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Abstract

This paper presents a unified framework to (i) locate the ball, (ii) predict the pose, and
(iii) segment the instance mask of players in team sports scenes. Those problems are of
high interest in automated sports analytics, production, and broadcast. A common prac-
tice is to individually solve each problem by exploiting universal state-of-the-art models,
e.g., Panoptic-DeepLab for player segmentation. In addition to the increased complexity
resulting from the multiplication of single-task models, the use of the off-the-shelf mod-
els also impedes the performance due to the complexity and specificity of the team sports
scenes, such as strong occlusion and motion blur. To circumvent those limitations, our
paper proposes to train a single model that simultaneously predicts the ball and the player
mask and pose by combining the part intensity fields and the spatial embeddings princi-
ples. Part intensity fields provide the ball and player location, as well as player joints lo-
cation. Spatial embeddings are then exploited to associate player instance pixels to their
respective player center, but also to group player joints into skeletons. We demonstrate
the effectiveness of the proposed model on the DeepSport basketball dataset, achieving
comparable performance to the SoA models addressing each individual task separately.

1 Introduction
The automation of team sports analytics and broadcasting [4, 5, 13], relies on detailed scene
interpretation, which itself depends on the ability to detect the ball, segment the players (e.g.
for improved tracking and recognition), and predict their pose (e.g. for action recognition).
Our work leverages Convolutional Neural Networks (CNNs) to tackle those tasks.

The most natural approach to solve the three tasks above with CNNs is to use a pre-
trained state-of-the-art model for each individual problem, e.g., Mask R-CNN [18], Pif-
Paf [25], and Panoptic-DeepLab [6] for ball localization, player pose estimation, and player
instance segmentation, respectively. Such approach, however, results in poor performance
since team sports scenes – especially those of indoor sports – are more complex compared
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Figure 1: An overview of DeepSportLab. Our CNN outputs: (i) semantic class scores, (ii) offset vectors to
associate pixels to their instance center, and (iii) a set of low resolution outputs used to generate the high-resolution
keypoint confidence maps. This set includes the keypoints confidence map, the keypoints localization vectors, the
size (or width) of the keypoints, and the scale parameters, which is used for scaling the per-keypoint localization loss
(see Eq. (2)). The segmentation decoding module fuses the first two outputs and the high-resolution confidence map
(i.e., only the map of the center-of-the-player keypoint) in order to predict the player masks. The confidence maps
of the body part keypoints and the resulting player masks are then fused by the pose decoding module and yield the
player poses. Finally, the location of the ball is extracted from the high-resolution map of the ball keypoint. Such
pipeline results in a light-weight decoding process. Note that the images in this figure are only for visualization
purposes and are neither the ground truth annotations nor the predicted maps. In the outputs of the PIF head
networks, we only show the maps associated with the center-of-the-player keypoint.

with in-the-wild scenes. First, they involve strong player occlusions, e.g., a defending player
blocking an attacking one. Such occlusions are usually considered as “crowd” in in-the-wild
datasets, such as CityScapes; hence, excluded from training. Second, they contain fast mov-
ing players and balls causing motion blur. Third, dealing with sports players is subject to
deformation, since the players often jump, run, or stretch their bodies. Fourth, due to its
frequent interactions with players, the ball is often partially occluded. Fifth, indoor team
sports scenes suffer from weak contrast between the ball and field and from the reflection of
the players in the field.

An improved approach consists in fine-tuning the weights of pre-trained models with
task-specific datasets [42]. Nevertheless, that solution has its shortcomings. General purpose
models are often demanding in terms of the memory and computation, which prevents their
real-time application, especially if multiple models have to run in parallel. Moreover, by
tackling each task individually, the CNN model ignores the correlation between them, which
might hamper their performance [21].

