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Abstract

Image matting is an important computer vision problem. Many existing matting
methods require a hand-made trimap to provide auxiliary information, which is very
expensive and limits the real world usage. Recently, some trimap-free methods have
been proposed, which completely get rid of any user input. However, their performance
lag far behind trimap-based methods due to the lack of guidance information. In this
paper, we propose a matting method that use Flexible Guidance Input as user hint,
which means our method can use trimap, scribblemap or clickmap as guidance infor-
mation or even work without any guidance input. To achieve this, we propose Pro-
gressive Trimap Deformation(PTD) scheme that gradually shrink the area of the fore-
ground and background of the trimap with the training step increases and finally be-
come a scribblemap. To make our network robust to any user scribble and click, we
randomly sample points on foreground and background and perform curve fitting. More-
over, we propose Semantic Fusion Module(SFM) which utilize the Feature Pyramid
Enhancement Module(FPEM) and Joint Pyramid Upsampling(JPU) in matting task for
the first time. The experiments show that our method can achieve state-of-the-art re-
sults comparing with existing trimap-based and trimap-free methods. Our demo is at
https://github.com/Charch-630/FGI-Matting.

1 Introduction
Image Matting is an important computer vision problem which aims to precisely predict an
alpha matte to separate the foreground object from the background. The problem has already
been studied by both academia and industry for years and has many applications in image
processing and film production. Ordinarily, the Image Matting task is modeled to solve the
following equation known as the Composition Equation.

Ii = αiFi +(1−αi )Bi, α ∈ [0,1] (1)
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Figure 1: Different guidance input. Trimap, scribblemap and clickmap.

where I denotes the input Image, α refers to the alpha matte that shows the opacity of the
foreground object, F and B represent the foreground and background respectively, i means
per pixel location. As only the input RGB image is given and the algorithm has to solve the
rest 7 values for each pixel, the problem is highly ill-posed.

In order to address this problem, most previous methods also require a hand-made trimap
to provide auxiliary information. The trimap uses white(α = 1), gray(α = 0.5) and black(α =
0) to define the foreground, transition area and background respectively. In the past few
years, many methods [1, 2, 7, 8, 9, 12, 19, 21] using trimap as input have achieved very good
accuracy and very few trimap-free methods can surpass them. However, when it comes to
application, drawing a suitable and correct trimap requires some skills and much time, which
is hassle for users who don’t have any prior knowledge about matting.

In the past few years, some trimap-free methods have been proposed. These meth-
ods [14, 20] hope to capture both semantic feature and texture details from the RGB input by
end-to-end training on large-scale dataset. However, their performance still lag far behind
trimap-based methods and these methods are controversial. The main reason is that without
guidance input, the network is confused about which part of the input image is foreground
area and thus affect subsequent detail feature extraction.

To solve this, we propose a matting method that use flexible guidance input as user hint,
which means our method works not only for trimap input, but also for scribble and click
input and even no guidance input(see Fig. 1). To achieve this, we introduce a data augmenta-
tion scheme called Progressive Trimap Deformation(PTD) that gradually shrink the area of
the foreground and background of the trimap with the training step increases, and the shape
of the foreground and background will eventually become scribbles. Moreover, to make
our network robust to any user scribble and click, we propose to randomly sample points
on foreground and background and perform curve fitting to simulate human input scribbles.
As a result, experiments show that our method can achieve state-of-the-art results compared
with previous trimap-based and trimap-free methods. Compared to previous trimap-based
matting methods, ours reduces the complexity of the guidance input while ensuring the ac-
curacy. When applied to real-world scene, for foreground objects of different difficulty,
users can flexibly choose guidance input of different complexity levels. For example, for
hard foreground objects, we can draw a trimap to give the network more details. For those of
moderate difficulty, we can draw scribbles to save some time. For simple and salient objects,
we just need a few clicks or even no guidance is needed. More importantly, our method can
easily be applied to train other trimap-based methods, making them only require scribble or
click input.

