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Abstract

Video anomaly detection is often seen as one-class classification (OCC) problem due
to the limited availability of anomaly examples. Typically, to tackle this problem, an
autoencoder (AE) is trained to reconstruct the input with training set consisting only of
normal data. At test time, the AE is then expected to well reconstruct the normal data
while poorly reconstructing the anomalous data. However, several studies have shown
that, even with only normal data training, AEs can often start reconstructing anomalies
as well which depletes the anomaly detection performance. To mitigate this problem,
we propose a novel methodology to train AEs with the objective of reconstructing only
normal data, regardless of the input (i.e., normal or abnormal). Since no real anomalies
are available in the OCC settings, the training is assisted by pseudo anomalies that are
generated by manipulating normal data to simulate the out-of-normal-data distribution.
We additionally propose two ways to generate pseudo anomalies: patch and skip frame
based. Extensive experiments on three challenging video anomaly datasets demonstrate
the effectiveness of our method in improving conventional AEs, achieving state-of-the-
art performance.

1 Introduction
Anomalous event detection in video sequences has recently attracted significant attention
[1, 3, 22, 24, 26, 30, 42, 55, 59]. The task is extremely challenging because, in real-life sit-
uations such as in surveillance videos, anomalous events do not occur frequently. Moreover,
there is no restriction on the types of anomaly events that may occur, making it cumber-
some to collect sufficient anomaly examples. Therefore, anomaly detection is often seen as
one-class classification (OCC) problem in which only normal data is used to train a novelty
detection model [3, 9, 21, 23, 24, 40, 54].

One way to tackle the OCC problem is by using a deep autoencoder (AE) trained to
reconstruct normal data [9, 10, 29, 30, 35, 58]. This way, the model is encouraged to encode
normalcy information within its latent space. At test time, the trained AE is then expected
to only reconstruct normal cases while failing to reconstruct the anomalous cases. However,
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Figure 1: An illustration of reconstruction capability of the three variants of AE: (a) conven-
tional AE trained only on normal data, (b) methods that limit reconstruction of anomalous
data without pseudo anomalies, and (c) our approach which encourages the network to re-
construct only normal data with the assistance of pseudo anomalies.

as reported in literature [9, 33, 54, 60] as well as observed in our experiments (baseline
performances in Fig. 6), an AE can also often reconstruct anomalous examples. It is a likely
outcome as the reconstruction boundary of the AE trained only on normal data would be
unconstrained as long as the boundary includes the normal data in the training set. Therefore,
the reconstructions between normal and anomalous data may not be discriminative enough
to successfully identify the anomalies. The phenomenon is illustrated in Fig. 1(a).

To alleviate this problem, several researchers [9, 35] proposed employing a memory
mechanism over the latent space between the encoder and the decoder of an AE to limit the
reconstruction capability in the case of anomalous input. The idea is to memorize normal
representations learned from the training data. This way, the network is restricted to use
the memorized normalcy representations for reconstruction, thus reducing its capability to
regenerate anomalous data. However, such a network is highly dependent on the memory
size and a small-sized memory may also limit its normal data reconstruction capability. For
instance, Fig. 6 of [9] and Fig. 6 (MemAE) show that although anomalous regions have
more distortions compared to the baseline, some of the normal portions are distorted as well,
which may result in a limited discrimination between normal and anomalous data. The phe-
nomenon can be attributed to the lack of a vivid reconstruction boundary when limiting the
reconstruction using only normal data during training, thus resulting in a limited reconstruc-
tion capability for the normal data at test time, as illustrated in Fig. 1(b).

In this work, we also propose to limit an AE in reconstructing anomalies; however, in
such a way that the normal reconstructions are not affected. Particularly, we introduce a
novel training mechanism of an AE with the objective of reconstructing only normal data
even if the input is anomalous. Since there are no real anomalies in the training data under
the OCC setting, we propose the idea of generating and utilizing pseudo anomalies to assist
the training. To this end, two types of pseudo anomaly generation methods are explored, i.e.,
patch and skip frame based, to simulate out of normal data distribution from normal data.
By encouraging to reconstruct only normal data for any kind of input (i.e., normal or pseudo
anomalous), AEs are specifically trained to limit their reconstruction boundaries around the
normal data hence not affecting the normal reconstructions while distorting anomalies, as
illustrated in Fig. 1(c). This results in an improved discrimination between normal and
anomalous data, which is evident from the superior performance of our approach both qual-
itatively and quantitatively.

