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Abstract

Text recognition in natural images is an important research topic that has attracted
widespread interest in recent years. Without character-level annotations, most existing
state-of-the-art scene text recognition methods adopt CTC or attention-based decoders
in the prediction stage to obtain the final word-level recognition results. However, these
methods bring strong vocabulary reliance and fail to obtain satisfactory results when
the predicting sample is out of the vocabulary in the training set. Moreover, predicting
character-by-character in serial also limits efficiency. To solve these problems, in this
paper, a new structure for the prediction stage is proposed to alleviate vocabulary re-
liance and accelerate prediction. In the new prediction stage, two classification layers are
adopted on each feature vector to predict i) the character and ii) the order of the character
in the word from the image region represented by the feature vector. Then, a spatial ag-
gregation layer is designed to comprehensively integrate the character classification and
the order estimation results to derive text recognition. In addition, a self-attention layer is
adopted between the feature extraction stage and prediction stage to model the context.
The experiment results on various benchmarks have demonstrated that compared with
several state-of-the-art approaches, the proposed model achieves better performance in
recognition accuracy and efficiency.

1 Introduction
Scene text recognition (STR), i.e., text recognition from digital images in natural scenes, is
an active and challenging research area. Its popularity stems from many real-life applications
such as natural scene understanding and multimedia content analysis. However, variations
in lighting, background, perspective, font, and layout in natural scenes have brought great
difficulties to the traditional Optical Character Recognition (OCR) technology.
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Recently, deep learning technology has shown its prominent advantages in many Com-
puter Vision (CV) and Natural Language Processing (NLP) tasks and has been successfully
applied in STR. According to [1], a typical deep-learning-based pipeline usually includes
four stages: transformation, feature extraction, context modelling, and prediction. To the
best of our knowledge, most STR methods without character-level annotations adopted Con-
nectionist Temporal Classification (CTC) or attention-based methods which specializes in
capturing the character-level semantic context information (e.g. the regularity of the ar-
rangement of letters in all the words in the vocabulary) which help the model to rectify
missing/erroneous characters. The CTC and attention mechanism are generally adopted in
the context modelling and prediction stage. However, the strength in utilizing semantic con-
text information can also lead to “vocabulary reliance” [25] . Although performing well
on various public benchmarks, CTC and attention-based methods derive obviously lower
performance on images with words outside the vocabulary. Another noticeable issue for
the attention-based approach is that the serial decoding process in these methods limits the
inference efficiency.

To overcome the problems mentioned above, a new vocabulary insensitive method for the
prediction stage is proposed in this paper. The main contributions of the proposed method are
three-folds: 1) A new method for the prediction stage in STR is proposed, which provides a
solution and thus the vocabulary reliance problem can be alleviated; 2) The proposed method
achieves fast inference speed and strong interpretability while achieving better accuracy; 3)
The proposed method achieves the best STR performance, considering both accuracy and
inference speed, compared with several state-of-the-art methods when expensive character-
level annotations are not available.

2 Related Works

2.1 CTC and ACE
CTC was first proposed as a loss function for speech recognition. Convolutional Recurrent
Neural Network (CRNN) [21] was one of the pioneering word-level STR methods based
on deep learning, which adopted CTC in the prediction stage. Hu et al. [8] further im-
proved the CTC-based method by adopting a graph convolutional network and an auxiliary
attention-based branch. Xie et al. [28] attempted to implement the prediction stage without
any language-based method for scene text recognition by adopting a new character-counting
loss function, i.e., the Aggregation Cross-Entropy (ACE), and achieved comparable word-
level recognition accuracy with CRNN. Addressing the complicated and time-consuming
calculation process of CTC, ACE was proposed as a better loss function and can be easily
adapted to the 2D prediction problem. The ACE-based method first decoded each feature
vector in the feature map to the probability vector denoting the character it represents. Then,
the ACE loss function was applied to supervise the summation of all the values in the pre-
dicted probability map for the character converges to the number of appearances in this
character. Owing to the simplicity of the aggregation strategy, the prediction process can
work in parallel and thus the prediction time can be reduced.

