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Abstract

This paper contributes to the challenge of skeleton-based human action recognition in
videos. The key step is to develop a generic network architecture to extract discriminative
features for the spatio-temporal skeleton data. In this paper, we propose a novel module,
namely Logsig-RNN, which is the combination of the log-signature layer and recurrent
type neural networks (RNNs). The former one comes from the mathematically principled
technology of signatures and log-signatures as representations for streamed data, which
can manage high sample rate streams, non-uniform sampling and time series of variable
length. It serves as an enhancement of the recurrent layer, which can be conveniently
plugged into neural networks. Besides we propose two path transformation layers to
significantly reduce path dimension while retaining the essential information fed into
the Logsig-RNN module. (The network architecture is illustrated in Figure 1 (Right).)
Finally, numerical results demonstrate that replacing the RNN module by the Logsig-
RNN module in SOTA networks consistently improves the performance on both Chalearn
gesture data and NTU RGB+D 120 action data in terms of accuracy and robustness.
In particular, we achieve the state-of-the-art accuracy on Chalearn2013 gesture data by
combining simple path transformation layers with the Logsig-RNN.

1 Introduction
Human action recognition (HAR) in videos is a classical and challenging problem in com-
puter vision with a wide range of applications in human-computer interfaces and commu-
nications. Low-cost motion sensing devices, e.g. Microsoft Kinect, and reliable pose esti-
mation methods, are both leading to an increase in popularity of research and development
on skeleton-based HAR (SHAR). Compared with RGB-D HAR, skeleton-based methods are
robust to illumination changes and have benefits of data privacy and security.
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Figure 1: (Left) Comparison of Logsig-RNN and RNN; (Right) Pipeline of the PT-Logsig-
RNN module for skeleton-based human action recognition. This stackable module consists
of Path Transformation Layers, followed by the Log-Signature Layer and an RNN-type layer.

Although vast literature is devoted to SHAR [38, 44, 52], the challenge remains open due
to two main issues: (1) how to extract discriminative representations for the high dimensional
spatial structure of skeletons; (2) how to model the temporal dynamics of motion.

With the increasing development and impressive performance of deep learning models
e.g. Recurrent Neural Networks (RNN) [23, 32, 33, 46, 51], Convolutional Neural Net-
works (CNN) [3, 5, 16, 25, 35, 36], and Graph Convolutional Networks (GCN) [28, 47],
data-driven deep features have gained increasing attention in SHAR [44]. However, these
methods are often data greedy and computationally expensive, and not well adapted to data
of different sizes/lengths. For example, when the lengths of data sequences are long and
diverse, long-short term memory networks (LSTMs) either suffer from tremendous training
cost with heuristic padding or are forced to down-sample/re-sample the data, which poten-
tially misses the microscopic information.

To address some of the difficulties and better capture the temporal dynamics, we pro-
pose a simple but effective neural network module, namely Logsig-RNN, by blending the
Log-signature (Sequence) Layer with the RNN layer, as shown in Figure 1 (Left). The
log-signature, which was originally introduced in rough path theory in the field of stochas-
tic analysis, is an effective mathematical tool to summarize and vectorize complex un-
parameterized streams of multi-modal data over a coarse time scale with a low dimensional
representation, reducing the number of timesteps in the RNN. The properties of the log-
signature also allow to handle time series with variable length without the use of padding
and provide robustness to missing data. This allows the following RNN layer to learn more
expressive deep features, leading to a systematic method to treat the complex time series data
in SHAR.

The spatial structure in SHAR methods is commonly modelled using coordinates of
joints [10, 15, 57], using body parts to model the articulated system [9, 29, 45] or by hybrid
methods using information from both joints and body parts [17, 25]. Inspired by [25] and
[37], we investigate combining the flexible Logsig-RNN with Path Transformation Layers
(PT) which include an Embedding Layer (EL) to reduce the spatial dimension of pure joint
information and a vanilla Graph Convolutional Layer (GCN) to learn to implicitly capture
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the discriminative joints and body parts.
Our pipeline for SHAR is illustrated in Figure 1 (Right). With quantitative analysis

on Chalearn2013 gesture dataset and NTU RGB+D 120 action dataset, we validated the
efficiency and robustness of Logsig-RNN and the effects of the Path Transformation layers.

