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Abstract

Grounded Situation Recognition (GSR) is the task that not only classifies a salient
action (verb), but also predicts entities (nouns) associated with semantic roles and their
locations in the given image. Inspired by the remarkable success of Transformers in
vision tasks, we propose a GSR model based on a Transformer encoder-decoder archi-
tecture. The attention mechanism of our model enables accurate verb classification by
capturing high-level semantic feature of an image effectively, and allows the model to
flexibly deal with the complicated and image-dependent relations between entities for
improved noun classification and localization. Our model is the first Transformer archi-
tecture for GSR, and achieves the state of the art in every evaluation metric on the SWiG
benchmark. Our code is available at https://github.com/jhcho99/gsrtr.
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Figure 1: Predictions of our model on the SWiG dataset.

1 Introduction

Deep learning models have achieved or even surpassed human-level performance on basic
vision tasks such as classification of objects [6, 15], actions [18, 31], and places [5, 12, 32].
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Figure 2: The overall architecture of our model (GSRTR). It mainly consists of two com-
ponents: Transformer Encoder for verb prediction, and Transformer Decoder for grounded
noun prediction. Diagram is best viewed in colored version.

However, it still remains challenging and less explored to expand such models for detailed
and comprehensive understanding of natural scenes, e.g., recognizing what happens and who
are involved with which roles. Image captioning [7, 22, 29] and scene graph generation [11,
25, 26] have been studied in this context. These tasks aim at reasoning about image contents
in detail and describing them through natural language captions or relation graphs of objects.
However, quality evaluation of natural language captions is not straightforward, and scene
graphs are limited in terms of expressive power as they represent an action only by a triplet
of subject, predicate, and object.

Grounded Situation Recognition (GSR) [16] is a comprehensive scene understanding
task that resolves the above limitations. It originates from Situation Recognition (SR) [27],
the task of predicting a salient action, entities taking part of the action, and their roles alto-
gether given an image. In SR, an action and entities are called verb and nouns, respectively,
and the set of semantic roles of the entities in an action is termed frame; a frame is defined
for each verb as prior knowledge by FrameNet [4], a lexical database of English. Then SR
is typically done by predicting a verb then assigning a noun to each role given by the frame
of the verb. GSR has been introduced to further address localization (i.e., bounding box es-
timation) of the nouns in the image, which is missing in SR. It is thus more challenging yet
enables more detailed scene understanding in comparison with SR.

The major challenge in GSR is two-fold. The first is the difficulty of verb prediction.
This is caused by the fact that a verb is a high-level concept embodied by multiple entities;
as illustrated in Fig. 1, images of the same verb often vary significantly due to different
entities interacting in different ways. The second is the difficulty of modeling complicated
relations between entities. Since an action (i.e., verb) is performed by multiple entities (i.e.,
nouns) related to each other, individual noun recognition per role is definitely suboptimal;
relations between nouns have to be considered for improved noun prediction and localiza-
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tion. However, modeling such relations is challenging since they are latent and depending
on an input image.

Inspired by the recent success of Transformers [1, 3, 21], we present in this paper a new
model, dubbed GSRTR, that addresses the aforementioned challenges through the attention
mechanism. As illustrated in Fig. 2, it has an encoder-decoder architecture based on Trans-
former. The encoder takes as input a verb token and image features from a CNN backbone.
The token then goes through self-attention blocks in the encoder and is finally processed by
a verb classifier on top. Thanks to the self-attention with the image features, the encoder can
capture rich and high-level semantic information for accurate verb prediction. Meanwhile,
the decoder predicts a grounded noun per role, where target roles are determined by the frame
of the target verb. It thus takes as input semantic role queries of target roles as well as image
features given by the encoder; a semantic role query is obtained by a concatenation of two
embedding vectors, one for its role and the other for a verb, which are learnable parameters
dedicated to the role and verb, respectively. Each semantic role query is converted to a fea-
ture vector through attention blocks, then used to predict a noun class, a box coordinate and
a box existence probability of its role. The attention blocks in our decoder allow to capture
complicated and image-dependent relations among roles effectively and flexibly.
Contributions: Our GSRTR is the first Transformer architecture dedicated to GSR. Further-
more, its encoder-decoder architecture is carefully designed to address major challenges of
the task. The efficacy of GSRTR is validated on the SWiG dataset [16], the standard bench-
mark for GSR, where it clearly outperforms existing models [16] in every evaluation metric.
We also provide in-depth analysis on behaviors of GSRTR, which demonstrates that it has
the capability of drawing attentions on local areas relevant to verb and grounded nouns.