In this work, we propose to rely on a single CNN to jointly localize the ball and pre-
dict the player poses and player instance masks, given a single input image. An overview
of our model is presented in Fig. 1. As an important feature of the proposed model, we
define an extended set of 19 keypoint-types including 17 human body parts, ball centroid,
and player centroid; hence, treating the player centroids and ball detection tasks as key-
point detection problems. Our CNN is illustrated in more details in Fig. 2, where it out-
puts two sets of predictions. Inspired by Panoptic-DeepLab [6], one head network predicts
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pixel-wise semantic classes and offset vectors, providing the information required to asso-
ciate player pixels to their centroid. As shown in Fig. 1, the other three head networks
predict the Part Intensity Field (PIF) of the PifPaf framework [25] for the 19 keypoint-
types, i.e., a collection of confidence score, localization vectors, and the size and scale
of that keypoint. Our instance segmentation decoder fuses the semantic classes, offset
vectors, and player centroids. The resulting player mask is then leveraged to associate
the predicted body parts to the individual players. Therefore, unlike [25], our specialized
model does not require the Part Affinity Field (PAF) for building the player skeletons;
resulting in a light-weight decoding procedure. We train our model on the combination
of the COCO [28] and DeepSport [1] datasets. The software is made freely available at
https://github.com/ispgroupucl/DeepSportLab.

2 Related works
Instance segmentation. Instance segmentation systems can be grouped into proposal-
based [15, 16, 18] and proposal-free [6, 31] methods. The common idea in the former type of
approaches is to predict a number of object proposals (or bounding-boxes) and then to clas-
sify the objects within each of those proposals. In contrast, most of the works in the latter
category (including the proposed DeepSportLab) rely on predicting pixel-wise embedding
vectors such that pixels belonging to an instance receive similar embeddings. In that con-
text, a clustering algorithm is exploited to group the pixels based on the similarity between
their embedding vectors, and in turn, to create the instance masks. The first proposal-free
method is reported in [27], where the CNN outputs the pixel-wise coordinates of the top-left
and bottom-right corners of the corresponding object bounding-box. Those coordinates can
be thought as 4-D embeddings. Newell et al. [31] introduced associative embeddings, which
can be thought as a vector representing each pixel’s cluster. In particular, the embedding
vectors in [31] are related to an (non-physical) abstract space and are supervised without
ground truth references – unlike the formalism in [27]. Other intermediate approaches have
been proposed in [9, 12, 24] with different clustering algorithms and loss functions. Novotny
et al. [32] extended the concept of associative embedding to spatial embedding: the network
predicts pixel-wise offset vectors such that pixels of an instance point to that instance’s cen-
ter. That idea later inspired several works [21, 30, 41], specially Panoptic-DeepLab [6],
which is one of the current top-performing instance segmentation models. Inspired by [6],
our network predicts offset vectors from each pixel to its corresponding player instance cen-
ter, which will be used to form the player instances.

Human pose estimation. Human pose estimation approaches can be divided into two
groups: top-down [18, 33] and bottom-up [3, 23, 25, 31, 34]. Top-down methods first per-
form a human detector and then locate the body parts within every detected bounding-box.
Bottom-up methods (i.e., the context of this paper), on the contrary, first estimate body parts
followed by forming the skeleton.

OpenPose [2, 3] model revolutionized the bottom-up approaches by showing that a non-
parametric representation (i.e., PAF) can be learned to associate body parts with individual
human instances. Newell et al. [31] used the notion of associative embedding, which can
be thought as a vector representing each keypoint’s cluster. In particular, keypoints with
similar embedding vectors are assigned to the same skeleton. PersonLab [34] integrates the
human pose estimation with instance segmentation. It learns to predict relative displacement
of body parts, i.e. reminiscent of the idea of spatial embedding [32], allowing to group body
parts into human skeleton. By combining and extending the use of short-range offset vectors
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(as in PersonLab) and PAF (as in OpenPose), Kreiss et al. [25] presented PifPaf framework,
which reaches excellent performance for crowded scenes. Our work adopts the PIF part of
that framework for predicting the location of the keypoints. Regarding the association of
the body part keypoints to the poses, we follow the Panoptic-DeepLab’s formalism. Unlike
PersonLab, where human instance masks are computed from the human poses (in combina-
tion with predicted long-range offset vectors and semantic segmentation), in this work, we
leverage the predicted player instance masks to group the keypoints into player poses.

Deep learning applications in sports. Deep learning has recently offered promising solu-
tions for sports production, such as jersey number recognition [14], segmentation of the field,
players, and lines [7], player discrimination [20, 29], event segmentation [10], player detec-
tion [8, 35, 38], swimming stroke rate detection [43], player pose estimation [11, 19, 45, 46],
and ball localization [36, 40, 42]. In particular, the classifier in [36] decides whether a patch
of an image contains a tennis ball. The authors in [40] and [42] propose to predict the po-
sition of the ball by formulating the problem as, respectively, a regression and segmentation
task. In this paper, however, we treat ball localization as a keypoint detection problem.
Unlike those works on player pose estimation, which are designed for scenes containing a
single swimmer [45, 46] or athlete [11, 19], our proposed method aims at multi-player pose
estimation in team sports scenes.