2 Related Works on Signature Feature
The signature feature (SF) of a path, originated from rough path theory [41], was introduced
as universal feature for time-series modelling [24] and has been successfully applied to ma-
chine learning (ML) tasks, e.g. financial data analysis [12, 40], handwriting recognition
[7, 11, 53, 55], writer identification [54], signature verification [22], psychiatric analysis [2],
speech emotion recognition [50] as well as action classification [1, 21, 27, 56]. These SF-
based methods can be grouped into the whole-interval manner and sliding-window manner.
The whole-interval manner regards data streams of various lengths as paths over the entire
time interval; then the SFs of fixed dimensions are computed to encode both global and local
temporal dependencies [2, 7, 22, 24, 27, 50, 56]. The sliding-window manner computes the
SFs over window-based sub-intervals which are viewed as local descriptors and are further
aggregated by deep networks [11, 26, 53, 54, 55]. Our method falls into the second category
using disjoint sliding windows. There are few works on using the log-signature, rather than
the signature, in ML applications [20, 26]. In this paper, we demonstrate the properties,
efficiency, and robustness of the log-signature compared with the signature. Recent work
[19] proposed to use the signature transformation as a layer rather than as a feature extractor.
We propose a Log-signature (Sequence) Layer with impressive advantages in temporal mod-
elling to improve RNNs. To our best knowledge, it is the first of the kind to (1) integrate the
log-signature sequence with RNNs (2) as a differentiable layer which can be used anywhere
within a larger model, instead of using the log signature as feature extractor. In particular, the
output of the LogsigRNN is of the same shape as its input with a reduced time dimension.

3 The Log-Signature of a Path
Let E := Rd , J = [S,T ] and X : J→ E be a continuous path endowed with a norm denoted
by | · |. In practice we may only observe X built at some fine scale out of time stamped
values XD̂ = [Xt1 ,Xt2 , · · · ,Xtn ], where D̂ = (t1, · · · , tn). Throughout this paper, we embed the
discrete time series XD̂ to a continuous path of bounded variation by linear interpolation for
a unified treatment (See detailed discussion in Section 4 of [24]). Therefore, we focus on
paths of bounded variation. In this section, we introduce the definition of the signature/log-
signature. Then we summarize the key properties of the log-signature, which make it an
effective, compact and high order feature of streamed data over time intervals. Lastly, we
highlight the comparison between the log-signature and the signature. Further discussions
and demo codes on the (log)-signature can be found in the supplementary material.

3.1 The (log)-signature of a path
The background information and practical calculation of the signature as a faithful feature
set for un-parameterized paths can be found in [6, 19, 24]. We introduce the formal definition
of the signature in this subsection.
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Definition 3.1 (Total variation) The total variation of a continuous path X : J→ E is de-
fined on the interval J to be ||X ||J = supD⊂J ∑

r−1
j=0

∣∣∣Xt j+1 −Xt j

∣∣∣, where the supremum is taken

over any time partition of J, i.e. D = (t1, t2, · · · , tr). 1

Any continuous path X : J→ E with finite total variation, i.e. ||X ||J < ∞, is called a path of
bounded variation. Let BV (J,E) denote the range of any continuous path mapping from J to
E of bounded variation.

Let T ((E)) denote the tensor algebra space endowed with the tensor multiplication and
componentwise addition, in which the signature and the log signature of a path take values.

Definition 3.2 (The Signature of a Path) Let X ∈ BV (J,E). Define the kth level of the sig-
nature of the path XJ as Xk

J =
∫ T

S · · ·
∫ u2

S dXu1 ⊗·· ·⊗ dXun . The signature of X is defined as
S(XJ) = (1,X1

J , . . . ,Xk
J , . . .). Let Sk(XJ) denote the truncated signature of X of degree k, i.e.

Sk(XJ) = (1,X1
J , . . . ,Xk

J).

Then we proceed to define the logarithm map in T ((E)) in terms of a tensor power series
as a generalization of the scalar logarithm.