2 Related Work

Situation Recognition: Situation Recognition (SR) is the task of predicting a salient ac-
tion (verb) and entities (nouns) taking part of the action. Yatskar er al. [27] present the
imSitu dataset as benchmark of Situation Recognition and propose Conditional Random
Field (CRF) model. Their following work [28] figures out that sparsity of training exam-
ples compared to large output space could be problematic, and alleviates it through tensor-
composition function. Since then, there have been attempts to model the relations among
semantic roles. Inspired by image captioning task, Mallya and Lazebnik [14] adopt a Re-
current Neural Network (RNN) architecture to model the relations in the predefined order.
Li et al. [8] use a Gated Graph Neural Network (GGNN) [9] to capture relations among
roles, and Suhail and Sigal [19] propose a modified GGNN to learn context-aware relations
among roles depending on the content of the image. Cooray et al. [2] formulate the relation
modeling as an interdependent query based visual reasoning problem.

Grounded Situation Recognition: Recently, Grounded Situation Recognition (GSR) has
been introduced by Pratt ez al. [16] to further address localization of entities, which is missing
in SR. They propose the Situation With Groundings (SWiG) dataset that provides bounding
box annotations in addition to the imSifu dataset. They also propose Joint Situation Localizer
(JSL) model which consists of a verb classifier and a RNN based object detector. The object
detector sequentially produces noun and its bounding box prediction via the predefined role
order. Compared with JSL, our GSRTR can flexibly capture the relations among the semantic
roles rather than the predefined order. Furthermore, the verb prediction process in our model
can capture long-range interactions of semantic concepts via a Transformer encoder.
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Transformer in Vision Tasks: Dosovitskiy et al. [3] propose a standard Transformer en-
coder architecture [21] for image classification task. This model, called ViT, takes image
patches flattened, linearly transformed, and combined with positional encodings as input to-
gether with a class token. On the other hand, the encoder of GSRTR takes image features
from a CNN backbone as input, and is combined with a decoder for grounded noun predic-
tion. Carion et al. [1] view object detection as a direct set prediction and bipartite matching
problem, and propose a Transformer encoder-decoder architecture for object detection ac-
cordingly. Their model, called DETR, introduces learnable embeddings called object queries
as inputs of the decoder, each of which is in charge of a certain image region and a set of
bounding box candidates. Instead of the object queries, GSRTR uses semantic role queries,
each of which focuses on entities taking part of a specified action with a specific role.
Similar follow-ups to DETR: There have been attempts, including our GSRTR, to apply
DETR to other domains such as video instance segmentation [23], video action recogni-
tion [30] and human-object-interaction detection [33]. Their models use latent queries for
a Transformer decoder in the similar way, but GSRTR has notable differences. While their
models employ a fixed number of latent queries in the decoder, GSRTR constructs a variable
number of queries depending on a given image. Also, to the best of our knowledge, GSRTR
is the first attempt to explicitly leverage the output of a Transformer encoder for building
queries used in a Transformer decoder; semantic role queries use the verb embedding corre-
sponding to the predicted verb from the encoder output at inference time.

3 Proposed Method

Inspired by ViT [3] and DETR [1], we propose a novel model called Grounded Situation
Recognition TRansformer (GSRTR) to address the challenging GSR task; the architecture
of GSRTR is illustrated in Fig. 2. This section first provides a formal definition of GSR, then
describes details of our model architecture, training and inference procedures.

3.1 Task Definition

Let V, R, and A denote the sets of verbs, roles, and nouns defined in the task, respectively.
For each verb v € V, a set of semantic roles, denoted by R, C R, is predefined as its frame
by FrameNet [4]. For example, the frame of a verb Carching is a set of semantic roles
Recarching = {Agent, Caught Item, Tool, Place} C 'R. Also, a pair of a noun n € N and its
bounding box b € R* is called a grounded noun. The goal of GSR is to predict a verb v of an
input image and assign a grounded noun to each role in R,. Formally speaking, a prediction
of GSR is in the form of S = (v,F,), where F, = {(r,n,,b,)| n, € NU{0,}, b, € R*U
{01,} forr € R,}; 0, and 0, mean unknown and not grounded, respectively. For example,
the prediction for the leftmost image in Fig. 1 is given by S = (Catching, { (Agent, Bear, [J),
(Caught Item, Fish, ), (Tool, Mouth, ), (Place, River, (Db)}).