3 Proposed Method: DeepSportLab
Notations. Domain dimensions are represented by capital letters, e.g. P. Tensors are de-
noted by upper case bold symbols. Ground truth data or associated parameters are distin-
guished by an asterisk, e.g., N∗ply and Nply are, respectively, the number of annotated and
predicted players. The set of keypoint-types is denoted by K := Kpart ∪{ball,ply}, where
“ply” denotes the center-of-the-player keypoint and Kpart := {left eye, · · · , right ankle} is the
set of 17 body parts.

3.1 Principle
Given an input image with P pixels and Nply players, the goal of DeepSportLab is to predict
(i) the location of the ball; (ii) the instance mask (or set of pixels) of each player Ii ⊂
{1, · · · ,P} for i ∈ {1, · · · ,Nply}; and (iii) the skeleton of players.

As illustrated in Fig. 1, our CNN (detailed in Sec. 3.2) outputs two groups of param-
eters. One group consists of the predictions from segmentation head network: semantic
class scores C ∈ [0,1]P (i.e. player vs. non-player) and offset (or spatial embedding) vectors
Ψ ∈ RP×2, i.e., displacement of each pixel from the center of a player it belongs to (simi-
larly to Panoptic-DeepLab [6]). The second group of outputs includes PIF predictions for
each keypoint-type k ∈ K, i.e., a (low-resolution) pixel-wise confidence map S(k) ∈ [0,1]P̄,
a vector component (or localization vector) Ψ̄(k) ∈ RP̄×2 pointing to the closest keypoint,
size of the keypoint Σ(k) ∈ RP̄, and a scale parameter B(k) ∈ RP̄ (we set P̄ = P/64 in our
experiments). As it will be detailed in Sec. 3.4, high-resolution confidence maps are then
generated by fusing the low-resolution confidence maps with the localization vectors and
keypoint sizes. Such formulation results in a light network architecture, since the number
of parameters for each keypoint-type at the network output is 5P̄ = 0.078P. Moreover, the
parameter B(k) is used as weights in the training loss to balance the localization error with
respect to each keypoint-type (see below).
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Figure 2: CNN architecture of DeepSportLab. Our network adopts an ASPP module, an upsampling module,
and a dual-branch for the segmentation head. The upsampling module involves a bilinear interpolation before each
concatenation step. The network also adopts a dual-PIF head network outputting the PIFs for the 19 keypoint-types.
For lighter visualization, we concatenated the three PIF outputs in Fig. 1.

The segmentation decoding module then predicts the instance masks of the players by
fusing the semantic class scores, offset vectors, and confidence maps of the center-of-the-
player keypoint. Furthermore, the pose decoding module leverages the player instance masks
to group the predicted body parts into individual skeletons. Finally, the location of the ball
is extracted from the confidence map of the ball keypoint.

3.2 Network architecture
As illustrated in Fig. 2, the CNN module of DeepSportLab has one shared backbone, i.e., a
ResNet-50 network [17], for its four head networks. The segmentation head network consists
of an Atrous Spatial Pyramid Pooling (ASPP) module involving Atrous convolutions [44] to
extract denser feature maps, a modified version of the upsampling module from Panoptic-
DeepLab, and two task-specific prediction branches, which outputs the semantic logits and
offset vectors, respectively. The upsampling module gradually increases the resolution of
the features by leveraging the three skip connections from the backbone. In that module,
a bilinear interpolation is applied before each concatenation step. Inspired by the PifPaf
framework [25], our three PIF head networks output the PIF parameters for, respectively, the
ball, the center of the players, and the other 17 keypoint-types. Each PIF head is equipped
with a pixel shuffle [39] operation upsampling the feature maps by a factor of two. The
semantic logits and the offset vectors are further upsampled by a bilinear interpolation to
reach the input image resolution before being fed to the decoding module.

Note that in Fig. 1 the outputs of the three PIF head networks are concatenated for the
sake of simpler visualization. Similarly, the PIF tensors, e.g., S(k),Ψ(k) are defined for all
19 keypoint-types k. We recall that our segmentation and PIF head networks are adapted
from the Panoptic-DeepLab [6] and PifPaf [25] frameworks, respectively.