Definition 3.3 (Logarithm map) Let a = (a0,a1, · · ·) ∈ T ((E)) be such that a0 = 1 and
t = a−1. Then the logarithm map denoted by log is defined as follows:

log(a) = log(1+ t) =
∞

∑
n=1

(−1)n−1

n
t⊗n,∀a ∈ T ((E)). (1)

Definition 3.4 (The Log Signature of a Path) For X ∈BV (J,E), the log signature of a path
X denoted by lS(XJ) is the logarithm of the signature of the path X. Let lSk(XJ) denote the
truncated log signature of a path X of degree k.

The first level of the log-signature of a path X is the increment of the path XT −XS. The
second level of the log-signature is the signed area enclosed by X and the chord connecting
the end and start of the path X . There are three open-source python packages esig [39],
iisignature [14] and signatory [18] to compute the log-signature.

3.2 Properties of the log-signature
Uniqueness: By the uniqueness of the signature and bijection between the signature and
log-signature, it is proved that the log-signature determines a path up to tree-like equiva-
lence [13]. The log-signature encodes the order information of a path in a graded structure.
Note that adding a monotone dimension, like the time, to a path can avoid tree-like sections.
Invariance under time parameterization: We say that a path X̃ : J → E is the time re-
parameterization of X : J → E if and only if there exists a non-decreasing surjection λ :
J → J such that X̃t = Xλ (t), ∀t ∈ J. Let X ∈ BV (J,E) and a path X̃ : J → E be a time re-
parameterization of X . Then it is proved that the log-signatures of X and X̃ are equal[41].
This is illustrated in figure 2, where speed changes result in different time series represen-
tation but the same log-signature feature. This is beneficial as human motions are invariant
under the change of video frame rates. The log-signature feature can remove the redundancy
caused by the speed of traversing the path, which brings massive dimensionality reduction.

1A time partition of J is an increasing sequence of real numbersD= (ti)r
i=0 such that S = t0 < t1 < · · ·< tr = T .
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Figure 2: The first figure represents the trajectory of the digit 2, and the rest of figures plot
the coordinates of the pen locations against time via different speed respectively, which share
the same signature and log signature given in the first subplot.

Irregular time series: The truncated log-signature feature provides a robust descriptor of
fixed dimension for time series of variable length, uneven time spacing and with missing
data. For example, given a pen digit trajectory, random sub-sampling results in new trajecto-
ries of variable length and non-uniform spacing. In this case, the mean absolute percentage
error (MAPE) of the log-signature is small (see Figure 3 in supplementary material).

3.3 Comparison between signature and log-signature

The logarithm map is bijective on the domain {a ∈ T ((E))|a0 = 1}. Thus the log-signature
and the signature is one-to-one. Therefore, the signature and log-signature share all the
properties covered in the previous subsection. In the following, we highlight important dif-
ferences between the signature and the log-signature.

Figure 3: The dimension com-
parison between the signature and
log-signature (in bold) of a d-
dimensional path of degree k.

The log-signature is a parsimonious representa-
tion for the signature feature, whose dimension is
lower than that of the signature in general. For d > 2,
the dimension of the signature of a d-dimension path
up to degree k is dk+1−1

d−1 , and the dimension of the
corresponding log-signature is equal to the necklace
polynomial on (d,k)[43]. Figure 3 shows that the
larger d and k, the greater dimension reduction the
log-signature brings over the signature (the colour
represents the dimension gap between signature and
the log signature). In contrast to the signature, the
log-signature does not have universality, and thus it needs to be combined with non-linear
models for learning.

4 PT-Logsig-RNN Network

In this section, we propose a simple, compact and efficient PT-Logsig-RNN Network for
SHAR, which is composed of (1) path transformation layers, (2) the Logsig-RNN module
and (3) a fully connected layer. The overall PT-Logsig-RNN model is depicted in Figure 1
(Right). We start by introducing the Log-Signature Layer and follow with the core module
of our model, the Logsig-RNN module. In the end, we propose useful path transformation
layers to further improve the performance of the Logsig-RNN module in SHAR tasks.
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4.1 Log-Signature Layer
We propose the Log-Signature (Sequence) Layer, which transforms an input data stream
to a sequence of log-signatures over sub-time intervals. More specifically, consider a d-
dimensional stream x ∈ BV (J,E) and let D := (uk)

N
k=0 be a time partition of J.