Moreover, in matting tasks, advanced semantics from deep levels of the backbone in-
dicate foreground category and profiles, while low-level features contain texture and detail
information. High-level semantic features can guide low-level features to correctly predict
the details of the foreground region. In order to extract advanced semantics efficiently, we
propose Semantic Fusion Module(SFM) inspired by FPEM [16] and JPU [18]. The SFM
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module can enhance semantic features by extracting multi-scale information from the back-
bone, then the advanced semantics of different scales can be joint upsampled and fused.

To sum up, our contribution mainly includes the following points:

• We propose a matting method based on Flexible Guidance Input, which means our
method can use trimap, scribblemap or clickmap as guidance information. Moreover,
Our method can even work without any guidance input. The experiments verify that
our method can achieve state-of-the-art results comparing with existing trimap-based
and trimap-free methods.

• We propose a data augmentation scheme called Progressive Trimap Deformation(PTD)
that gradually shrink the area of the foreground and background of the trimap during
training and eventually become a scribblemap. To make our network robust to any
user scribble and click, we randomly sample points on foreground and background
and perform curve fitting to mimic human input scribbles.

• In order to extract advanced semantics efficiently, we propose Semantic Fusion Mod-
ule(SFM) which utilize the FPEM [16] and JPU [18] modules in matting tasks for the
first time. The SFM module extract multi-scale information from the backbone and
then fuse and joint upsample them to enhance the advanced semantics.

2 Related Work
2.1 Trimap-based Matting methods.

Most existing matting methods require a trimap as an auxiliary input. Traditional mat-
ting methods can be categorized into two types: sampling based and propagation based.
Sampling-based methods [4, 5, 6] first model foreground and background statistics through
sampling pixels in the given foreground and background area, then solve the composition
equation to get alpha matte. Propagation based methods [2, 8] propose to propagate the al-
pha value from the given foreground and background region to unknown area. In the past
few years, deep learning based methods have been proved successful in solving image mat-
ting problems. Xu et al. [19] proposed an encoder-decoder structure with RGB image and a
trimap as input to predict alpha matte, and created a matting dataset with various foregrounds
composited to background images. Hou et al. [7] propose to use two decoder to predict fore-
ground color and alpha simultaneously. Li et al. [9] propose a u-net structure with a guided
contextual attention block and they achieved better results.

2.2 Trimap-free Matting methods.

Recently, some trimap-free matting approaches have emerged. Some of them propose to
train on large-scale dataset to completely get rid of trimap. Zhang et al. [20] use two decoder
branches to predict foreground and background classification respectively and then fuse them
together. Its input is only an RGB image. Qiao et al. [14] propose to use spatial and channel
attention to filter high-level semantics and appearance feature. Others find easier form of
guidance input instead of trimap or use semantic information. Liu et al. [11] propose to use
a course mask as guidance input. Chen et al. [3]propose to automatic generate trimap using
semantic information. Sengupta et al. [15] and Lin et al. [10] propose to take another photo
of the background as auxiliary input. Wei et al. [17] propose to use user clicks as foreground
and background hints.
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Figure 2: Our proposed network structure. Our network is based on a U-Net architecture [9].

3 Methodology
In this Section, we explain the details of our method. We first elaborate our Progressive
Trimap Deformation scheme, and then we introduce our Semantic Fusion Module.

3.1 Progressive Trimap Deformation

To find a simpler form of guidance input than trimap, Wei et al. [17] use clickmap to train
the network. The clickmap use white or black circles of radius r to indicate foreground or
background hint respectively. Intuitively, the definition of the clickmap is similar to trimap.
Both of them divide the image into absolute foreground, absolute background and transition
area. The difference is that clickmap provides far less guidance information than trimap. Wei
et al. [17] directly use clickmap to train the network and the result is better than trimap-free
methods but worse than trimap-based methods. Based on the above analysis, using clickmap
is much easier than trimap but the result is less accurate. This motivates us to train a network
that works for all kinds of guidance input between the trimap and clickmap(see Fig. 1).
We leave the trade-off between accuracy and difficulty to user, enabling flexible guidance
input. The more accurate the guidance input is, the better result it can achieve. To do this,
we gradually shrink the foreground and background area of the trimap with the training
step increases. In this way, the network can learn to leverage guidance information rather
than being restricted to the domains of trimap or clickmap. During the shrinking process, we
slowly reduce FG and BG area to make the network better adapt to less guidance information,
and this gentle process can make the network converge better. In our method, we shrink the
trimap to scribblemap during training. Scribblemaps are more varied in shape compared
with clickmaps, which can bring more challenge to the network.