3.3 Network supervision
DeepSportLab requires a collection of ground truth data for its supervised training, i.e., bi-
nary semantic class scores C∗ ∈ {0,1}P, player and ball instance masks, pixel-wise offsets to
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players’ instance centroids Ψ
∗ ∈ RP×2, and per-keypoint-type (low-resolution) confidence

maps S∗(k) ∈ {0,1}P̄, localization vectors Ψ̄
∗
(k) ∈ RP̄×2, and keypoint sizes (or sigma)

Σ
∗(k) ∈ RP̄. Note that S∗(k),Ψ̄∗(k), and Σ

∗(k) take non-zero values on only 16 neighboring
pixels of each keypoint. The ground truth size parameters are the body part standard devia-
tion values (provided by the COCO dataset) scaled according to the size of the keypoints in
the image.

Given the above-mentioned ground truth data, DeepSportLab is trained by minimizing
the following loss function:

L= wsemLsem +woffLoff +wcnfLcnf +wlocLloc +wsigLsig, (1)

where the first two (and the last three) losses correspond to the segmentation (resp., pose)
head network. In (1), wsem, woff, wcnf, wloc, wsig, are the semantic, offset, confidence, local-
ization, and sigma loss weights, respectively, and

Lsem = 1
P ∑p BCE(C∗(p),C(p)), Loff =

1
P ∑p ‖Ψ(p)−Ψ

∗(p)‖2
2,

Lcnf = ∑p,k BCE(S∗(k; p),S(k; p)), Lsig = ∑p,k |Σ(k; p)−Σ
∗(k; p)|,

Lloc = ∑p,k
|Ψ̄(k;p)−Ψ̄

∗
(k;p)|2

B2(k;p)
+ log(B(k; p)), (2)

where BCE denotes the binary cross entropy functions. We consider the mean squared error
and mean absolute error for the rest of the sub-losses, summed over the defined variables,
e.g., over the keypoints present in the image. For the localization loss we adapt the learnable
standard deviation for the regression loss, i.e., inspired by [21]. The purpose of such for-
malism is to let the network balance the localization error based on the size of the keypoint.
Intuitively, while a localization error might be minor for a large keypoint, it can be major for
a small keypoint.

In practice, for the sake of numerical stability, we train the network to predict the loga-
rithm of B and Σ, and use the exponential of the prediction. By doing so, both the localization
loss Lloc and the fusion operator (see Eq. (3) below) avoid any division by zero during the
training and inference, respectively.

3.4 Inference
DeepSportLab consists in two main inference sub-tasks: (i) keypoint decoding, which pro-
vides the center of the ball and players as well as the body parts keypoints; (ii) player instance
segmentation, which also enables pose recognition, as it assigns an instance label to each of
the body part keypoints.

Recall that the keypoint confidence maps S(k) are coarse. In order to obtain high-
resolution maps, they are fused with the localization vectors Ψ̄(k) and sigma parameters
Σ(k) through a convolutional operator with unnormalized Gaussian kernel, i.e.,

S̃(k; p) := ∑u S(k;u) exp
(
− ‖p−(u+Ψ̄(k;u))‖2

2Σ
2(k;u)

)
, (3)

where p and u are the pixel coordinates in, respectively, high- and low-dimensional pixel
grids. The location of the ball is identified by finding the maximum value in the confidence
map of the ball keypoint. This amounts to a top-1 detection strategy.

For the next decoding task, each pixel p classified as a player is assigned to only one
player instance using a simple center regression. Equivalently, pixels are grouped into indi-
vidual instances according to their displacements from the center of each player. Concretely,
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the mask of each player i writes

Iply
i := {p : C̃(p)≡ player, i = argmin j ‖o

ply
j − (p+Ψ(p))‖2}. (4)

For each of the other 18 keypoint-types k ∈K\{ball}, we then compute a set of keypoint in-
stancesOk := {ok

1, · · · ,ok
Nk
}, with Nk denoting the number of detected instances for keypoint-

type k, by finding the maxima within each player’s mask in the high-resolution confidence
map S̃(k). We discard the detected keypoint instances with the confidence score less than
0.1. Having identified the mask of each player, the player pose can be simply decoded: the
skeleton of a player is formed by collecting body part keypoints whose coordinates belong
to the mask of that player.

If multiple keypoint instances of the same type are assigned to one skeleton, we keep
only the keypoint instance with the highest confidence score.

