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Abstract

In this paper, we consider the task of spotting spoken keywords in silent video se-
quences – also known as visual keyword spotting. To this end, we investigate Transformer-
based models that ingest two streams, a visual encoding of the video and a phonetic
encoding of the keyword, and output the temporal location of the keyword if present. Our
contributions are as follows: (1) We propose a novel architecture, the Transpotter, that
uses full cross-modal attention between the visual and phonetic streams; (2) We show
through extensive evaluations that our model outperforms the prior state-of-the-art visual
keyword spotting and lip reading methods on the challenging LRW, LRS2, LRS3 datasets
by a large margin; (3) We demonstrate the ability of our model to spot words under the
extreme conditions of isolated mouthings in sign language videos.

1 Introduction
In recent years, there has been significant progress in automatic visual speech recognition
(VSR) due to the availability of large-scale annotated datasets and the development of powerful
neural network-based learners [2, 7, 17]. These methods are continually improving and
becoming more sophisticated, by incorporating better visual models, stronger language
modelling and training on larger datasets. Indeed the best industrial grade lip reading models
today are far superior to humans, and achieve error rates approaching Automatic Speech
Recognition (ASR) performance [33, 39].

However, for many applications it is not necessary to transcribe every word that is spoken
in a silent video (the task of VSR), rather only specific utterances or keywords need to be
recognised. This is for example the case in “wake word” recognition, where only particular
keywords need to be spotted over long input sequences. A further drawback of VSR methods
is that they are heavily reliant on language modelling; in general, their performance decreases
significantly when context is limited (e.g. short utterances) or parts of the input are occluded,
e.g. from the speaker’s hands or a microphone. In this work, we focus instead on the task of

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

∗ Equal Contribution.

Citation
Citation
{Afouras, Chung, Senior, Vinyals, and Zisserman} 2019

Citation
Citation
{Assael, Shillingford, Whiteson, and deprotect unhbox voidb@x protect penalty @M  {}Freitas} 2016

Citation
Citation
{Chung, Senior, Vinyals, and Zisserman} 2017

Citation
Citation
{Kprotect unhbox voidb@x protect penalty @M  {}R, Afouras, Zisserman, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Makino, Liao, Assael, Shillingford, Garcia, Braga, and Siohan} 2019



2 PRAJWAL ET AL.: VISUAL KEYWORD SPOTTING WITH ATTENTION

Visual Keyword Spotting (KWS), where the the goal is to detect and localise a given keyword
in (silent) spoken videos.

Automatic visual KWS enables a diverse range of practical applications: indexing archival
silent videos by keyword to enable content-based search; helping virtual assistants (e.g.
Alexa and Siri) and smart home technologies respond to wake words and phrases; assisting
people with speech impairment (e.g. amyotrophic lateral sclerosis patients) or aphonia in
communication [54]; and detecting mouthings in sign language videos [5].

KWS differs in complexity from VSR primarily because in KWS we are armed with the
keyword we need to recognise, whereas VSR has the harder task of recognising every word
from scratch. The core hypothesis motivating this work is that this additional knowledge
renders visual KWS an easier task than VSR; and it is therefore expected that KWS should
achieve a higher performance than VSR, and generally be more robust to challenging and
adversarial situations. Nevertheless, visual KWS remains a very difficult task and shares
similar challenges to VSR methods: first, some words sound different but involve identical
lip movements (‘man’, ‘pan’, ‘ban’), these homopheme words cannot be distinguished using
only visual information. Second, speech variations such as accents, speed, and mumbling can
alter lip movements significantly for the same word. Third, co-articulation of the lips between
preceding and subsequent words in continuous speech also affects lip appearance and motion.

In this paper, we make the following three contributions: (i) We propose a novel
Transformer-based architecture, the Transpotter (a portmanteau of Transformer and Spot-
ter), that is tailored to the visual KWS task. The model takes as input two streams, one
encoding visual information from a video and the other providing a phonetic encoding
of the keyword; the heterogeneous inputs are then fused using full cross-modal attention.
(ii) Through extensive evaluations, we show that our Transpotter model outperforms the prior
state-of-the-art visual KWS and VSR methods on the challenging LRW, LRS2 and LRS3
lip reading datasets by a large margin. (iii) We test our best model under extreme condi-
tions: finding words in mouthings of people communicating using sign language. Signers
sometimes mouth words as they sign as an additional non-manual signal to disambiguate
and help understanding [59]. This new task is extremely challenging as there is a significant
domain shift between full spoken sentences (in our training and test sets) and mouthings,
where the context is sporadic and phonemes of the keyword may be missing – as some-
times only parts of words are mouthed [11]. Our approach outperforms previous KWS
models in this challenging, practical use-case. Video examples are available at the project’s
webpage: www.robots.ox.ac.uk/~vgg/research/transpotter.