3.2 Encoder for Verb Prediction

A CNN backbone first processes an input image to extract its feature map X;,,¢ € RExhxw,
where c is the number of channels and 4 x w is the resolution of Xj,,. Then X;,,, is fed to a
1 x 1 convolution layer for reducing the channel size to d, and flattened, leading to flattened
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images features Fj,, € R4*M 1 jke the class token used in ViT [3], we append a learnable
verb token f, € R to Fug, forming an input of the encoder F € RA*(1+hw)

The encoder is a stack of six layers, each of which consists of a Multi-Head Self-
Attention (MHSA) block and a Feed Forward Network (FFN) block. Also, we apply Pre-
Layer Normalization (Pre-LN) [24] before the MHSA and FEN blocks. Positional encodings
are added to the input of each encoder layer. Please refer to the supplementary material for
more details of the encoder.

The output of the encoder, denoted by E € R?*(I+) s split into a verb feature e, € R?
and hw image features Ej,, € R4*"w The former is fed to the verb classifier, which in turn
produces a logit vector z, € RV as a result of verb classification. On the other hand, the
latter will be used as observations for the decoder. Note that by exploiting the attention
mechanism through the encoder layers, the verb token can effectively aggregate relevant
semantic features of an image for accurate verb classification.

3.3 Decoder for Grounded Noun Prediction

In addition to the image features E;,¢ given by the encoder, the decoder takes as input se-
mantic role queries to predict corresponding nouns and their bounding boxes, inspired by the
object queries in DETR [1]. To be specific, a semantic role query w(,,,) € R4 is obtained by
a concatenation of a verb embedding vector w, € R%” and a role embedding vector w, € R%
(d = d, +d,), both of which are learnable parameters; v is the ground-truth verb at training
time and the predicted verb at inference time, while » € R,. The number of semantic role
queries fed to the decoder is thus |R,|.

The decoder is a stack of six layers, each of which consists of a MHSA block, a Multi-
Head Attention (MHA) block, and a FFN block; Pre-LN is applied before each of the blocks.
The first decoder layer input is set to zero. In each decoder layer, each semantic role query
W(,) is added to each key and query of the MHSA block and added to each query of the
MHA block. The image features Ej;,, serve as keys and values in the MHA block of each de-
coder layer. Through the MHSA block in each decoder layer, semantic role queries flexibly
capture the role relations (Fig. 4). From the MHA block in each decoder layer, each semantic
role query attends to image features considering image-dependent relations (Fig. 3).

Through the decoder, each semantic role query w,,, is converted to an output feature.
The output feature of each role r € R, is in turn fed to three branches: One for noun clas-
sification, another for bounding box regression, and the other for predicting existence of its
bounding box. The noun classifier produces a noun logit vector z,, € RWUL0:} | The bound-
ing box regressor predicts B'r = (Cx, &y, W, il) € [0,1]*, indicating the normalized center coor-
dinate, height, and width of a box relative to the image size. This predicted box coordinate
is transformed into top-left and bottom-right coordinate representation B, = (£1,91,%2,¥) €
R*. Finally, the box existence predictor produces a box existence probability Po, € 10,1].
Please refer to the supplementary material for more details of the decoder.

3.4 Training and Inference

The total loss for training GSRTR is a linear combination of five losses: A verb classification
loss, a noun classification loss, a bounding box existence loss, a L box regression loss, and a
Generalized IoU (GloU) [17] box regression loss. The verb classification loss £, is the cross
entropy between the verb prediction probability p, = Softmax(z,) and the ground-truth verb
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distribution. The noun classification loss £, is formulated as the average of individual noun
classification losses over the semantic roles, and is given by

Ly =

Z CrossEntropy(py, , tn, ), 9]
‘,R’ | reRy

where p,,, denotes the noun prediction probability for each role r and t,, indicates the ground-
truth noun distribution for each role r. The bounding box existence loss L. is the average
of individual bounding box existence loss over the semantic roles, and is given by

Looist = CrossEntropy (ps, %, ), @)