Remark 1 Notice that our pose decoding algorithm described above is very fast and simple.
Compared with PifPaf [25], DeepSportLab does not require to learn the part affinity fields
with dimension P̄× 19× 7 for pose decoding. Moreover, the greedy decoding algorithm in
PifPaf [25], which is similar to the PersonLab’s [34], starts from a body part and finds the
next connected body part (among other candidate parts, given the part affinity fields) by
computing a pixel-wise association score.

4 Experiments
Our model is trained using a mix of the COCO [28] and DeepSport [1] datasets and is
compared against Panoptic DeepLab [6] for player instance segmentation, OpenPifPaf [26]
for player pose estimation, and BallSeg [42] for ball detection.

DeepSport dataset. It consists of 672 images of professional basketball games captured
from 29 arenas involving a large variety of game configurations and various lighting condi-
tions [1]. Each image captures half of the basketball court with a resolution between 2Mpx
and 5Mpx. The resulting images have a definition varying between 65px/m (furthest point
on court in the arena with the lowest resolution cameras) and 265px/m (closest point on court
in the arena with the highest resolution cameras). We extract 100 (out of 672) images for the
validation and 64 images for the testing such that the arenas in the test set are neither present
in the training nor the validation sets. The dataset contains approximately 380 annotations of
ball masks and 5500 annotations of player masks and poses. The poses (composed of only
4 keypoint-types) are only used for evaluation. The images are scaled to keep humans with
similar height compared to those found in the COCO dataset [28].

COCO dataset. In order to learn the pose of players, we consider a subset of the COCO
dataset [28] consisting of images containing only humans or balls. We also filter out the
images containing at least one person with the area of larger than 10% of the whole image.
This filtering results in 42271 and 2356 images for the training and validation, respectively.

Mismatch between DeepSport and COCO pose annotations. The COCO dataset, used
to train the body part keypoints, contains pose annotations with 17 body parts; whereas, in
DeepSport dataset used at testing, they are identified by four body parts: head, hip, foot 1,
and foot 2, i.e., agnostic about the skeletons facing forward or backward. Hence, the quality
computation phase during testing requires a delicate treatment. First, the skeletons predicted
with the COCO convention are converted into the DeepSport skeleton format as follows.
The locations of the head and hip for metric computations are defined, respectively, as the

Citation
Citation
{Kreiss, Bertoni, and Alahi} 2019

Citation
Citation
{Kreiss, Bertoni, and Alahi} 2019

Citation
Citation
{Papandreou, Zhu, Chen, Gidaris, Tompson, and Murphy} 2018

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{dee} 

Citation
Citation
{Cheng, Collins, Zhu, Liu, Huang, Adam, and Chen} 2020

Citation
Citation
{Kreiss, Bertoni, and Alahi} 2021

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}Zandycke and Deprotect unhbox voidb@x protect penalty @M  {}Vleeschouwer} 2019

Citation
Citation
{dee} 

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014



8 GHASEMZADEH S. ET AL.: DEEPSPORTLAB

middle of the left- and right-ear and the middle of the left- and right-hip. Since foot 1
and foot 2 labels are interchangeable in DeepSport dataset, the keypoint metric (sensitive
to inversion) is computed for the two assignments of the feet, i.e., assigning foot 1/foot 2
to either left-ankle/right-ankle or right-ankle/left-ankle, and the assignment with a higher
resulting value is considered. We note that this conversion of skeleton introduces error in
quality computation of predicted poses, but since that computation is the same for different
models, performed comparisons remain fair.

Training setup. Each batch of data during training involves equal share of images from
DeepSport and COCO datasets. Therefore, during every epoch, the learning algorithm works
over a different subset of the COCO dataset. We trained our models with SGD optimizer with
a learning rate set to 3 · 10−4, momentum to 0.95, and weight decay to 10−5. We perform
random horizontal flip, scaling, and rotation followed by a random 641×641 cropping dur-
ing training with batch size of 4. We set the weights of the training sub-losses as wsem = 10,
woff = 0.1, wcnf = 20, wloc = 10, and wsig = 10. We initialized the network’s backbone and
player’s keypoints head using the pre-trained weights taken from PifPaf framework.