The contributions of this work are threefold: 1) We propose a pseudo anomaly based
novel method of encouraging only normal data reconstructions to train AEs in the OCC
setting. 2) We propose two types of pseudo anomalies, patch and skip frame based, to
simulate anomalies. 3) In the experiments, we present extensive evaluations and analysis of
the proposed training approach using each of the pseudo anomaly types on three challenging
video anomaly detection datasets including Ped2 [22], Avenue [26], and ShanghaiTech [30].
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2 Related Works
Reconstruction Based Methods: A common way to tackle the one-class classification
(OCC) problem is by utilizing autoencoders (AEs) which learn normal data representations
by reconstructing the inputs [9, 10, 29, 30, 35, 58]. However, since AEs can also well-
reconstruct anomalous data [9, 33, 54, 60], several researchers proposed memory based net-
works to limit reconstruction capability of AEs [9, 35]. The idea is to use only the learned
memory vectors for reconstruction, which helps in achieving higher reconstruction loss for
anomalous inputs. However, such a configuration may also restrain the normal data recon-
struction capability due to its limited memory size. In contrast, our approach encourages
AEs to produce unconstrained reconstructions for normal inputs while limiting the recon-
structions for anomalous inputs, thus producing more discriminative anomaly scores.
Non-Reconstruction Methods: Several researchers adopt different schemes for OCC based
anomaly detection: focusing only on objects by utilizing object detectors in the frameworks
[6, 7, 8, 11, 12, 43, 52]; predicting future frames from the past few consecutive frames
with the intuition that it is difficult to predict unseen anomalous data [5, 24, 27, 28, 35]; or
incorporating adversarial components [14, 19, 20, 24, 39, 45]. Our approach is different as
we do not utilize any additional component and solely rely on the reconstruction based AEs.
Pseudo Anomalies: There have been a few recent attempts towards pseudo anomaly gen-
eration for one-class classifiers. Georgescu et al. [8] utilize time magnification and separate
datasets as pseudo abnormal objects to train an object-centric architecture by flipping the
gradient for pseudo abnormal objects. However, this approach can be only applicable to
anomalies related to objects and requires a pretrained object detectors. OGNet [54] and
G2D [36] propose using an under-trained and adversarially learned generator for generat-
ing fake anomaly data to train a binary classifier. Furthermore, OGNet, passes a fusion of
two images to a fully-trained generator to produce another type of fake anomalous example.
These approaches require a two-phase training, one for adversarial training of generator and
the other phase for training binary classifier. Differently, our approach is not restricted to
any predefined object classes, carries out the training in an end-to-end manner, and does not
require any pretrained networks.
Data Augmentation: Pseudo anomaly generation used in our method can also be viewed as
a form of data augmentation technique, widely popular among image classification models,
which manipulates training data to increase variety [2, 17, 18, 53, 56]. Typically, the class
labels for the augmented data are derived from the already exiting classes in the dataset. In
contrast, generating pseudo anomalies can be seen as augmenting data into a new class, i.e.,
anomaly, which is not a part of the already existing classes.
Non-OCC Methods: In order to enhance the discrimination between normal and anomalous
data, some researchers [33, 51] propose to deviate from the fundamental definition of OCC
by using real anomaly examples during training. We also acknowledge a recent introduction
of several weakly supervised methods using video-level binary annotations for training [42,
55, 59]. However, our approach is not directly comparable to these approaches as we do
not train using any real anomaly examples. Instead, our method can be categorized as OCC
because we utilize only normal training data to synthesize pseudo anomaly examples.