1

where pp, denotes the bounding box existence probability for each role r and #,, € {0,1}
specifies the existence of the ground-truth bounding box for each role r (i.e., 1, = 1 when
b, # 0p). The L; box regression loss £, is defined as the average of individual L, distances
between predicted and ground-truth bounding boxes over semantic roles for which ground-
truth bounding boxes exist, and are given by

1
Li, == Y I, =B, 3)

IR,|
rER

where R, = {r | r € R, and b, # 0),} is the set of roles associated with bounding boxes.
Finally, the GIoU box regression loss Lgj,p [17] is formulated as the average of individual
GlIoU losses over roles for which ground-truth bounding boxes exist, and are given by

1 Ib,Nb,| |C(b,,b )\b Ub,|
Lroy = — 1— — ; “
oev mz( <|erbr| C(b,.,B,)] ))

reR,

where C(f)r,br) denotes the smallest box enclosing predicted box b, and ground-truth box
b, for each role r. GIoU loss is a scale-invariant loss and it compensates for scale-variant
Ly loss. The total loss L, is formulated as Lypq1 = Ay Ly + An Ly + Aeist Lexist + Ar, L1, +
Acrou Laiou, Where Ay, An, Aexist, Ar, , Agrou > 0 are hyperparameters.

At inference time, our method predicts a verb ¥ = argmax, p, then constructs corre-
sponding semantic role queries W(o,r) for all r € Ry. Each W(o,r) is used by the decoder to

produce corresponding output noun logit z,,, bounding box f)’, and bounding box existence
probability pp,. Note that if p, < 0.5, the predicted bounding box b/, is ignored.

4 Experiments

4.1 Dataset and Metrics

SWiG [16] dataset is composed of 75k, 25k and 25k images for the train, development and
test set respectively. There are |V| = 504 verbs, =190 roles, and 1 < |R,| < 6 semantic
roles per verb. We use about 10k nouns, the number of noun classes in the train set. The
annotation for each image consists of a verb, a bounding box for each semantic role, and
three nouns (from three annotators) for each semantic role.
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Table 1: Requirements for each metric.

requirement
correct noun correct nouns correct bounding box | correct bounding boxes

metric correct verb for a semantic role | for all semantic roles for a semantic role for all semantic roles
verb v
value v v

value-all v v

grounded-value v v v
grounded-value-all v v 4 v

The predicted verb and grounded nouns are measured by five metrics: verb, value, value-
all, grounded-value, and grounded-value-all. The verb metric denotes a verb prediction ac-
curacy. The value metric denotes a noun prediction accuracy from its semantic role. The
value-all metric denotes that all nouns corresponding to semantic roles are correctly pre-
dicted. The grounded-value metric denotes a grounded noun prediction accuracy for its
semantic role. Note that the grounded noun prediction is considered correct if it correctly
predicts noun and bounding box. The bounding box prediction is considered correct if it
correctly predicts bounding box existence and the predicted box has an Intersection-over-
Union (IoU) value of at least 0.5 with the ground-truth box. The grounded-value-all metric
denotes that all grounded nouns corresponding to semantic roles are correctly predicted. The
requirements for each metric are summarized in Table 1. Because the number of roles per
verb is different and the number of images per verb could be different, all above metrics are
calculated for each verb and then averaged over them.

Since these metrics depend heavily on the verb accuracy, the metrics are reported in 3
settings: top-1 predicted verb, top-5 predicted verbs and ground-truth verb. In top-1
predicted verb setting, five metrics are reported: a top-1 predicted verb accuracy, two noun
metrics and two grounded noun metrics. If the top-1 predicted verb is incorrect, the noun
and grounded noun metrics are considered incorrect. In top-5 predicted verbs setting, five
metrics are reported: a top-5 predicted verbs accuracy, two noun metrics and two grounded
noun metrics. If the ground-truth verb is not included in the top-5 predicted verbs, the noun
and grounded noun metrics are considered incorrect, too. In ground-truth verb setting, four
metrics are reported: two noun metrics and two grounded noun metrics. From the ground-
truth verb assumed to be known, noun and grounded noun predictions are taken from the
model by conditioning on the ground-truth verb.