Quality measures. This paper tackles a multi-objective task, hence, requires multiple qual-
ity measures for expressing the performance of individual sub-tasks. A detailed explanation
of the quality measures is provided in the Supplementary Document. We define the ball De-
tection Quality (bDQ) as in the BallSeg framework [42], i.e. the Area under the Curve (AUC)
associated with the Receiver Operating Characteristic (ROC) curve: the True Positive (TP)
rate vs. the False Positive (FP) rate as a function of the detection score threshold.

We compute player Segmentation Quality (pSQ) and player Detection Quality (pDQ)
identical to two components of the Panoptic Quality (PQ) measure introduced in [22], but
restricted to only player (or person) class.

The pose Estimation Quality (pEQ) is measured based on the Object Keypoint Similarity
(OKS) criteria defined in [37]. The components of pEQ measure are the variants of Average
Precision (AP) and Average Recall (AR) thresholded at different OKS values.

Computational resources. Time and memory performance were measured at inference on
batches of one single 641×641 pixels image, on a NVidia V100 with a 32 cores Intel Xeon
Gold 5217 running at 3GHz. Inference time is given in milliseconds (ms) and GPU memory
in megabytes (MB).

Method bDQ pSQ pDQ pEQ ms MB
AP AR F1

DeepSportLab 52.07 80.3 90.1 87.5 82.1 42.4 436±105 1757
Pan.-DeepLab [6] – 82.2 91.4 – – – 69±7 1809
OpenPifPaf [26] – – – 88.5 79.6 41.9 155±18 1623
BallSeg [42] 46.16 – – – – – 14±6 1239

Table 1: Performance on DeepSport’s test: Comparison of the proposed multi-task DeepSportLab with SoA
models addressing each individual tasks. Panoptic-Deeplab and BallSeg are trained on the DeepSport dataset,
while PifPaf is trained on COCO. DeepSportLab uses both DeepSport and COCO datasets to train the player and
ball instances segmentation and only uses COCO to train the player pose. DeepSportLab compares favorably against
it’s counterparts in term of quality measures, while reducing by a factor 3 the required memory.

Evaluation. We evaluate the performance of all three tasks on DeepSport’s test set. Pre-
dicted and annotated human instances outside the basketball court are discarded during the
computation of quality criteria.

Table 1 shows that DeepSportLab only lacks 1% in terms AP but improves by 2.5%
in terms of AR compared to OpenPifPaf [26], which leads to an improvement of 0.5% in
terms of F1 in total. In terms of player segmentation quality, DeepSportLab lacks by only
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(a) DeepSportLab (b) PifPaf (c) Panoptic-DeepLab
Figure 3: Pose recognition and mask segmentation samples. Body parts are shown with red and green colors as
prediction and ground truth, respectively. The numbers highlighted in yellow are OKS values for their corresponding
prediction-annotation matching. In addition, colors are used to show the segmented player masks.

1.9% and 1.3% in terms of pSQ and pDQ, respectively, compared to Panoptic-DeepLab [6].
Since DeepSportLab outputs three different tasks at the same time, obtaining such a good
segmentation quality reveals the excellence of the multi-task training.

A visual analysis of our results compared to OpenPifPaf [26] and Panoptic-DeepLab [6]
is presented in Fig. 3. It reveals that body part keypoints are generally assigned to their cor-
rect instance based on our computationally straightforward assignment strategy (see Sec. 3.4).

Regarding ball detection, our multi-task DeepSportLab framework is compared to the
state-of-the-art BallSeg [42], which formulates the ball detection problem as a segmentation
task. BallSeg uses an ICNet network [47] trained on balls from the original DeepSport
dataset [1] (i.e. ball size ranges between 15 and 45 pixels). The performances provided in
Table 1 result from a training where images were scaled to keep humans with similar height
compared to those found in the COCO dataset (i.e. ball size ranges between 7 and 18 pixels).
At that scale, DeepSportLab significantly outperforms BallSeg.

The computational comparison of the different models demonstrates the benefit of the
unified framework. DeepSportLab can be deployed on devices with less than 2GB of mem-
ory, while the combination of its three counterparts would require almost 5GB. Inference
time is only informative due to the different levels of optimization of each implementation.
Actually, when combining different task-specific models, inference times do not add up when
running computations in parallel.