3 Methodology
The overall configuration of our approach (Fig. 2) consists of a reconstruction based au-
toencoder (AE) along with its training objective and a pseudo anomaly generator. Each
component is discussed next:
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Minimize reconstruction loss 
Normal input 𝑋𝑁 Normal reconstruction ෠𝑋𝑁

Pseudo anomaly reconstruction ෠𝑋𝑃Pseudo anomaly input 𝑋𝑃
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Figure 2: We train an AE for OCC using normal as well as pseudo anomaly sequences.
Pseudo anomalies are generated using normal data and extra components to simulate anoma-
lies. With a probability p, pseudo anomalies are introduced in the training examples for the
AE. The AE is trained to not to reconstruct anomalies by encouraging to reconstruct the
corresponding normal training examples from which the pseudo anomaly is generated.

3.1 Conventional Autoencoders in OCC Setting

For an input X , an AE can be defined as:

X̂ =D(E(X)), (1)

where E and D are encoder and decoder networks, respectively. The encoder generates
a latent code of a typically smaller dimension compared to the input. This code is then
transformed into the reconstruction X̂ of the input by the decoder. In order to capture rich
information from video data, AEs are often designed to take multiple frames as input [9,
10, 35, 58]. Following this convention, we also set our AE model to take X as input of size
T×C×H×W , where T , C, H, and W are the number of frames, number of channels, height,
and width of the frames in the input sequence, respectively.

Typically, to tackle OCC problem, AEs are utilized to learn the normal representations
by minimizing the reconstruction loss between the normal input XN and its reconstruction
X̂N as follows:

LN =
1

T ×C×H×W

∥∥X̂N−XN∥∥2
F , (2)

where ‖.‖F is Frobenius norm. With this training setting, an AE is ideally expected to re-
construct only normal data while unable to reconstruct anomalous data. However, as widely
reported across the literature, AE can often “generalize" too well and start reconstructing
anomalous examples as well [9, 33, 54, 60]. We try to encourage AE to produce only normal
data reconstructions for both normal and anomalous inputs, hence the network is unable to
reconstruct anomalies at test time.

3.2 Learning Not to Reconstruct Anomalies

We propose a training mechanism with the objective to encourage an AE towards recon-
structing only normal data regardless of the input. This means even if the data contain an
abnormality, the network will learn to produce a normal reconstruction. In OCC setting,
as we do not have access to real anomalous examples during training, we utilize pseudo
anomalies XP, which are generated by altering normal data XN as:

XP = F(XN ,E), (3)
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where F(·) is a pseudo anomaly generator function and E is an auxiliary component defined
based on the intended pseudo anomaly type. Both F(·) and E are discussed in Section 3.3.

To train the network, we utilize XP as input with a probability p and XN with a probability
1− p, where the hyperparameter p controls the ratio of pseudo anomalies. Given normal and
pseudo anomalous data as part of the training, the loss of the network is then defined as:

L =

{
LN if X = XN ,
LP if X = XP,

(4)

where LN is the reconstruction loss for normal data as defined in Eq. (2) and LP is the
reconstruction loss for pseudo anomaly data given as:

LP =
1

T ×C×H×W

∥∥X̂P−XN∥∥2
F . (5)

It may be noted that, both LN and LP encourage the network to reconstruct normal data.
Specifically, by minimizing LP with respect to XN , the network attempts to remove the per-
turbations introduced by pseudo anomaly generator.

3.3 Generating Pseudo Anomalies
In this section, we discuss two distinct methods to generate pseudo anomalies from normal
data. Specifically, we formally define the pseudo anomaly generator function F(·) and its
auxiliary component E (Eq. (3)) for each pseudo anomaly category.

3.3.1 Patch Based Pseudo Anomalies

In real world scenarios, an OCC based anomaly detection system may encounter cases like
unusual objects. Derived from this motivation, we propose to overlay all normal input frames
XN with an anomalous patch A (i.e., E = A), which is essentially taken from an arbitrary
image IA from some other dataset, e.g., CIFAR-100 [16], referred as intruding dataset in
this paper. Since such overlaid frames are not actually a part of the normal data, these are
anomalous. By default, each patch is placed using SmoothMixS [18], which smooths out the
boundary, to prevent the network from latching on to the edges of the patch. Nonetheless, the
performance of our method is not strictly dependent on any particular patching technique, as
discussed in Section 4.2.2.