4.2 Implementation Details

Following previous work [16], we use ImageNet-pretrained ResNet-50 backbone [6] except
Feature Pyramid Network (FPN) [10]. The ResNet-50 backbone produces the image fea-
tures Xj, € RE"W from the input image where ¢ = 2048. The hidden dimensions of each
semantic role query, verb token and image feature are 512 (d = 512). The verb embedding
dimension and role embedding dimension are 256 (d, = d, = 256). We use learnable 2D
embeddings for the positional encodings. The number of heads for all MHSA and MHA
blocks is 8. We use 2 fully connected layers with ReLU activation function for the four
followings: the FFN blocks in the encoder and decoder, the verb classifier, the noun clas-
sifier, and the bounding box existence predictor. The size of hidden dimensions are 2048,
2d, 2d, and 2d, respectively. The dropout rates are 0.15, 0.3, 0.3, and 0.2, respectively. The
bounding box regressor is 3 fully connected layers with ReLU activation function and 2d
hidden dimensions, using 0.2 dropout rate. The label smoothing regularization [20] is used
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for the target verb and noun labels with label smoothing factor 0.3 and 0.2, respectively.
We use AdamW [13] optimizer with the learning rate 10~* (107 for the backbone), weight
decay 107%, B; = 0.9 and B, = 0.999. We set the max gradient clipping value to 0.1 and
train the BatchNorm layers in the backbone. The training epoch is 40 with batch size 16 per
GPU on four 12GB TITAN Xp GPUs, which takes about 20 hours. The loss coefficients are
Afv = A’H =1and Ae)cist = lLl = AGIoU =35.

Data Augmentation: Random Color Jittering, Random Gray Scaling, Random Scaling and
Random Horizontal Flipping are used. The hue, saturate and brightness scale in random
color jittering set to 0.1. The scale of random gray scaling sets to 0.3. The scales of random
scaling set to 0.5, 0.75 and 1.0. The probability of random horizontal flipping sets to 0.5.
Final Noun Loss: In SWiG, three noun annotations exist per role. For each noun annotation,
we calculate the loss (Eq. 1). The final noun loss is the summation of the three noun losses.
Batch Training: The number of semantic roles ranges from 1 to 6 depending on the frame
of a verb. In GSRTR, the semantic role queries are constructed as much as the number of
semantic roles. To ensure batch training, zero padding is used for each output of grounded
noun prediction branches. We ignore the padded outputs in the loss computation.

4.3 Experiment Results

Quantitative Comparison with Previous Work: Table 2 quantitatively compares our model
with previous work on the dev and fest splits of SWiG dataset. In all evaluation metrics,
GSRTR achieves the state-of-the-art accuracy. In the dev set, compared with JSL, GSRTR
achieves the top-1 predicted verb and top-5 predicted verbs accuracies of 41.06% (+1.46%p)
and 69.46% (+1.75%p), respectively. In ground-truth verb setting, GSRTR achieves the
value and grounded-value accuracies 74.27% (+0.74%p) and 58.33% (+0.83%p), respec-
tively. Note that previous work uses two ResNet-50 backbones and FPN, while our GSRTR
only uses a single ResNet-50 backbone without FPN. Existing models in [16] have about 108
million parameters, but our GSRTR only has about 83 million parameters. Although GSRTR
has less backbone capacity and less parameters, it achieves the state-of-the-art accuracy in
every evaluation metric. In addition, the reason for the small improvement by GSRTR in
terms of grounded-value metrics is that these metrics require correct predictions of verb,
noun and bounding box as shown in Table 1.

Existing models in [16] are trained separately in terms of verb prediction part and grounded

noun prediction part, while our GSRTR is trained in an end-to-end manner. For this reason,
it is difficult to fairly compare the training time of ours with existing models. However, we
can reasonably guess that GSRTR takes less training time than others. GSRTR takes about
20 hours with four 12GB TITAN Xp GPUs for whole training, but other models take about
20 hours with four 24GB TITAN RTX GPUs only for training of grounded noun prediction
part. For the comparison of inference time, we compare GSRTR with JSL which was the
previous state-of-the-art. We evaluate the models on the fest set in the same environment
with one 2080Ti GPU. GSRTR takes 21.69 ms (46.10 FPS) and JSL takes 80.00 ms (12.50
FPS) on the average of 10 trials.
Effect of Verb Embedding Concatenation: We also quantitatively show the effect of verb
embedding concatenation in the semantic role query. If we do not concatenate the verb em-
bedding (i.e., d, = 0 and d, = d), the accuracies in the ground-truth verb setting decrease by
around 1.3 ~ 2.3%p (GSRTR w/o VE in Table 2). It demonstrates that the verb embedding
concatenation is helpful for grounded noun prediction.
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Table 2: Quantitative evaluation on the SWiG dataset.