5 Ablation studies
DeepSportLab Decoder. Our proposed pose decoder is original in that it uses the seg-
mentation mask to assign the keypoints to each instance. In Table 2, this strategy is applied
on oracle data as well as on off-the-shelf predictions form OpenPifPaf [26] and Panoptic
DeepLab [6]. The use of oracle masks instead of the intermediate predictions increases the
F1 Score by only 0.5%. This shows that, on the DeepSport dataset, the instance segmentation
is good enough to associate the player keypoints, meaning that the pose estimation task is
only limited by the keypoints detection. Using off-the-shelf models to produce the interme-
diate mask and the keypoints predictions does not improve the pose quality, revealing that
our keypoint prediction is competitive. Additional investigations considering oracle data and
error breakdown are provided in supplementary material.

player player Decoder pSQ pDQ pEQ
keypoints masks AP AR F1

DeepSportLab DeepSportLab
DeepSportLab

80.3 90.1 87.5 82.1 42.4
DeepSportLab Oracle 100 100 87.7 83.8 42.9

OpenPifPaf [26] Pan.DeepLab [6] 82.2 91.4 87.3 82.1 42.3

Table 2: DeepSportLab Decoder study. Oracle data or off-the-shelf models are used to analyse the sensitivity
of DeepSportLab’s decoder to the masks and keypoints predictions. The use of instance ground-truth masks show
that the DSL instance segmentation is good enough to decode the player pose. DSL also compares favorably to a
decoding using a combination of OpenPifPaf [26] and Pan.DeepLab [6].
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Sport Specific Dataset. While containing a fair amount of balls, the COCO dataset is not
rich enough to address the objective of DeepSportLab. This is illustrated in Table 3, where
DeepSportLab was trained exclusively on COCO and evaluated on the DeepSport dataset [1].
The ball detection quality (bDQ) value reported for COCO is significantly smaller than the
one obtained when training on DeepSport. This demonstrates the need of having a task
specific dataset to reach good performance when working on sport data.

Dataset used at training bDQ pSQ pDQ pEQ
AP AR F1

COCO & DeepSport 52.07 80.3 90.1 87.5 82.1 42.4
COCO 23.19 75.2 82.7 87.6 81.6 42.3

Table 3: Sport-specific dataset study. DeepSportLab evaluated on DeepSport dataset [1] shows limited perfor-
mances when trained exclusively on COCO dataset [28]. This demonstrate the need for a sport specific dataset.
Note: the ball detection quality (bDQ) reported when training only on COCO has been achieved by filtering out
training images exempt of balls from the official COCO dataset. Without that filtering, bDQ evaluated on DeepSport
dataset is far worse.

DeepSportLab for individual tasks. Table 4 evaluates the penalty or gain induced by the
multi-task objective compared to an individual training of each task on the DeepSportLab
backbone. The instance segmentation task benefits from the joined training, while the ball
detection task does not. We understand this observation by the fact that the players mask are
tightly coupled to their pose while the ball is not.

Method bDQ pSQ pDQ pEQ ms MB
AP AR F1

DeepSportLab 52.07 80.3 90.1 87.5 82.1 42.4 436±106 1757
DeepSportLab - Ball only 54.72 – – – – – 73±12 1688
DeepSportLab - Instances masks only – 73.4 86.6 – – – 164±37 1753
DeepSportLab - Poses (masks + keypoint) only – 79.2 90.2 87.8 82.2 42.5 496±107 1755

Table 4: DeepSportLab on individual tasks study. DeepSportLab was trained on the individual tasks and com-
pared with the result of the combined training. Only the ball doesn’t benefit from being trained jointly with another
task.

6 Conclusions
DeepSportLab is a framework handling pose estimation, instances segmentation and ball
detection tasks, central to team sports analysis. Its architecture, based on a shared back-
bone, makes it more practical to deploy compared to existing off-the-shelf solutions, since
it dramatically reduces the memory requirements, without affecting the prediction accuracy.
It proposes a new ball detection approach and a novel pose decoding algorithm based on
the instance masks and showing interesting performances. Two main lessons are drawn in
terms of image interpretation problem formulation: (i) adopting part intensity fields to locate
the ball appears to be as effective than formulating this problem as a high-resolution image
segmentation problem; and (ii) assigning pose keypoints to their respective instances based
on the spatial offsets predicted for instance segmentation sounds like a promising solution
to reduce the decoding cost of PifPaf’s pose recognition. In terms of perspectives, we ob-
serve that the bottleneck for more accurate player pose estimation lies in the prediction of
keypoints, and not in their assignment to instances. Fundamental research is also desired to
extend our multi-task framework to more generic datasets.
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