2.2 Attention-based Decoder
In recent years, the attention mechanism has achieved outstanding performance in sequence
modelling and many state-of-the-art STR methods adopt the attention-based framework. Zhu
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Figure 1: The overall network structure. ‘-’ in the spatial aggregation layer means the back-
ground area.

et al. [33] and Li et al. [13] proposed new attention-based approaches on the 2D feature map
to better recognize slanted texts. Borrowing the idea from text detection, a segmentation-
based decoder is becoming a new trend for the prediction stage to addresses and recog-
nizes characters. Usually combined with the attention mechanism, these methods [17] can
achieve higher accuracies at the cost of expensive character-level annotations. Built upon the
attention-based method, Shi et al. [22] proposed a text rectification module in the transforma-
tion stage to normalize various text layout, which is a new direction to improve recognition
performance. Note that the attention-based methods usually decode characters with a RNN
decoder or a Transformer decoder [23] , which will make the model focus more on the se-
mantic context information rather than the image features to some extent and thus will lead
to the vocabulary reliance problem.

3 Proposed Method
To overcome the weaknesses of CTC and attention-based decoders, we propose a new spatial
aggregation layer in the prediction stage. Our motivation is to estimate both the character
and its order in the sequence from the feature map extracted from the image. The overall
structure of our network is shown in Fig.1. Following the mainstream pipeline concluded in
[1] , our network also consists of four stages.

3.1 Stages Before Prediction

The input image is firstly transformed by a Spatial Transformer Network (STN) [10] and
the image feature map can be extracted from the output of STN by the ResNet [7] back-
bone. Then, several stacked self-attention layers are adopted to further enrich the context
information obtained by the feature vectors.

Transformation Stage. To handle complex distortion and layout in scene text images,
the input images are usually transformed by an STN in the transformation stage. Our method
adopts an STN with Thin-Plate-Spline [3] in this stage, which is similar to [22] .

Feature Extraction Stage. The feature extraction stage is usually implemented by a
deep CNN which transforms an image into highly abstract feature maps whose height and
width are 1/4 of the input image. An additional convolutional layer with kernel size of 1×1 is
appended following the deep CNN to reduce the dimension of feature vectors. Each feature
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vector in the resulting feature map has a corresponding distinguishable receptive field and
contains the information of the corresponding local area of the input image.

Image Context Modelling Stage. To model image context on a 2D feature map, our
method adopts several stacked self-attention layers [23] in this stage. According to [27] ,
self-attention can be viewed as a form of the non-local mean [4] . Thus, the output vectors
of self-attention layers contain both the global and local information depicting the image.

3.2 Prediction Stage
For the prediction stage, we propose a new solution in this section. As shown in Fig.1, in the
spatial aggregation layer, every feature vector is classified according to both the character it
represents and its reading order in the sequence (e.g. 1 denotes the first reading character),
and then is aggregated into a prediction. In this way, semantic context information can be
directly modeled according to the related feature vectors in the image and thus the vocabulary
reliance problem can be alleviated.

Order Estimation and Character Classification. Both the order estimation and the
character classification are ordinary multi-class classification tasks which can be imple-
mented by a fully connected layer with a softmax activation function, i.e.,

Lx,y,i = So f tMax(WWW L fff x,y +bbbL),

Cx,y, j = So f tMax(WWWC fff x,y +bbbC),
(1)

where fff x,y is the (x,y)-th feature vector in the feature map, Lx,y,i is the probability that the
corresponding feature vector representing the i-th character in the output sequence, Cx,y, j is
the probability that the corresponding feature vector representing the j-th character in the
character set (S j in short), and WWWC, bbbC, WWW L, bbbL are trainable parameters.

