its similarity to other points in terms of its steps to collision distribution. We
start with distributions P1(t|x1,α1) and P2(t|x2,α2) conditioned on two points x1 and x2 and
compute dissimilarity using Jensen-Shannon divergence (JSD) by aligning the relative angle
between them. Mathematically, this is minθ JSD(P1(t|x1,α),P2(t|x2,(α +θ mod 2π))).
Qualitative Results: We find nearest neighbors for points using JSD. In the top row of Fig 6,
a query point in a hallway returns nearest neighbors that are also doorways or hallways with
the similar distributions of P(t|x,α). Similarly, in the second row, a query point in a corner
yields the corners of other similarly large and open rooms.
Quantitative Results: We quantify this trend by annotating a subset of test set points with
one of 5 classes: Open Space, Wall, Hallway, Concave Corner, or Crowded Space. Many
points fall between or outside the categories, so we evaluate on the examples in which 7 out
of 9 annotators agreed. This results in a dataset of 1149 points with consensus. We evaluate
how well JSD predicts that two locations share the same class, measuring performance with
AUROC (0.5 is chance performance). Our method obtains an AUROC of 0.72 distinguishing
all 5 labels. Some pairs of labels are easier to distinguish than others: Open-vs-Crowded
Space has an AUROC of 0.87 and Wall-vs-Corner has an AUROC of 0.55.

4.4 Predicting Egocentric Time-To-Collisions

Finally, we use collision replay to provide supervision for egocentric observations. We fur-
ther demonstrate generality with two input modalities: small (32×32) images, and binaural
echolocation spectrograms. Given one such input, we predict collision time conditioned on
what one does next (turn left, move forwards, turn right).
Qualitative Results: We show qualitative results for the egocentric vision task in Fig. 7.
Spectrogram results are in the supplement. The predicted steps-to-collision distribution
yields a rough depthmap: in Fig. 7(left), the distribution suggests that the right side of the
scene is further away than ahead or to the left. Additionally, the model predicts a bi-modal

10 RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY

distribution in Fig. 7(left,right), revealing uncertainty about whether the random walk policy
would successfully navigate through the scene.

45°-45° 0° 45°-45° 0° 45°-45° 0°

Figure 7: Egocentric test predictions on
32x32 images: We show three images and
corresponding predicted distributions; the
center column is no rotation; left/right show
turning ±45◦.

Quantitative Results (Visual Input): We
first validated that the trend in Table 1, that
classification outperforms L1 regression,
still holds with egocentric image input. We
found classification achieved MAE, RMSE
and % ≤ t scores of 0.58, 0.79 and 0.36,
whereas L1 Regression achieved 0.96, 1.14
and 0.20. Additionally, we observed that re-
gression produces systematic overestimates
(90% of cases vs 60% for classification).

We also constructed a comparison to
Learning to Fly by Crashing (LFC) [11]. The learning task used in LFC is a special case
of our approach, as it models the task as binary classification by predicting probability of
collision within k time steps for a fixed k. We compared our approach by converting its
output to predict probability of collision in k time steps, and observe that on accuracy we
outperform for all discretizations of k (k = 8: 0.66-vs-0.62 and k = 2: 0.86-vs-0.85), likely
due to multi-task learning effects. Comparisons are difficult since LFC aims to produce a
policy as opposed to scene structure, which only applies in the egocentric setting. We cannot
directly compare LFC on our metrics as there is no principled way of converting the LFC
probabilities to distance functions or floor-plans. By linearly scaling its output, one can ob-
tain reasonable results from LFC with large k (RMSE for k = 8 is 0.84), but small ones fare
worse (RMSE for k = 2 is 1.46). Full experiments are in the supplement.

Table 2: Egocentric predictions on the
Matterport3D [3] dataset with differ-
ent inputs (visual and audio).