To generate the i-th frame of pseudo anomaly XP
i in the input sequence, we first trans-

form IA taken from the intruding dataset to C×H×W , same as the input frame size. Then,
using SmoothMixS mask, a patch A of size (σw,σh) is extracted from IA with (µx

i ,µ
y
i ) defin-

ing its center coordinates. A is then overlaid on the i-th frame XN
i in the normal sequence.

The center coordinates (µx
i ,µ

y
i ) are randomly selected within the image dimensions whereas

the patch size (σw,σh) is randomly selected from 10 pixels to αW for the patch width
(σw ∈ [10,αW ]) and from 10 pixels to αH for the patch height (σh ∈ [10,αH]). α is a hy-
perparameter to adjust the maximum size of the patch. Detailed visualization of the process
can be seen in Fig. 1 of the Supplementary. Furthermore, this technique can be generalized
to utilizing a video dataset as an intruder dataset by using T frames, i.e., IA = (IA

1 , I
A
2 , ..., I

A
T ),

with each time step corresponding to the respective time step of the input.
Moreover, to incorporate movement in pseudo anomalies, the position of a given patch

in a particular frame within the sequence is changed based on the previous position as:

µ
x
i = µ

x
i−1 +∆µ

x
i , µ

y
i = µ

y
i−1 +∆µ

y
i , (6)
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Figure 3: Examples of normal data and the corresponding pseudo anomalies generated using
(a) patch and (b) skip frame based methods (s = 2).

where ∆µx
i and ∆µ

y
i are each randomly selected within the range of −β to β for every i and

β is the hyperparameter to adjust the maximum movement of the patch in terms of pixels.
An example of patch based pseudo anomaly along with its corresponding normal data can
be seen in Fig. 3(a).

3.3.2 Skip Frame Based Pseudo Anomalies

In addition to the anomalous objects as described in Section 3.3.1, in real-world scenarios,
anomalies may sometimes look normal in their appearance while depicting anomalous move-
ments. To create a system that is inclusive of this scenario, similar in essence with motion
magnification of [8], we propose skipping frames to generate anomalous movements from
the normal training sequences. Given a video consisting of K images (I1, I2, ..., IK), a normal
temporally-consistent input frame sequence XN of length T is taken from the video starting
from a random n-th index as follows:

XN = (In, In+1, ..., In+(T−1)) = (In+t)0≤t<T . (7)

To generate the corresponding pseudo anomaly XP, we take the first frame of XN , then
replace its following frames with skipped frames E = (In+s, In+2s, ..., In+(T−1)s) as:

XP = (In,E) = (In, In+s, ..., In+(T−1)s) = (In+ts)0≤t<T,s>1, (8)

where s is a hyperparameter controlling the number of skipped frames. An example of a
pseudo anomaly generated with skip frame method and its corresponding normal sequence
can be seen in Fig. 3(b).

3.4 Inference
At test time, we process the input sequences and their anomaly scores. Concurrent with other
recent anomaly detection methods [5, 24, 35], we utilize Peak Signal to Noise Ratio (PSNR)
Pt between an input frame and its reconstruction to compute the anomaly score as follows:

Pt = 10 log10

M2
Ît

1
R

∥∥Ît − It
∥∥2

F

, (9)

where t is the frame index, It is the t-th frame input, Ît is the reconstruction of It , R is the total
number of pixels in Ît , and MÎt is the maximum possible pixel value of Ît . Finally, following
[5, 24, 35], the anomaly score St is obtained using min-max normalization of Pt as:

St = 1− Pt −mint(Pt)

maxt(Pt)−mint(Pt)
, (10)