2 Related work
Our work relates to prior work on KWS, lip reading, visual grounding, and applications of
Transformers for text and video. We present a brief discussion of these topics below.
KWS. KWS in audio (speech) is a well studied problem with a long history, spanning several
decades. Prior to the establishment of deep learning models, KWS methods were based on
Hidden Markov Models [48, 63], dynamic time warping [31, 51, 73] or indexing of ASR
lattices [13]. A number of works have since used deep architectures suitable for sequence
modelling (e.g. RNNs, CNNs, or graph convolutional networks) [6, 15, 22, 30, 35, 36, 43,
50, 58, 62, 74], including encoder-decoder approaches [8, 49, 71, 76]. Berg et al. [9] recently
proposed using a Transformer model for the same task. Different from ours, this work uses a
single input stream (audio) and only learns to spot a fixed vocabulary of keywords. In contrast,
we use Transformers to temporally process, then fuse the multi-modal inputs, building a
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model that can eventually perform open-set KWS. Visual KWS has also received attention
recently. The proposed methods include query-by-example [32] approaches, sliding window
classi�cation [67], or looking up phonetic queries in lip reading feature sequences [41, 57],
while audio-visual methods [19, 41, 65] that fuse the two modalities to improve robustness
to noise have also been proposed. Our method builds upon these approaches: we address
various weaknesses and propose superior video-text modelling as well as explicit keyword
localization, resulting in signi�cantly improved performance.
Lip reading. Early works in lip reading usually relied on hand-crafted pipelines and fea-
tures [25, 44, 46, 75]. The availability of large scale lip reading datasets [1, 17] and the
development of deep neural network models resulted in major performance improvements,
initially in word-level lip reading [16, 56] and constrained sentences [7]. Sentence level
models were subsequently developed, using sequence-to-sequence architectures based on
RNNs [17], CTC-based [54] approaches, or a hybrid of the two [45]. Replacing RNNs
with Transformers resulted in better performing architectures [2, 26, 72]. Joint audio-visual
training and cross-modal distillation [3, 37, 68] have also been investigated. The current
state-of-the-art model uses Transformers in the visual front-end and achieves remarkable
results with word error rates reaching as low as 30.7% [33].
Visual grounding. Our work is also related to tasks such as natural language grounding in
videos [14, 23, 24, 28, 38, 66, 69, 70] and subtitle alignment in sign language clips [12].
Transformers. Since their introduction for machine translation, Transformers [61] have
become ubiquitous and are used today in a wide range of applications from natural language
processing [18, 47] and speech recognition [20, 34, 40] to visual representation learning [10,
21, 33, 64]. In this work, we rely on Transformers as our building blocks for their strong
sequence modelling capability and inherent potential for localisation through attention.

3 Visual KWS with Attention
In this section, we describe our proposed method shown in Figure 1. We outline the architec-
ture of our model (Section 3.1), our training procedure (Section 3.2) and differences to prior
work (Section 3.3). We refer the reader to the arXiv version of the paper for further details.

3.1 The Transpotter Architecture
Our model ingests two input streams: (i) a textual keywordq = ( q1;q2 � � � ;qnp), and (ii) a
silent video clipv 2 RT� H� W� 3 in which we need to spot the keyword. For each of the inputs,
we have separate encoders that learn initial modality-speci�c representations. This is followed
by a joint multi-modal Transformer that learns cross-modal relationships between the video
and text features. The joint transformer predicts two outputs: (i) a sequence-level probability
of the keyword occurring in the video and (ii) frame-level probabilities indicating the location
of the keyword in the video if present. We describe each of the modules next.
Text Representations.Our textual input is a phonetic representation of the keyword, obtained
using a pronunciation dictionary. The input phoneme sequence of lengthnp is mapped to a
sequence of learnable embedding vectorsQ 2 Rnp� d. Sinusoidal positional encodings are
added to the input phoneme feature vectors, and the result is passed through a Transformer
Encoder [61] withNt layers to capture temporal information across the phoneme sequence:

Qenc= encoderq(Q+ PE1:np) 2 Rnp� d:

Video Representations.We use a pre-trained visual front-end (either a CNN [2] or VTP [33])
to extract a feature vector for each input video frame,V 2 RT� d. Similar to the text encoder
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Figure 1:The Transpotter architecture: Video frames are inputted to a visual front-end
(CNN [2] or VTP [33]) to extract low-level visual features, which are then passed toNv
Transformer layers to encode temporal information. The keyword in the form of a phoneme
sequence is encoded usingNt Transformer layers. The text and visual features are �nally
concatenated in time and processed using a joint multi-modal Transformer which predicts: (i)
the probability the keyword occurs in the video, (ii) frame-level probabilities indicating the
location of the word. PE corresponds to positional encoding.

Qenc, we pass the visual features through a Transformer Encoder withNv layers to capture
temporal information, after adding positional encodings:

Venc= encoderv(V + PE1:T ) 2 RT� d:

Joint Video-Text Representations.The uni-modal representationsV andQ are concatenated
along the time dimension to produce a single sequence of feature vectors. A learnable[CLS]
token embedding (such as in BERT [18] and ViT [21]) is then prepended to the result:

J = ([ CLS];Venc;Qenc) 2 R(1+ T+ np)� d:

We use a Transformer encoder withNm layers to jointly learn the relationships across video
and phoneme vectors:

Z = encodervq(J+ PE1:(1+ T+ np)) 2 R(1+ T)� d:1

Prediction heads.The[CLS] output feature vectorZ1 serves as a joint aggregate represen-
tation for the video-text pair. An MLP head for binary classi�cation,fc is attached toZ1 to
predict the probability of the keyword being present in the video:

ŷcls = s ( fc(Z1)) 2 R1;

wheres denotes a sigmoid activation. To localise the keyword, we attach a second MLP head
fl that is shared across all the video output states from the multi-modal joint Transformer:

ŷloc = s ( fl (Z2:(T+ 1))) 2 RT :

The outputyloc
t at each video frame time-stept 2 T indicates the probability of the framet

being a part of the keyword utterance.
1thenp outputs corresponding to the phonetic embeddings are dropped.
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3.2 Training
Optimisation objectives. Given a training datasetD consisting of tuples(v;q;ycls;yloc) of
silent video clips, text queries, class labels and location labels (indicating the position of the
keyword within the clip), we de�ne the following objectives:

L cls = � E(v;q;ycls)2D BCE(ycls; ŷcls) (1)

L loc = � E(v;q;ycls;yloc)2D ycls

"
1
T

T

å
t= 1

BCE(yloc
t ; ŷloc

t )

#

(2)

BCE(y; ŷ) = ylogŷ+ ( 1� y) log(1� ŷ); (3)

where BCE stands for the binary cross-entropy loss. The labelsycls are set to1 when the
given keyword occurs in the video and 0 otherwise; the frame labelsyloc are set to 1 for the
frames where the keyword is uttered and 0 otherwise. We train the model the optimise the
total lossL = l L cls+ ( 1� l )L loc, wherel is a balancing hyper-parameter.

3.3 Discussion
Compared to prior approaches, the design of our model offers several important advantages.
Stronger Visual Representations.Previous works [41, 57] model temporal relationships
between video frames using RNNs. In contrast, we employ Transformers [61], which are far
more effective in modeling temporal relationships [4, 29].
Joint Video-text Modeling. Prior works such as KWS-Net [41] follow a late-fusion strategy.
In our model each frame-wise video feature can attend to any keyword token (phoneme) and
vice-versa. The information exchange across the modalities occurs at every layer, without
restrictions on the receptive �eld for either modality.
Stronger keyword localisation.Fine-grained localisation of the keyword in the video can
be important for applications such as sign spotting [5]. Existing methods [41, 57] “weakly”
localise the keyword by taking the sequence-level prediction to be the maximum probability
over all the video time-steps. We instead provide stronger frame-level supervision, by
enforcing the model to predict the exact temporal extent of the keyword in the video.