Input Distance Function
MAE RMSE %≤ t

Visual 0.64 0.86 0.33
Audio 0.58 0.79 0.36

Quantitative Results (Echo-location): In the
echolocation setting we compare a model with
sound input to the best egocentric vision model.
We train both on Matterport3D [3], in order to
collect echo spectrograms from Soundspaces [6],
which does not currently support Gibson. The vi-
sion model is identical to the classification model
in Table 1; the sound model replaces the backbone
with an Audio-CNN provided by the Soundspaces
baseline code. We compare them in Table 2.

Sound simulation uses Room Impulse Response (RIR) files that are pre-computed for
discrete locations. We apply Gaussian RBF interpolation between the provided RIRs, hence
producing an approximate echo-response for any continuous agent location.

Table 2 shows that echolocation outperforms the 32x32 image input. We attribute this to
the rich information in audio spectrograms - the return time of emitted sound is related to the
underlying depth map of the scene [12], so it provides richer signal than color data. While
the sound responses are directional, sound bounces encode information about space around
the agent. This is useful as the distance function depends on objects not in camera’s FOV.

Discussion: This paper has introduced Collision Replay, which enables using bumps to learn
to estimate scene geometry in new scenes. We showcase two applications of our method
using sound and vision as input, but see potential in a variety of other settings, ranging from
manipulation in occluded regions to converting travel time to scene maps.

Citation
Citation
{Gandhi, Pinto, and Gupta} 2017

Citation
Citation
{Chang, Dai, Funkhouser, Halber, Niessner, Savva, Song, Zeng, and Zhang} 2017

Citation
Citation
{Chang, Dai, Funkhouser, Halber, Niessner, Savva, Song, Zeng, and Zhang} 2017

Citation
Citation
{Chen, Jain, Schissler, Gari, Al-Halah, Ithapu, Robinson, and Grauman} 2020

Citation
Citation
{Gao, Chen, Al-Halab, Schissler, and Grauman} 2020

RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY 11

References
[1] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learn-

ing to poke by poking: Experiential learning of intuitive physics. arXiv preprint
arXiv:1606.07419, 2016.

[2] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
Neira, Ian Reid, and John J Leonard. Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age. IEEE Transactions on robotics,
32(6):1309–1332, 2016.

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning
from rgb-d data in indoor environments. International Conference on 3D Vision (3DV),
2017.

[4] Devendra Singh Chaplot, Emilio Parisotto, and Ruslan Salakhutdinov. Active neural
localization. arXiv preprint arXiv:1801.08214, 2018.

[5] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan
Salakhutdinov. Learning to explore using active neural slam. In International Confer-
ence on Learning Representations (ICLR), 2020.

[6] Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vicenc Amengual Gari, Ziad Al-
Halah, Vamsi Krishna Ithapu, Philip Robinson, and Kristen Grauman. Soundspaces:
Audio-visual navigaton in 3d environments. In ECCV, 2020.

[7] Harm de Vries, Kurt Shuster, Dhruv Batra, Devi Parikh, Jason Weston, and Douwe
Kiela. Talk the walk: Navigating new york city through grounded dialogue. arXiv
preprint arXiv:1807.03367, 2018.

[8] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture. In ICCV, 2015.

[9] Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers, and Wolfram Burgard. 3-d
mapping with an rgb-d camera. IEEE transactions on robotics, 30(1):177–187, 2013.

[10] William Feller. An Introduction to Probability Theory and Its Applications. Wiley and
Sons, New York, 1950.

[11] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. Learning to fly by crashing. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3948–3955. IEEE, 2017.

[12] Ruohan Gao, Changan Chen, Ziad Al-Halab, Carl Schissler, and Kristen Grauman.
Visualechoes: Spatial image representation learning through echolocation. In ECCV,
2020.

[13] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised monocular
depth estimation with left-right consistency. In CVPR, 2017.

12 RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY

[14] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Ma-
lik. Cognitive mapping and planning for visual navigation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2616–2625, 2017.

[15] R Hartley and A Zisserman. Multiple view geometry in computer vision, cambridge
uni. Pr., Cambridge, UK, 2000.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[17] Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr: An autonomous self-
supervised learning-based navigation system. arXiv preprint arXiv:2002.05700, 2020.