top-1 predicted verb top-5 predicted verbs ground-truth verb

grnd grnd grnd grnd grnd grnd

set | model verb  value value-all value value-all | verb value value-all value value-all | value value-all value value-all
ISL [16] 38.83 3047 1823 2247 7.64 6574 5029 2859 3690 11.66 | 7277 3749 5292  15.00
dev JSL[16] 39.60 31.18 18.85 25.03 10.16 67.71  52.06 29.73 41.25 15.07 73.53 38.32 57.50 19.29
GSRTR w/o VE (Ours) | 40.81  32.05 19.31 25.64 1031 [6933 53.09 2978 4201 1536 | 7255  37.07  57.00 18.93
GSRTR (Ours) 41.06 32.52 19.63 26.04 10.44 69.46 53.69 30.66 42.61 15.98 74.27 39.24 5833 20.19
ISL [16] 3936 30.09 18.62 22.73 7.72 65.51  50.16 28.47 36.60 11.56 72.42 37.10 52.19 14.58
test JSL [16] 39.94 31.44 18.87 24.86 9.66 67.60 51.88 29.39 40.60 14.72 73.21 37.82 56.57 18.45
! "GSRTR wio VE (Ours) | 40.61 31.87 19.01 2521 9.69 69.75 5325 29.67 41.65 14.93 72.32 36.75 56.03 18.02
GSRTR (Ours) 40.63  32.15 19.28 25.49 10.10 69.81 54.13 31.01 42.50 15.88 74.11 39.00 5745 19.67

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Prediction

UBWOA

- A

Figure 3: Role Attention Map on Image Features for a Sketching image from the MHA
block in each decoder layer. The left labels are the semantic roles of the verb Sketching. The
rightmost column images and labels are predicted bounding boxes and nouns of our model.

Tool Material

Place
s;oopmo

Role Attention Map on Image Features: In Figure 3, each column shows the difference of
attention maps among semantic roles. For example, at Layer 6, the role Agent focuses on the
woman, and the role Place focuses on the road and yard. Each row shows the transition of
attention maps through the decoder layers. For example, in the role Material, the attention
map gradually focuses on the paper in the image through the decoder layers. It shows that
the semantic role queries can focus on the region related to them.

Visualization on Role Relations: In Figure 4, two images show different context for a
verb Swinging. The role Agent and Carrier in Fig. 4(a) focus on the role Place, i.e., the
forest (Place) is highly related to the monkey (Agent) and the vine (Carrier) given the verb
Swinging. Meanwhile, the role Place in Fig. 4(b) focuses on the role Carrier, i.e., the golf
club (Carrier) is highly related to the golf course (Place) given the verb Swinging. It shows
that the relations among roles can be adaptively captured depending on the context of a given
image.
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0.6
'o.s

Agent Carrier Place Agent Carrier Place

(a) (b)
Figure 4: Visualization on Role Relations for two Swinging images. We visualize the
attention scores between semantic role pairs computed in the MHS A block of the last decoder
layer. Attention scores are represented as column-wise sum to 1.

Layer 5

Figure 5: Verb Token Attention Map on Image Features for three Tugging images. Each
row consists of an image and attention maps from the MHSA block in each encoder layer.

Verb Token Attention Map on Image Features: In Figure 5, the rightmost column shows
the semantic regions where the verb token focuses on are similar. The verb token can capture
the key feature (e.g., tugged item) to infer the salient action. Each row shows the transition
of attention maps through the encoder layers, e.g., focusing on the tugged item gradually.

5 Conclusion

We propose the first Transformer architecture for GSR, which achieves the state-of-the-art
accuracy on every evaluation metric. Our model, GSRTR, can capture high-level semantic
feature, and flexibly deal with the complicated and image-dependent role relations. We
perform extensive experiments and qualitatively illustrate the effectiveness of our method.

Acknowledgement: This work was supported by the NRF grant and the IITP grant funded
by Ministry of Science and ICT, Korea (N0.2019-0-01906 Artificial Intelligence Graduate
School Program—POSTECH, NRF-2021R1A2C3012728-50%, IITP-2020-0-00842-50%).
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