where a higher St value represents higher reconstruction error compared to the other frames
in the test video and vice versa.
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4 Experiments
4.1 Experimental Setup
Datasets. We evaluate our approach on three publicly available video anomaly detection
datasets, i.e., Ped2 [22], Avenue [26], and ShanghaiTech [30]. We utilize the standard divi-
sion of the datasets in which training splits consist of only normal videos. Whereas, every
video in each of the test sets contains one or more anomalous portions. Further details about
the datasets are provided in the Supplementary.
Evaluation Criteria. We evaluate our approach using the widely popular frame-level area
under the ROC curve (AUC) metric [54]. The ROC curve is obtained by varying the anomaly
score thresholds to plot false and true positive rates across the whole test set, i.e., one ROC
curve for a dataset. Higher AUC values represent more accurate results.
Parameters and Implementation Details. For the AE architecture, we use a 3D convolution-
deconvolution network similarly proposed by Gong et al. [9]. The AE takes an input se-
quence X (Eq. (1)) of size 16× 1× 256× 256 and produces its reconstruction of the same
size. During training, the reconstruction loss is calculated across all of the 16 frames. At
test time, only the 9th frame of a sequence is considered for anomaly score calculation
(Eq. (9) - (10)). Further details on the architecture are provided in the Supplementary.
By default, for all datasets, we utilize p = 0.2, s = {2,3,4,5}, α = 0.5, CIFAR-100 [16]
as the intruder dataset, and SmoothMixS [18] as the patching technique. Moreover, β

is set to 10 for Ped2 and 25 for the other datasets. s = {2,3,4,5} means s is randomly
selected as 2, 3, 4 or 5 each time we generate pseudo anomaly. To observe the robust-
ness of our method, in Section 4.2.2, we also perform evaluations by varying hyperparam-
eters. Training is carried out separately for the model trained without pseudo anomalies
(referred as baseline; see Section 3.1), the model trained using patch based pseudo anoma-
lies, and the model trained using skip frame based pseudo anomalies. The code is provided
at https://github.com/aseuteurideu/LearningNotToReconstructAnomalies.

4.2 Quantitative Results
4.2.1 Comparisons with the Baseline and SOTA Methods
Table 1 shows the AUC comparisons of our overall model with the existing state-of-the-
art (SOTA) approaches on Ped2 [22], Avenue [26], and ShanghaiTech [30] datasets. For
a fair comparison, we classify various SOTA methods into five categories: 1) Non-deep
learning approaches, 2) Object-centric methods which utilize object detectors to focus only
on the detected objects, 3) Prediction based methods that predict a future frame to detect
anomalies, 4) Reconstruction based approaches that use reconstruction of the input to detect
anomalies, and 5) Miscellaneous methods which are either the tasks not belonging to the
aforementioned categories or employing a combination of these. Our method falls in the
category of reconstruction based methods.

Comparing to the other approaches of the same category, i.e., reconstruction, our model
achieves the best performance on all three benchmark datasets. Interestingly, both of our
models trained with different kinds of pseudo anomalies achieve better performance than the
memory based networks, such as MNAD-Recon [35] and MemAE [9], considering that we
use a very similar network architecture with these approaches and a common goal of limiting
the AE capability of reconstructing anomalies. It may also be noted that our proposed pseudo
anomaly based trained models provide consistent gains over the respective baselines on all
three datasets. This clearly demonstrates the superiority of our proposed approach, i.e.,
training AEs by encouraging only normal data reconstructions assisted by pseudo anomalies.
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Methods Ped2 [22] Ave [26] Sh [30]
M

is
ce

lla
ne

ou
s

AbnormalGAN [39] 93.5% - -
Smeureanu et al. [41] - 84.6% -
AMDN [49, 50] 90.8% - -
STAN [19] 96.5% 87.2% -
MC2ST [25] 87.5% 84.4% -
Ionescu et al. [13] - 88.9% -
BMAN [20] 96.6% 90.0% 76.2%
AMC [34] 96.2% 86.9% -
Vu et al. [45] 99.21% 71.54% -
DeepOC [47] - 86.6% -
TAM-Net [14] 98.1% 78.3% -
LSA [1] 95.4% - 72.5%
Ramachandra et al. [38] 94.0% 87.2% -
Tang et al. [44] 96.3% 85.1% 73.0%
Wang et al. [46] - 87.0% 79.3%
OGNet [54] 98.1% - -
Conv-VRNN [27] 96.06% 85.78% -
Chang et al. [3] 96.5% 86.0% 73.3%

O
bj

ec
t-

ce
nt

ri
c MT-FRCN [11] 92.2% - -

Ionescu et al. [12] 1 94.3% 87.4% 78.7%
Doshi and Yilmaz [6, 7] 97.8% 86.4% 71.62%
Sun et al. [43] - 89.6% 74.7%
VEC [52] 97.3% 89.6% 74.8%
Georgescu et al. [8] 98.7% 92.3% 82.7%