[18] Kapil Katyal, Katie Popek, Chris Paxton, Phil Burlina, and Gregory D Hager.
Uncertainty-aware occupancy map prediction using generative networks for robot nav-
igation. In 2019 International Conference on Robotics and Automation (ICRA), pages
5453–5459. IEEE, 2019.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, ICLR, 2015.

[20] Kevin Lamers, Sjoerd Tijmons, Christophe De Wagter, and Guido de Croon. Self-
supervised monocular distance learning on a lightweight micro air vehicle. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1779–1784. IEEE, 2016.

[21] Chen-Yu Lee, Vijay Badrinarayanan, Tomasz Malisiewicz, and Andrew Rabinovich.
Roomnet: End-to-end room layout estimation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 4865–4874, 2017.

[22] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2117–2125, 2017.

[23] Aashi Manglik, Xinshuo Weng, Eshed Ohn-Bar, and Kris M Kitani. Forecasting time-
to-collision from monocular video: Feasibility, dataset, and challenges. arXiv preprint
arXiv:1903.09102, 2019.

[24] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili Zhao, Erik Wijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and
Dhruv Batra. Habitat: A Platform for Embodied AI Research. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

[25] Kimberly N McGuire, GCHE de Croon, and Karl Tuyls. A comparative study of bug
algorithms for robot navigation. Robotics and Autonomous Systems, 121:103261, 2019.

[26] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala, Dhiraj Gandhi, Lerrel
Pinto, Saurabh Gupta, and Abhinav Gupta. Pyrobot: An open-source robotics frame-
work for research and benchmarking. arXiv preprint arXiv:1906.08236, 2019.

[27] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 3406–3413. IEEE, 2016.

RAISTRICK, KULKARNI, FOUHEY: COLLISION REPLAY 13

[28] Senthil Purushwalkam, Abhinav Gupta, Danny M. Kaufman, and Bryan C. Rus-
sell. Bounce and learn: Modeling scene dynamics with real-world bounces. CoRR,
abs/1904.06827, 2019. URL http://arxiv.org/abs/1904.06827.

[29] Santhosh K Ramakrishnan, Ziad Al-Halah, and Kristen Grauman. Occupancy antici-
pation for efficient exploration and navigation. ECCV 2020, 2020.

[30] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2020.

[31] Shunsuke Saito, , Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa,
and Hao Li. Pifu: Pixel-aligned implicit function for high-resolution clothed human
digitization. arXiv preprint arXiv:1905.05172, 2019.

[32] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. IJCV, 47(1):7–42, 2002.

[33] Rakesh Shrestha, Fei-Peng Tian, Wei Feng, Ping Tan, and Richard Vaughan. Learned
map prediction for enhanced mobile robot exploration. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 1197–1204. IEEE, 2019.

[34] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57,
2002.

[35] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jitendra Malik. Multi-view
supervision for single-view reconstruction via differentiable ray consistency. In Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[36] Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, and Katerina Fragkiadaki. Self-
supervised learning of motion capture. arXiv preprint arXiv:1712.01337, 2017.

[37] Iwan Ulrich and Illah Nourbakhsh. Appearance-based obstacle detection with monoc-
ular color vision. In AAAI/IAAI, pages 866–871, 2000.

[38] Jamie Watson, Michael Firman, Gabriel J Brostow, and Daniyar Turmukhambetov.
Self-supervised monocular depth hints. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2162–2171, 2019.

[39] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. Gibson env: real-world perception for embodied agents. In Computer Vi-
sion and Pattern Recognition (CVPR), 2018 IEEE Conference on. IEEE, 2018.

[40] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Visual
semantic navigation using scene priors. arXiv preprint arXiv:1810.06543, 2018.

[41] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. Unsupervised
learning of depth and ego-motion from video. In CVPR, 2017.

[42] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem. Layoutnet: Reconstructing
the 3d room layout from a single rgb image. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2051–2059, 2018.

http://arxiv.org/abs/1904.06827