Definition 4.1 (Log-Signature (Sequence) Layer) A Log-Signature Layer of degree M as-
sociated withD is a mapping from BV (J,E) to RN×dls such that ∀x∈BV (J,E), x 7→ (lM

k )N−1
k=0 ,

where lM
k is the truncated log signature of x[uk,uk+1] of degree M, i.e. lM

k = lSM(x[uk,uk+1]).
Here dls is the dimension of the log-signature of a d-dimensional path of degree M.

In practice, the input stream x is usually only observed at a finite collection of time points
D̂, which can be non-uniform, high frequency and sample-dependent. By interpolation,
embedding xD̂ to the path space allows the Log-Signature Layer to treat each sample stream
over D in a unified way. The output dimension of the Log-Signature Layer is (N,dls), which
does not depend on the time dimension of the input streams. A higher frequency of input
data would not cause any dimension issue, but it makes the computation of lk more accurate.
The Log-Signature Layer can shrink the time dimension of the input stream effectively, while
preserving local temporal information by using the log-signatures.

It is noted that the Log-Signature Layer does not have any trainable parameters, but al-
lows backpropagation2 through it. We extend the work on the backpropagation algorithm of
single log-signatures in [43] to log-signature sequences. Our implementation can accommo-
date time series samples of variable length over sub-time intervals, which may not be directly
handled by the Log-Signature layer in the signatory package[18].

4.2 Logsig-RNN Network
Firstly, we introduce the conventional recurrent neural network. It is composed of three
types of layers, i.e. the input layer (xt)t , the hidden layer (ht)t and the output layer (ot)t .
A RNN takes an input sequence xD̂ = (xti)

T
i=1 and computes an output (ot)

T
t=1 ∈ RT×e via

ht = σ(Uxt +Wht−1),ot = q(V ht), where U , W and V are model parameters, and σ and q
are activation functions. Let RΘ((xt)t) denote the RNN model with (xt)t as the input and
Θ := {U,W,V} its parameter set. It is noted that this represents all the recurrent type neural
networks, including LSTM, GRU, etc. Then we propose the following Logsig-RNN model.

Model 4.1 (Logsig-RNN Network) Given D := (uk)
N
k=0, a Logsig-RNN network computes

a mapping from an input path x ∈ BV (J,E) to an output defined as follows:

• Compute (lk)N−1
k=0 as the output of the Log-Signature Layer of degree M associated with

D for an input x.

• The output layer is computed byRΘ((lk)N−1
k=0 ), whereRΘ is a RNN type network.

The Logsig-RNN model (depicted in Figure 1 (Left)) is a natural generalization of con-
ventional RNNs. When D coincides with timestamps of the input data, the Logsig-RNN
Model with M = 1 is the RNN model with the increments of the data as input. One main
advantage of our method is to reduce the time dimension of the RNN model significantly as

2The derivation and implementation details of the backpropagation through the Log-Signature Layer can be
found in the supplementary material.
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we use the principled, non-linear and compact log-signature features to summarize the data
stream locally. It leads to higher accuracy and efficiency compared with the standard RNN
model. Logsig-RNN can overcome the limitation of Sig-OLR [24] on stability and efficiency
issues by using compact log-signature features and more effective non-linear RNN models.
Compared with conventional RNNs the Logsig-RNN model has the same input and output
structure.

4.3 Path Transformation Layers

To more efficiently and effectively exploit the spatio-temporal structure of the path, we fur-
ther investigate the use of two main path transformation layers (i.e. Embedding Layer and
Graph Convolutional Layer) in conjunction with the Log-Signature Layer.

A skeleton sequence X can be represented as a n×F×D tensor (landmark sequence) and
a F×F matrix A (bone information), where n is the number of frames in the sequence, F is
the number of joints in the skeleton, D is the coordinate dimension and A is the adjacency
matrix to denote whether two joints have a bone connection or not.