3.4 Implementation details
Pre-training the visual front-end. We explore two different visual front-end architectures
for the Transpotter: (1) a CNN, highly similar in architecture to TM-seq2seq [2] and
(2) VTP [33], the current state-of-the-art for lip reading (trained only on public data). Both
models are trained end-to-end on two-word video clips of LRS2 [17] and LRS3 [1] for lip
reading. We refer the reader to the arXiv version of the paper for the exact CNN architecture
and training hyper-parameters. We refer the reader to [33] for architectural hyper-parameters
and training protocols for VTP. We pre-compute the visual features for each backbone for
both datasets and then train directly on them for faster training. All our models and ablations
use the pre-trained CNN features, unless otherwise stated.
Sampling. We form the training datasetD by randomly sampling with50%probability a
positive or negative video clipv for each queryq. Each videov contains word boundary
annotations, which allows (i) performing data augmentation by randomly cropping video
segments during training, and (ii) creating frame labelsyloc, as described in 3.2.
Misc. The keywordq is mapped to a phoneme sequence using the CMU dictionary [55];
words not present in the dictionary are discarded from trainingD. We setl = 0:5.
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4 Experiments
This section is structured as follows: We �rst present the datasets used as well the evaluation
protocols that we follow in our experiments (Section 4.1). Next, we compare the performance
of our proposed Transpotter model against strong baselines (Section 4.2) and then present a
comprehensive study ablating our design choices (Section 4.3). Finally, we perform further
performance analysis and provide qualitative results (Section 4.4).

4.1 Datasets and Evaluation Protocol
Datasets.All models and baselines are trained and evaluated on LRS2 [17] and LRS3 [1] lip
reading datasets. LRS2 contains BBC broadcast footage from British television and LRS3
is based on TED/TEDx videos downloaded from YouTube (refer to the arXiv version of the
paper for detailed statistics). The video clips for both datasets are tightly cropped face-tracks
of active speakers only. For each clip, a full transcription of the utterance as well as word
boundary alignments are provided. The number of videos, number of keyword instances and
keyword vocabulary for each of the test sets is shown in Table 1.
Evaluation Protocol. Evaluation is performed for every test dataset as follows: First, the
vocabulary of test keywords is determined, by considering all the words occurring in the test
set transcriptions with above a certain phoneme lengthnp. If not speci�ed, we usenp � 3.
Every word in the query vocabulary is then searched for in all the test set videos.
Metrics. Given ground truth video-keyword samples, we assess the performance of our
model in two ways. First, we assess classi�cation performance,i.e.whether the model can
accurately predict whether the keyword occurs in the video or not. We compute accuracy
(AccCls

@k) and mean average precision (mAPCls) metrics, where AccCls
@k measures how often a

given keyword occurs in any of the top-k retrievals, andmAPCls is obtained with the above
criterion (where every word in the test keyword vocabulary is considered as a separate class).

Second, we assess the model's localisation capability,i.e.whether the model can accurately
localise the keyword in the video clip. We follow common practice from the detection
literature: we consider a keyword accurately detected when the intersection-over-union (IOU)
between the prediction̂yloc and ground truth labelyloc is above a certain threshold, and
calculate the mean average precisionmAPLoc. To calculate the IOU, we binarise the model's
predictions using a thresholdt = 0:5.

4.2 Comparison to baselines
We compare our model's performance against a state-of-the-art VSR model and KWS-
Net [41], the previous state-of-the-art visual KWS model.
VSR baseline.We use an improved version of the TM-seq2seq [2] VSR model, with the
same pre-trained CNN backbone (Section 3.4) that we use for the KWS models. The model is
trained with the curriculum training strategy of [2] (details in the arXiv version of the paper).
The VSR model achieves state-of-the-art Word Error Rate (WER) performance of36:9%
and48:0% on the LRS2, LRS3 test sets respectively. Since the VSR model only produces
text transcriptions of a given video, but no localisation prediction, we can only evaluate
its classi�cation performance (AccCls

@k,mAPCls). We follow the method detailed in [27] to
estimate the posterior probability that the keyword occurs in a video clip.
KWS-Net. As a KWS baseline we use the state-of-the-art model of Momeniet al. [41]. For
fair comparison, here too we use the same CNN backbone that is also used for our model.
State-of-the-art KWS. We report our model's performance and compare it with strong
baselines in Table 1. It is clear that our model outperforms both baselines. On the last row,
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LRS2 LRS3

1.2K vids. / 4.3K inst. / 1.6K vocab. 1.3K vids. / 6.1K inst. / 1.9K vocab.