Methods Ped2 [22] Ave [26] Sh [30]

N
on

de
ep

le
ar

ni
ng

MPPCA [15] 69.3% - -
MPPC+SFA [15] 61.3% - -
Mehran et al. [32] 55.6% - -
MDT [31] 82.9% - -
Lu et al. [26] - 80.9% -
AMDN [50] 90.8% - -
Del Giorno et al. [4] - 78.3% -
LSHF [57] 91.0% - -
Xu et al. [48] 88.2% - -
Ramachandra and Jones [37] 88.3% 72.0% -

Pr
ed

ic
tio

n Frame-Pred [24] 95.4% 85.1% 72.8%
Dong et al. [5] 95.6% 84.9% 73.7%
Lu et al. [28] 96.2% 85.8% 77.9%
MNAD-Pred [35] 97.0% 88.5% 70.5%

R
ec

on
st

ru
ct

io
n

AE-Conv2D [10] 90.0% 70.2% 60.85%
AE-Conv3D [58] 91.2% 71.1% -
AE-ConvLSTM [29] 88.10% 77.00% -
TSC [30] 91.03% 80.56% 67.94%
StackRNN [30] 92.21% 81.71% 68.00%
MemAE [9] 94.1% 83.3% 71.2%
MNAD-Recon [35] 90.2% 82.8% 69.8%
Baseline 92.49% 81.47% 71.28%
Ours: Patch based 94.77% 84.91% 72.46%
Ours: Skip frame based 96.50% 84.67% 75.97%

1Micro AUC reported in [8]

Table 1: AUC performance comparison of our approach with several existing SOTA methods
on Ped2, Avenue (Ave), and ShanghaiTech (Sh). Best and second best performances are
highlighted as bold and underlined, in each category and dataset.
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Figure 4: Evaluations to show the robustness of our method on a wide-range of hyperpa-
rameters values: (a) patch probability p given α = 0.5 and β = 0; (b) maximum patch size
α given p = 0.01 and β = 0; (c) maximum patch movement β given p = 0.01 and α = 0.5;
(d) skip frame probability p given s = {2,3,4,5}; (e) skip frame parameter s given p = 0.2.

Looking at the techniques in other categories, our proposed approach demonstrates a
comparable performance. Particularly, compared with the architectures that are designed
with complex components, such as attention, optical flow, adversarial training, LSTM, etc.,
for example, in BMAN [20], our method provides an overall comparable performance with-
out any bells and whistles. In addition, most methods in the object-centric category [6, 7,
8, 12, 43, 52] require pre-trained object detectors which make their applicability limited to
the set of predefined object categories. In contrast, while our method is generic and can be
applied to a variety of AE based architectures, it is also not constrained by object detectors.

4.2.2 Hyperparameters Evaluation

To evaluate the robustness against the hyperparameters introduced in this work, we provide
extensive analysis in Fig. 4 and Fig. 5. Only Ped2 is used to limit the span of experiments.

Fig. 4(a)-(c) show the evaluations for the hyperparameters used in patch based pseudo
anomalies. Typically, the model trained using static patch based pseudo anomalies (β = 0)
successfully outperforms the baseline (Fig. 4(a)-(b)) and moving the patch location (β > 0)
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Figure 5: (a) Pseudo anomalous frame samples generated using different patch techniques:
SmoothMixS [18], CutMix [53], SmoothMixC [18], and MixUp-patch (MixUp [56] with
CutMix patch); (b) Visualizations of patch based pseudo anomaly sequence with Smooth-
MixS and different intruder datasets; (c) AUC comparisons between different patch tech-
niques and intruder datasets.

further improves the overall performance (Fig. 4(c)). Additionally, we experiment using dif-
ferent patching techniques and intruder datasets. Pseudo anomalies generated using each of
these methods can be seen in Fig. 5(a) & (b). Fig. 5(c) shows the robustness of our method
across different types of patching techniques and intruder datasets in outperforming the base-
line. Interestingly, using Ped2 itself as an intruder dataset can also elevate the performance.
It can be attributed to the anomalous shapes remained after cropping normal objects as we
take patches from the Ped2 (Fig. 5(b)). Note that, we utilize only training sets of the intruder
datasets. More details on patching techniques are provided in the Supplementary.