Embedding Layer (EL) In the literature, many models only use landmark data with-
out explicit bone information. One can view a skeleton sequence as a single path of high
dimension(d) (e.g. a skeleton of 25 3D joints has d = F ·D = 75). Since the dimension of the
truncated log-signature grows fast w.r.t. d, we add a linear Embedding Layer before the Log-
Signature Layer to reduce the spatial dimension and avoid this issue. Motivated by [25], we
first apply a linear convolution with kernel dimension 1 along the time and joint dimensions
to learn a joint level representation. Then we apply full convolution on the second and third
coordinates to learn the interaction between different joints for an implicit representation of
skeleton data. The output tensor of EL has the shape n×del , where del is a hyper-parameter
to control spatial dimension reduction. One can view the embedding layer as a learnable
path transformation that can help to increase the expressivity of the (log)-signature.

In practice, the Embedding Layer is more effective when subsequently adding the Time-
Incorporated Layer (TL) and the Accumulative Layer (AL). The details of TL and AL can be
found in Section 5 in the appendix. For simplicity we will use EL to denote the Embedding
Layer composed with TL and AL in the below numerical experiments.

Graph Convolutional Layer (GCN) Recently, graph-based neural networks have been
introduced and achieved SOTA accuracy in several SHAR tasks due to their ability to extract
spatial information by incorporating additional bone information using graphs. We demon-
strate how a GCN and the Logsig-RNN can be combined to form the GCN-Logsig-RNN to
model spatio-temporal information.

First, we define the GCN layer on the skeleton sequence. Let Gθ denote a graph convo-
lutional operator F ×D→ F × D̃ associated with A by mapping x to (Γ−

1
2 (A+ I)Γ−

1
2 )xθ ,

where Γii = ∑ j(Ai j + Ii j), and I is the identity matrix. Then we extend Gθ to the skeleton
sequence by applying Gθ to each frame Xt , i.e. Gθ : X = (Xt)

n
t=1 7→ (Gθ (Xt))

n
t=1 to obtain

an output as a sequence of graphs of time dimension n with the adjacency matrix A.
Next we propose the below GCN-Logsig-RNN to combine GCN with the Logsig-RNN.

Let X̂ (i)
t ∈ RD̃ denote the features of the ith joint of the GCN output Gθ (Xt) at time t. For

each ith joint, X̂ (i) = (X̂ (i)
t )n

t=1 is a D̃-dimensional path. We apply the Logsig-RNN to X̂ (i) as
the feature sequence of each ith joint, and hence obtain a sequence of graphs whose feature
dimension is equal to the log-signature dimension and whose time dimension is the number
of segments in Logsig-RNN. This in particular also allows for the module to be stacked.
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5 Numerical Experiments
We evaluate the proposed EL-Logsig-LSTM model on two datasets: (1) Charlearn 2013 data,
and (2) NTU RGB+D 120 data. Chalearn 2013 dataset [8] is a publicly available dataset for
gesture recognition, which contains 11,116 clips of 20 Italian gestures performed by 27 sub-
jects. Each body consists of 20 3D joints. NTU RGB+D 120 [34] is a large-scale benchmark
dataset for 3D action recognition, which consists of 114,480 RGB+D video samples that are
captured from 106 distinct human subjects for 120 action classes. 3D coordinates of 50 joints
in each frame are used in this paper. In our experiments, we validate the performance of our
model using only the skeleton data of the above datasets.3

5.1 Chalearn2013 data
State-of-the-art performance: We apply the EL-Logsig-LSTM model to Chalearn2013 and
achieve state-of-the-art (SOTA) classification accuracy shown in Table 1 of the 5-fold cross
validation results. The EL-Logsig-LSTM (M = 2,N = 4) with data augmentation achieves
performance comparable to the SOTA [30].