The Aggregation Algorithm. The aggregation algorithm takes Lx,y,i and Cx,y, j as inputs
and calculates Pi, j as the prediction output, which indicates the probability that there exists at
least one feature vector which represents the character S j and is ranked as the i-th character
in the entire sequence. Note that the summation of Pi, j’s components, whether row-wise or
column-wise, is not necessarily unity since they do not represent mutually exclusive events.

Let Fx,y,i, j be the probability that the corresponding feature vector represents S j which
locates at the i-th location in the sequence. Assume that Lx,y,i and Cx,y, j are independent of
each other, then Fx,y,i, j can be calculated as,

Fx,y,i, j = Lx,y,iCx,y, j. (2)

For simplicity, we assume independence between different feature vectors, then Pi, j can be
calculated as,

1−Pi, j = ∏
x,y

(1−Fx,y,i, j),

Pi, j = 1−∏
x,y

(1−Fx,y,i, j).
(3)

However, the floating precision easily overflows in the calculation of Pi, j due to the mul-
tiplication of multiple probabilities and the independence assumption is difficult to satisfy.
To overcome these problems, an approximate formula is adopted. Intuitively, the probability
that the i-th output character is S j mainly depends on whether a feature vector exists in the
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Algorithm 1 The Inference Algorithm
Input: Pi, j, S
Output: The prediction of the string in the image.
1: Let s = ‘’
2: Let minLoss =+∞
3: for i from to max_outputlength do
4: T = encode(s)
5: loss = Loss(P,T )
6: if loss < minLoss then
7: minloss = loss
8: predictString = s
9: c = argmax

j∈1∼|S|
(Pi, j)

10: s = s+Sc

11: return predictString

feature map representing both S j and the i-th output character. Inspired by the form of the
sigmoid function, a feasible approximation is given in eq.4 which can be calculated without
precision overflowing according to [2].

Pi, j ≈
∑x,y exp(logit(Fx,y,i, j))

1+∑x,y exp(logit(Fx,y,i, j))
, (4)

where logit(·) is the inverse sigmoid function.

3.3 Loss Function Design
Let Ti, j be the one-hot code of the ground truth of a sample whose (i, j)-th component is unity
if and only if the i-th character in the annotation is S j, i.e.,

Ti, j = encode(gt) =

{
1, gti = S j

0, gti ̸= S j
, (5)

where gt is the ground truth, gti is the i-th character in the ground truth, and encode(·) maps
a string to its corresponding binary matrix that indicates its one-hot code.

Specifically, the 0-th character in the alphabet represents the background noise and can
be excluded from the calculation of loss function because it does not influence the inference
result. The loss function can be calculated by the cross-entropy of Pi, j and Ti, j as eq.6:

Loss(P,T ) =
1

Len+1

Len+1

∑
i=1

|S|

∑
j=1

CE(sigmoid(Pi, j),Ti, j)

=
1

Len+1

Len+1

∑
i=1

|S|

∑
j=1

ln(1+ exp(Pi, j))−Ti, jPi, j

, (6)

where CE(·) is the cross-entropy function, Len is the length of the annotation, and S is the
character set. The loss where i = Len+1 indicates the end of the prediction.
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3.4 Inference Algorithm
Conducting the inference is tantamount to searching for a possible string that minimizes the
loss function in eq.6. Without lexicon, the inference algorithm follows Algorithm 1 that
decodes the characters under the maximum likelihood principle. The i-th output character
is derived using argmax function and noted as Sc, c ∈ 1 ∼ |S|. S0 is regarded as the ‘eos’
character. By enumerating each position i as the end of the predicted string, which means the
i-th character is assumed to be S0, the set of the predicted string s with different lengths can
be obtained. Then, each s in the set is encoded as T , and the loss can be calculated. Finally,
the output string with the minimal loss will be selected as the predicted string.

4 Experiments

4.1 Datasets
Synth90k [9] . It is a synthetic text dataset generated by blending 90k common English
words with natural scene images. The annotations are in word-level. All the images in this
dataset are taken for training.