Model AccCls
@1 AccCls

@5 mAPCls mAPLoc AccCls
@1 AccCls

@5 mAPCls mAPLoc

KWS-Net [41] 36.1 61.2 41.0 36.2 29.8 54.6 34.3 29.2
VSR 63.7 76.3 64.3 - 52.3 66.0 50.3 -
Transpotter 65.0 87.1 69.2 68.3 52.0 77.1 55.4 53.6

Transpotter (VTP) 68.7 90.7 72.5 71.6 55.7 78.5 58.2 56.1

Table 1:Comparison to baselines:We outperform the current state-of-the-art KWS and
VSR methods by a large margin. Our Transpotter model is particularly effective in localising
the keyword in the video. Moreover, by using the recently proposed VTP [33] architecture as
the Transpotter's visual backbone instead of a CNN, we achieve even better performance.
we show the boost in performance by replacing the CNN with the recently proposed VTP
backbone [33], resulting in state-of-the art performance on both the LRS2 and LRS3 datasets.
Evaluation on LRW. We also compare the performance of KWS-Net [41] with our proposed
Transpotter model on the LRW [16] test set following the same evaluation protocol. The test
set contains25K single-word video clips spanning a vocabulary of500words (50instances per
word). Note that KWS-Net has been pretrained on the LRW training split, but the Transpotter
has only been trained on LRS2 and LRS3. As we can see in Table 2, the Transpotter
outperforms the previous state-of-the-art baseline KWS-Net by a large margin. We refer the
reader to the arXiv version of the paper for a qualitative error analysis in this setting.

Model AccCls
@1 AccCls

@5 mAPCls

KWS-Net [41] 66.6 89.0 33.0
Transpotter 85.8 99.6 64.1

Table 2:Comparison on LRW [16]: The Transpotter outperforms the previous state-of-the-
art KWS model on the LRW test set, despite not having been trained on LRW data. The
localization metric mAPLoc is not reported as the input videos are single-word clips.
4.3 Architecture ablations
To assess our design choices for the Transformer skeleton, we perform a number of ablations
considering variations of the model architecture. We brie�y explain the alternative approaches
below; more details can be found in the arXiv version of the paper.

In particular we consider two alternative encoder-decoder architectures, with the video
input at the encoder side and the text query at the decoder (Encvid-Dectext) and vice versa
(Enctext-Decvid). Since the latter model outputs at the temporal resolution of the video input,
it can explicitly localise the keyword (in the same way as the Transpotter), while the former
can only perform classi�cation. We also consider a variant of the Transpotter, where the
model does not output localisation predictions (hence noL loc is used for its training). We
show the results in Table 3. The selected Transpotter architecture outperforms all variants. In
particular, by comparing rows 2 and 4, we observe that training with a localisation head and
lossL loc also improves classi�cation (e.g. 64:0 vs 69:2 mAPCls).

4.4 Transpotter performance analysis
In this section, we analyse the performance of our proposed method when varying the keyword
length and the size of the surrounding visual context.
Keyword length. In Figure 2a, we plot the model's performance on the LRS2 test set against
the minimum keyword length in phonemesnp. As expected, longer keywords are easier
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LRS2 LRS3

Model AccCls
@1 AccCls

@5 mAPCls mAPLoc AccCls
@1 AccCls

@5 mAPCls mAPLoc

Encvid-Dectext 52.5 80.0 57.9 - 40.3 66.9 43.2 -
Transpotter w/o loc. 59.4 84.1 64.0 - 46.5 72.1 49.8 -

Enctext-Decvid 63.8 86.8 68.4 67.8 52.1 76.6 54.9 53.1
Transpotter 65.0 87.1 69.2 68.3 52.0 77.1 55.4 53.6

Table 3:Model ablations: Our approach of jointly modeling text and video sequences with a
localisation head for stronger supervision outperforms other architectural designs.

(a) (b)

Figure 2: (a) Transpotter's performance increases with the keyword length; (b) Transpotter
performs far better than VSR with limited context. Both methods improve with more context.