(a) Accuracy comparison
Methods Accuracy(%) Data Aug.
Deep LSTM [46] 87.10 −
Two-stream LSTM [51] 91.70

√

ST-LSTM + Trust Gate [31] 92.00
√

3s_net_TTM [27] 92.08
√

Multi-path CNN[30] 93.13
√

LSTM0 90.92 ×
LSTM0 (+data aug.) 91.18

√

EL-Logsig-LSTM 91.77 ± 0.34 ×
EL-Logsig-LSTM(+data aug.) 92.94 ± 0.21

√

GCN-Logsig-LSTM 91.92 ± 0.28 ×
GCN-Logsig-LSTM(+data aug.) 92.86 ± 0.23

√

(b) Effects of EL
Methods Del Accuracy(%) # Trainable weights

With EL

10 91.09 120,594
20 92.92 213,574
30 93.38 357,954
40 93.10 553,734
50 93.33 800,914
60 93.30 1,099,494

W/O EL - 91.51 985,458
(c) Effects of number of Segments (N)

N 2 4 8
Accuracy 92.10±0.04 92.94±0.21 92.69±0.11

N 16 32 64
Accuracy 92.87±0.15 91.66±0.39 91.50±0.39

Table 1: The accuracy comparison and sensitivity analysis on Chalearn2013. (a) The number
after± is the standard deviation of the accuracy. (b) Del is the spatial dimension of EL output.

Investigation of path transformation layers: To validate the effects of EL, we compare
the test accuracy and number of trainable weights in our network with and without EL on
Chalearn 2013 data. Table 1 (b) shows that the addition of EL increases the accuracy by 1.87
percentage points (pp) while reducing the number of trainable weights by over 60%. Let
Del denote the spatial dimension of the output of EL. We can see that even introducing EL
without a reduction in dimensionality, i.e. setting Del to the original spatial dimension of 60,
improves the test accuracy. Decreasing the dimensionality can lead to further improvements,
with the best results in our experiments at Del = 30 with a test accuracy of 93.38%. A further
decrease of Del leads to the performance deteriorating. The high accuracy of our model using
EL to reduce the original spatial dimension from 60 to Del = 30 suggests that EL can learn
implicit and effective spatial representations for the motion sequences. AL and TL contribute
a 0.86 pp gain in test accuracy to the EL-Logsig-LSTM model.
Investigation of different segment numbers in Logsig-LSTM: Table 1 (c) shows that in-
creasing the number of segments (N) up to certain threshold increases the test accuracy, and
increasing N further worsens the model performance. For Chalearn2013, the optimal N is 4
and the optimal network architecture is depicted in Table A.1 in the supplement material.

3We implemented the Logsig-LSTM network and all the numerical experiments in both Tensorflow and Pytorch.
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5.2 NTU RGB+D 120 data
For NTU 120 data, we apply the EL-Logsig-LSTM, GCN-Logsig-LSTM and a stacked two-
layer GCN-Logsig-LSTM(GCN-Logsig-LSTM2) to demonstrate that the Logsig-RNN can
be conveniently plugged into different neural networks and achieve competitive accuracy.

Among non-GCN models, for X-Subject protocol, our EL-Logsig-LSTM model out-
performs other methods, while it is competitive with [3] and [36] for X-Setup. The latter
leverages the informative pose estimation maps as additional clues. Table 2 (Left) shows the
ablation study of EL-Logsig-LSTM For the X-Subject task, adding EL layer results in a 0.7
pp gain over the baseline and the Logsig layer further gives a 5.9 pp gain.

Methods X-Subject(%) X-Setup(%)
ST LSTM[32] 55.7 57.9
FSNet[35] 59.9 62.4
TS Attention LSTM[33] 61.2 63.3
Pose Evolution Map[36] 64.6 66.9
Skelemotion[3] 67.7 66.9
LSTM (baseline) 60.9 ± 0.47 57.6 ± 0.58
EL-LSTM 61.6 ± 0.32 60.0 ± 0.35
EL-Logsig-LSTM 67.7 ± 0.38 66.9 ± 0.47

Methods X-Subject(%) X-Setup(%)
RA-GCN[49] 81.1 82.7
4s Shift-GCN[4] 85.9 87.6
MS-G3D Net[37] 86.9 88.4
PA-Res-GCN[48] 87.3 88.3
(GCN-LSTM) 69.4 ± 0.46 71.4 ± 0.30
(GCN-LSTM)2 72.1 ± 0.53 74.9 ± 0.27
GCN-Logsig-LSTM 70.9 ± 0.22 72.4 ± 0.33
(GCN- Logsig-LSTM)2 75.8 ± 0.35 78.0 ± 0.46

Table 2: Comparison of the accuracy (± standard deviation) on NTU RGB+D120 Data.