SynthText [6] . It is a synthetic text dataset that is generated in a similar way as
Synth90k, but the words are rendered onto full images. The vocabulary is taken from the
Newsgroup20 dataset. All cropped images by bounding boxes are taken for training.

SynthAdd [13] . This is a synthetic text dataset generated with the engine as same as [6]
. Some special characters are randomly inserted into the words.

ICDAR2013 (IC13) [11] . This dataset contains 848 cropped text images for training
and 1,015 cropped text images for testing. Most of its data are inherited from ICDAR2003.

ICDAR2015 (IC15) [12] . This dataset contains 4,468 cropped images for training 2,077
cropped text images for testing. Following the protocol of [5] , 1,811 images without non-
alphanumeric characters are included in our test phrase.

Street View Text (SVT) [26] . This dataset is collected from Google Street View. It
contains 257 cropped images for training and 647 images for testing.

SVT-Perspective (SVTP) [19] . This dataset contains and 639 cropped images for test-
ing. It is proposed for evaluating the performance of recognizing perspective text and many
images in this dataset are heavily distorted.

IIIT-5K [18] . This dataset contains 2000 images for training and 3,000 images for
testing. All the images are collected from the webs. According to whether the word anno-
tation belongs to the Newgroup20 dataset, IIIT5-K is further divided into two sub datasets:
IIIT5K-I and IIIT5K-O. IIIT5K-I contains 2429 test samples whose word annotation belongs
to Newsgroup20 and IIIT5K-O contains 571 test samples whose word annotation does not
belong to Newgroup20.

CUTE80 (CUTE) [20] . This dataset contains 288 cropped images. Most of the texts are
curved. No lexicon is associated.

COCOText (COCO) [24] . Samples in this dataset are cropped from COCO images. It
contains 42618 cropped images for training, 9896 for validation, and 9837 for testing.

4.2 Implementation details
Network Configurations. The STN structure in [10] was adopted in our transformation
stage and ResNet50 [7] was employed for feature extraction. Then, a convolutional layer
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with the kernel size of 1×1 reduced the dimension of feature vectors from 2048 to 512. Two
stacked self-attention layers were applied for context modelling. The hidden size and the
number of heads were set to 512 and 8, respectively, for both self-attention layers.

Training. The input image was resized to 32×100 and data augmentation processes in-
cluding random rotation and random color jittering were applied. All the non-alphanumeric
characters were removed from the annotations and all the upper-case letters were turned into
lower cases. The max length of the output sequence was set to 25. Besides, the batch size
was set to 256 and the ADADELTA optimizer [31] was adopted. The learning rate was set to
1 and was decayed to 0.1 and 0.01 at step 0.6M and 0.8M, respectively. The training phase
terminated at the step of 1M. The proposed model was trained on both synthetic datasets and
the aforementioned real datasets which follows [8] and [13]. The sampling weights were
adjusted so that the synthetic samples and real samples each account for half of the training
data.

Evaluation. By default, the trained model was evaluated on all the benchmarks by case
insensitive word accuracy.

Methods IIIT5K IIIT5K-I IIIT5K-O

CRNN [21] 86.8 91.1 68.7
FAN [5] 89.9 93.1 75.3
CA-FCN [14] 89.3 91.6 76.3
ASTER [22] 89.2 92.9 74.6
Ours 89.9 92.9 77.2

Table 1: The comparison on IIIT5K-I and IIIT5K-O. The experiment results of other meth-
ods are implemented by [25].