to spot and therefore result in better retrieval performance. Indeed for long 7-phoneme
keywords,mAPLoc reaches as high as 82.5. We note however that even for very challenging
short keywords with only 2 phonemes (such as "my", "to", "at"), mAPLoc stays high at 67.5.
Context. The visual appearance of spoken words can be highly ambiguous [2], therefore
recognising isolated words from visual input alone may be very challenging. Current lip
reading models utilise the surrounding visual context to resolve this ambiguity. In Figure 2b,
we illustrate how the performances of our Transpotter KWS model and our VSR baseline
vary based on the amount of contextual information available. We plot themAPCls against
the number of words in the video clip. We observe that both models bene�t from larger
surrounding context, with the Transpotter outperforming the VSR baseline consistently.
Qualitative analysis. In Figure 3, we show qualitative examples from the LRS2 and LRS3
test sets. It is clear that the model produces smooth predictions that precisely indicate the full
location of the word. In the bottom right corner we observe a failure case where the model's
con�dence is low – the keyword “that's” in this case is short.
Model response to homophemes.We further probe our Transpotter model for failure cases.
In visual-only keyword spotting, a common failure case is due to homophemes,i.e.words with
identical lip movements. To investigate the response of our model to such cases, we construct
a list of keywords from the LRS2 test set sentences that are known to have homopheme
counterparts (e.g. mark, which has two matching homophemes,bark andpark) and then for
each test set clip that contains one of the keywords, we query that keyword along with its
corresponding homophemes and plot the model's outputs. We illustrate several examples
in Figure 4. We observe that in such cases, the model spots the keyword as well as its
homophemes at the same (ground truth) location.

5 Mouthing Spotting in Sign Language videos
In this section, we investigate the application of our method for spotting mouthed words in
sign language videos. This is an important application of visual KWS, as it has enabled an
entire line of work on sign language recognition [5, 42, 60].
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Figure 3:Qualitative results on LRS2 and LRS3:The Transpotter accurately localises the
keyword in most examples. In the bottom right example, the model's con�dence is low, most
likely because it is a short word. The IOU is zero since we threshold att = 0:5.

Figure 4: Model's response to homophemes:We query words and their corresponding
homophemes for LRS2 test set clips. We observe that the model spots the words and their
homophemes at the same (ground truth) location.

Data description & evaluation protocol. Here, we use a subset of BSL Corpus [52, 53] as
a test set. BSL Corpus is a large public dataset containing videos of conversations conducted
in sign language by deaf signers, from various regions across the UK. We extend the dataset's
annotations by adding aMouthingtier and asking a deaf annotator to identify and localise
mouthing occurrences that correspond to visible signs. We obtain383mouthing instances,
from 29different signers, over a keyword vocabulary size of187. We use a pre-processing
pipeline similar to [17] to obtain face-cropped tracks around the faces of the signers. To
evaluate KWS performance, we take 8-second video clips centered around the annotated
mouthings and follow the same evaluation protocol described in Section 4.
Results.We summarise the evaluation results in Table 4. The Transpotter model is far superior
to the prior state-of-the-art KWS baseline, achieving a great improvement in performance (e.g.
29:6 vs 15:6 mAPCls score). To complete this analysis, we also show qualitative examples of
the spotted mouthings in Figure 5.
Discussion.We note that sign language mouthings are often very different from equivalent
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spoken words. Words may be partially mouthed and can be occluded by the signing hands.
There is therefore a signi�cant domain gap between the BSL-Corpus signing videos and our
lip reading training videos. However, we note that our proposed model greatly outperforms
the KWS-Net baseline – a variant of which has been successfully deployed for detecting
mouthings in order to bootstrap learning of sign spotting methods [5, 42, 60]. This indicates
the potential of our proposed method to greatly improve these pipelines.

Model AccCls
@1 AccCls

@5 mAPCls

KWS-Net [41] 12.4 29.6 15.6
Transpotter 22.5 47.1 29.6

Table 4:Spotting mouthings in BSL-Corpus: The Transpotter is far more accurate than the
current state-of-the-art in spotting keywords in videos.

Figure 5: Qualitative results on BSL-Corpus: Despite the large domain shift from our
training examples and additional challenges such as partially mouthed words and hand
occlusions, the Transpotter succeeds in correctly spotting mouthings in these challenging
conditions. We observe a failure case (bottom right) where the localisation is incorrect.
We note that contrary to LRS2 and LRS3, where word boundaries are obtained through
robust audio-based forced alignment, the annotations for BSL-Corpus are noisier as they are
performed manually.

6 Conclusion
We have presented theTranspotter, a cross-modal attention based architecture for visual
keyword spotting. Our method surpasses the performance of the previous best visual keyword
spotting approach by a large margin, as well as that of a state-of-the-art lip reading baseline.
We demonstrate the ability of our model to generalise to sign language videos where it can be
used to spot mouthings, enabling automatic annotation of sign instances. In future work, we
plan to further improve our method's performance by incorporating keyword semantics and
context of the surrounding words.