When changing the EL to GCN in EL-Logsig-LSTM, we improved the accuracy by 3.2
pp and 5.5 pp for X-Subject and X-Setup tasks respectively. By stacking two layers of the
GCN-Logsig-LSTM, we further improve the accuracy by 4.9 pp and 5.6 pp. The SOTA
GCN models ([37, 48]) have achieved superior accuracy, which is about 11 pp higher than
our best model. This may result from the use of multiple input streams (e.g. joint, bones
and velocity) and more complex network architecture (e.g. attention modules and residual
networks). Notice that our EL-Logsig-LSTM is flexible enough to allow incorporating other
advanced techniques or combining multimodal clues to achieve further improvement.

5.3 Robustness analysis
To test the robustness of each method in handling missing data and varying frame rate, we
construct new test data by randomly discarding/repeating a certain percentage (r) of frames
from each test sample, and evaluate the trained models on the new test data. Figure 4 (Left)
shows that the proposed EL-Logsig-LSTM exhibit only very small drops in accuracy on
Chalearn2013 as r increases while the accuracy of the baseline drops significantly. We start
to see a more significant drop in accuracy in our models only as we reach a drop rate of 50%.
Figure 4 (Right) shows that the same is true for the proposed GCN-Logsig-LSTM model on
the NTU data. Compared with GCN-LSTM (baseline) and the SOTA model MSG3D Net
[37] it is clearly more robust, at a drop rate of 50% or more it even outperforms MSG3D Net
which has a 10 pp higher accuracy than our model at r = 0. This demonstrates that both EL-
Logsig-LSTM and GCN-Logsig-LSTM are significantly more robust to missing data than
previous models.

5.4 Efficiency Analysis
To demonstrate that the log-signature can help reduce the computational cost of backpropa-
gating through many timesteps associated with RNN-type models we compare the training
time and accuracy of a standard single LSTM block with a Logsig-LSTM using the same
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Figure 4: The accuracy (%) on the new test sets with various drop/insert rates (r). (Left)
Chalearn2013. N = 4, and no data augmentation is used. (Right) NTU RGB+D 120 data.

LSTM component on the ChaLearn dataset. To evaluate the efficiency as the length of the
input sequence grows we linearly interpolate between frames to generate longer input se-
quences. We can see in the results in Figure 5 that, as the length of the input sequence grows,
the time to train the Logsig-LSTM grows much slower than that of the standard LSTM.
Moreover, the Logsig-LSTM retains its accuracy while the accuracy of the LSTM drops sig-
nificantly as the input length increases. This shows that the addition of the log-signature
helps with capturing long-range dependencies in the data by efficiently summarizing local
time intervals and thus reducing the number of timesteps in the LSTM.

We also compare the performance of the log signature and the discrete cosine trans-
formation (DCT), which was used in [42] for reduction of the temporal dimension. Both
transformations can be computed as a pre-processing step. As can be seen in Figure 5 in this
case the log-signature leads to slightly longer training time than DCT due to a larger spatial
dimension, but achieves a considerably higher accuracy. If the transformation is computed
at training time the cost of DCT is comparable to the log-signature.

Figure 5: Comparison of training time and accuracy of standard LSTM and Logsig-LSTM.

6 Conclusion
We propose an efficient and compact end-to-end EL-Logsig-RNN network for SHAR tasks,
providing a consistent performance boost of the SOTA models by replacing the RNN with
the Logsig-RNN. As an enhancement of the RNN layer, the proposed Logsig-RNN mod-
ule can reduce the time dimension, handle irregular time series and improve the robustness
against missing data and varying frame rates. In particular, EL-Logsig-RNN achieves SOTA
accuracy on Chalearn2013 for gesture recognition. For large-scale action data, the GCN-
Logsig-RNN based models significantly improve the performance of EL-Logsig-RNN. Our
model shows better robustness in handling varying frame rates. It merits further research
to improve the combination with GCN-based models to further improve the accuracy while
maintaining robustness.
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