4.3 Vocabulary Reliance Analysis
To evaluate the ability of vocabulary generalization, we have carried out experiments follow-
ing those in [25] , where the model was only trained on SynthText and evaluated on IIIT5K-I
and IIIT5K-O. The recognition accuracies in IIIT5K-I and IIIT5K-O reflect the ability of the
model to predict seen and unseen words, respectively and the latter can be adopted as a metric
to evaluate the vocabulary generalization ability. According to the results listed in Table 1, it
is observed that our proposed method not only has comparable performance on IIIT5K-I but
also outperforms other methods on IIIT5K-O. Generally speaking, segmentation-based (e.g.,
CA-FCN [14]) methods require expensive character-level annotations for training. They are
usually able to obtain more accurate visual features by locating characters. In comparison,
our method does not rely on character-level annotations and alleviates vocabulary reliance
by modelling the semantic context relationships according to the image features rather than
text information.

Methods IIIT5K IC13 IC15 SVT SVTP CUTE COCO

Baseline 90.3/0.0 89.9/0.0 76.7/0.0 87.3/0.0 72.1/0.0 77.6/0.0 54.6/0.0
Baseline+Tran. 92.8/2.5 93.0/3.1 82.3/5.6 90.1/2.8 80.3/8.2 83.2/5.6 61.9/6.3
Baseline+Cont. 94.8/4.5 93.4/3.5 84.1/7.4 91.3/4.0 82.3/10.2 88.1/10.5 65.0/10.4
Proposed 95.5/5.2 94.1/4.2 85.6/8.9 92.4/5.1 86.7/14.6 88.5/10.9 67.7/13.1

Table 2: The recongnition results of the module adopted in our method. ‘A/B’ means ‘accu-
racy/improvement’.
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Methods Prediction
Layer

IIIT5K IC13 IC15 SVT SVTP CUTE COCO

Shi et al. [21] CTC 81.2 89.6 - 82.7 - - -
Hu et al. [8] CTC+Attention 95.5 94.3 82.5 92.9 86.2 92.3 -
Liu et al. [16]# Segmentation 83.6 90.8 60.0 84.4 73.5 - -
Lyu et al. [17]# Segmentation 95.3 95.3 78.2 91.8 83.6 88.5 -
Liao et al. [14]# Segmentation 91.9 91.5 - 86.4 - 79.9 -
Cheng et al. [5]# Attention 87.4 93.3 85.3 85.9 - - -
Zhan et al. [32] Attention 93.3 91.3 76.9 90.2 79.6 79.5 -
Litman et al. [15] Attention 93.7 93.9 82.2 92.7 86.9 87.5 -
Yang et al. [29]# Attention 93.9 93.9 78.7 90.6 82.2 87.8 -
Li et al. [13] Attention 95.0 94.0 78.8 91.2 86.4 89.6 66.8
Yu et al. [30] Attention 94.8 95.5 82.7 91.5 85.1 87.8 -
Shi et al. [22] Attention 93.4 91.8 76.1 89.5 78.5 76.8 -
Xie et al. [28] ACE 82.3 89.7 68.9 82.6 70.1 82.6 -

Ours(Baseline)
Spatial Aggregation

90.3 89.9 76.7 87.3 72.1 77.6 54.6
Ours* 92.5 93.9 80.8 89.8 83.3 83.2 54.1
Ours 95.5 94.1 85.6 92.4 86.7 88.5 67.7

Table 3: The accuracy comparison on various benchmarks. ‘#’ indicates that the methods
are trained with both word-level and character-level annotations. ‘*’ indicates that the model
is trained only on Synth90k and SynthText following the mainstream protocol suggested by
[1].

4.4 Ablation Study

To analyse the impact of each module adopted in our method, a series of ablation studies
were performed, and the results were listed in Table 2. Our baseline only adopted ResNet50
for feature extraction and the spatial aggregation layer for prediction. Then, the transfor-
mation stage (Tran.) and the context modelling stage (Cont.) were applied to the model
respectively to evaluate the benefit they brought. According to the results, it is observed that
the recognition accuracies in all the datasets increase substantially with the employment of
STN and/or the context modelling layer.