Evaluations on a wide-range of hyperparameters used in skip frame based pseudo anoma-
lies, i.e., p and s, can be seen in Fig. 4(d)-(e). All experiments show performance gains over
the baseline, with maximum performance achieved with p = 0.2 and s = {2,3,4,5}.

4.3 Qualitative Results
For a deeper understanding on how our method improves the baseline, in this section, we pro-
vide a qualitative comparisons of the baseline, our models, and MemAE [9]. Fig. 6 shows
several input test images from the three datasets, the reconstructions produced by different
variants of our model, and the reconstruction error heatmaps. The heatmaps are generated
by computing the squared error of each pixel between the input frame and its reconstruction,
followed by min-max normalization. Based on the reconstruction error visualizations, it can
be observed that both of our models successfully highlight the anomalous region more than
the baseline by well reconstructing the normal data and poorly reconstructing the anomalous
data, which results in the superior anomaly discrimination capability of our models. Fur-
thermore, a few interesting observations may as well be noted. In the patch based method
examples, the backpack being tossed up in Avenue is completely vanished from the recon-
structions. Instead, our model reconstructs normal background. Similarly, reconstructions of
bicycle riders produced by skip frame based model in ShanghaiTech and Ped2 are dislocated
as if they were moving at a normal pedestrian pace. This demonstrates that, concurrent to
our training objective, the learned model attempts to reconstruct normal even if the input is
anomalous. More qualitative results are provided in the Supplementary.

Furthermore, compared with MemAE [9] on Ped2, our model retains the quality of nor-
mal reconstructions. As discussed in Section 1 & 2, in addition to limiting reconstructions
of anomalous regions, attributed to limited memory size, MemAE may also limit the re-
constructions of normal parts. Therefore, it is less discriminative. It may be noted that, as
MemAE official code provides only Ped2 trained model, we compare using only this dataset.
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Figure 6: Visualizations of input test frames, reconstructions (first row), and reconstruction
error heatmaps (second row) of the baseline, our model trained using patch based pseudo
anomalies, and our model trained using skip frame based pseudo anomalies on Shang-
haiTech, Avenue, and Ped2. Additionally, we provide comparison with MemAE [9] on
Ped2. The anomalous regions are marked with red boxes.
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Figure 7: Input test frames, reconstructions (first row), and reconstruction error heatmaps
(second row) on several examples when (a) both patch based and skip frame models failed,
(b) patch based model failed, and (c) skip frame based model failed.

To further understand the behavior of our models, Fig. 7 shows various cases of failures
produced by our model. Since the bicycle in Fig. 7(a) is too thin, both of our models,
as well as the baseline, have difficulties in detecting the anomaly. Riding a skateboard in
Fig. 7(b) is abnormal mainly because of its movement, but not because of its appearance
as the skateboard is almost invisible. Our patch based pseudo anomaly model tends to have
difficulties in such cases. The baseline and MemAE models also exhibit the same problem
in this frame. Walking with a stroller in Fig. 7(c) is abnormal in its appearance, while the
movement is normal. The skip frame based model tends to have the drawback in such case.
Overall, these observations indicate that more careful choices of pseudo anomalies may lead
to even better performances of the anomaly detection models.

5 Conclusion

We propose a training mechanism of an autoencoder (AE) assisted by pseudo anomalies for
one-class classification with the objective to reconstruct only normal data even if the input is
not normal. This consequently increases the reconstruction error of anomalous inputs with-
out restraining normal reconstructions, which leads to highly discriminative anomaly scores.
To carry out this training, we additionally propose two pseudo anomaly generation methods,
i.e., patch and skip frame based. Extensive evaluations on three challenging video anomaly
datasets demonstrate that our proposed training methodology is effective for improving the
capability of an AE to detect anomalies.

Acknowledgements. This work was supported by the Institute of Information & commu-
nications Technology Planning & Evaluation(IITP) grant funded by the Korea government
(MSIT) (No. 2019-0-01309, Development of AI Technology for Guidance of a Mobile Robot
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