4.5 Comparisons with SOTA Methods

Table 3 lists the scene text recognition accuracies by the proposed approach compared with
those obtained by other state-of-the-art approaches. From the table, the following ob-
servations can be made: i) Compared with the existing method without the character-level
semantic context information, i.e., ACE, even the baseline model (without the transformation
stage and context modelling stage) can significantly improve the recognition performance.
ii) Compared with the methods [21, 22, 32] converting the image map to one dimension
and apply RNN encoders to model the context, our method keep the feature map in the 2D
form, maintaining more layout information, and significantly improve the performance on
benchmarks with many distorted samples (i.e., IC15, SVTP, CUTE). iii) Compared with the
recent state-of-the-art method in [13] which also decodes characters on a 2D feature map,
our method not only maintains the same simplicity (i.e., without additional supervision) but
also gain improvement on most of the benchmarks. Moreover, our method also reaches com-
parable performance with [8] which applies a complex time-consuming hybrid mechanism
during training.
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Methods Time(ms) GPU Memory(MB)
ACE [28] 8.12 652
ASTER [22] 42.36 698
CRNN [21] 15.18 687
Ours(Baseline) 10.02 661
Ours 13.4 683

Table 4: The complexity comparison.

Figure 2: Visualization of the outputs of the character classification and order estimation in
the spatial aggregation unit.

4.6 Complexity Analysis

To investigate the efficiency of the proposed method, a comparison with other mainstream
methods in time and memory consumption was performed and the results were shown in
Table 4. For a fair comparison, all the methods investigated adopt the same ResNet50 back-
bone. Note that all the models are implemented with the batch size of 1. The average
inference time per image and the maximum GPU memory usage are listed in Table 4. Note
that for the attention-based methods, the ASTER method is selected for its best recognition
accuracy. It can be observed from Table 4 that ACE consumes the shortest time since it re-
quires few calculations other than feature extraction. Although our method takes about 2ms
more on the spatial aggregation layer per graph than ACE, it is still significantly faster than
CRNN and other attention-based methods.

4.7 Interpretability Analysis

Similar to the attention-based methods and ACE, our proposed method also has strong inter-
pretability from a 2D perspective. Fig.2 visualizes some character classification and order
estimation results in the spatial aggregation layer. It is observed from the figure that the
layout of text in an image is clearly expressed by the output of the spatial aggregation layer,
which demonstrates the effectiveness of the character classification and order estimation
modules in the spatial aggregation layer. The difference is that for one character, our method
neither limits the total probability like ACE nor scales the importance weight spatial-wise
with the SoftMax function like attention-based methods. Thus, more feature vectors in the
feature map tend to be related to one reading character.
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(a) GT: belgium
Pred: belvium

(b) GT: chimney
Pred: chimve

(c) GT: bloom
Pred: obloom

(d) GT: thunderball
Pred: thunderbal

Figure 3: Some failure cases of the proposed method. ‘GT’ is the ground-truth annotation,
and ‘Pred’ is the predicted result.

4.8 Failure Cases Analysis

Some failure cases are shown in Fig. 3. The proposed method may fail to recognize the
images which suffer from low quality (e.g., particularly blurry, distorted images) or have
complicated font style, as shown in strings ‘belgium’ and ‘chimney’. Moreover, irrelevant
patterns in the picture (e.g., the circle in the image of ‘bloom’) or characters at the edge of
the image (e.g., the last ‘l’ in the string ‘thunderball’) may be misrecognized or missed.

5 Conclusion

In this paper, we propose a new method for the prediction stage in the scene text recognition
task and make a novel attempt to discard language-based methods (i.e., CTC and attention-
based methods) in the prediction stage. The proposed method not only alleviates vocabulary
reliance but also boosts the inference speed. The proposed method, i.e., the spatial aggre-
gation layer comprehensively considers the character recognition and the order estimation
information to generate the text prediction results. Since it abandons traditional linguistic-
based methods, it will not overly rely on the seen vocabulary and will be able to work in
parallel. Extensive experiments on various datasets have demonstrated that our method out-
performs several state-of-the-art approaches when taking both accuracy and efficiency into
consideration.
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