3.1.1 Network Architecture

Our network is based on a U-Net architecture [9] (see Fig. 2) and we use ResNet34 as our
backbone. The input RGB image is concatenated with a one-channel guidance map, which
can be a trimap, scribblemap or clickmap. In the encoder part, the stride-1, stride-2 and
stride-4 output of the encoder are fed into shortcut blocks. The shortcut blocks consist of
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Figure 3: The process of our proposed Progressive Trimap Deformation.
two stride-1 convolution layers followed by batch normalization and Relu. These shortcut
blocks are used to process low-level texture features. To leverage multi-scale information
from the backbone, stride-4, stride-8, stride-16 and stride-32 output of the encoder are fed to
our proposed SFM module to enhance high-level semantic features. In the decoder part, we
use dilated convolutions to upsample the feature map. Since the high-level semantic feature
indicate foreground category and profiles, we can use it to filtrate redundant low-level texture
feature. Thus we use spatial attention module to process low-level features from the shortcut
blocks.

3.1.2 Simulating User Scribbles.

As mentioned above, we propose to shrink the trimap to scribblemap during training. To
implement this process, we first need to use trimap to generate the target scribblemap(see
Fig. 3). In each training step, the same as the previous trimap-based matting methods, we
generate the trimap by using dilation and erosion operation on groundtruth alpha matte.
Then we randomly select a total of up to 10 points on foreground and background area of
each trimap. To avoid the points being too close to each other, we set a threshold of 50 pixels
between each two points. After that, we use FG points and BG points to do curve fitting
respectively. In detail, for FG points, we iteratively retrieve 3 points from the sampled FG
points at a time. Then we use a cubic function to fit the curve through the 3 points. Finally
we draw all fitted curves with a certain thickness on one graph to get SFG. Using the same
way, we can get SBG. Now we can make sure that most part of the scribbles are in FG or BG
area respectively, but we still have to deal with the excess part. So we simply use MaskFG
and MaskBG from the trimap to restrict SFG and SBG using function PFG = SFG ∗MaskFG and
PBG = SBG ∗MaskBG. PFG and PBG are the final generated FG scribbles and BG scribbles.

3.1.3 Foreground and Background Deformation.

After the foreground scribble mask and background scribble mask has been generated, we
then generate the scribblemap using the function below.

G = 0.5+0.5∗PFG +(−0.5)∗PBG (2)
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Figure 4: The architecture of FPEM [16] and JPU [18] module.
To gradually shrink the trimap to scribblemap, we can simply change the thickness of the

scribbles during training. At the beginning of training, the scribbles are thick enough to
cover all FG and BG regions, which makes our guidance map almost the same as the trimap.
As the training step increases, we gradually decrease the thickness of the scribbles. As we
can see in Fig. 3, the area of FG and BG are gradually reduced. In this way, we gradually
give less guidance information to the network during training which enhance the network’s
ability to distinguish the foreground from the background.

3.1.4 Loss function.

Our loss function is based on [17, 20]. We use three types of loss functions.

L(α̂,α) =
1
|K| ∑i∈K

(α̂i−αi)
2 +

1
|T | ∑i∈T

|α̂i−αi|+Lgrad(α̂,α) (3)

Where K denotes foreground and background region and T denotes transition region. α̂

and α indicate the predicted alpha matte and ground-truth. We apply `2 loss in foreground
and background region and apply `1 loss in transition region. The `2 loss in foreground and
background region improves the prediction of object contour and the `1 loss in transition
area helps the detail prediction. At the beginning of training, `2 loss is more sensitive than
`1 loss, which makes the network focus on foreground and background areas. As loss begins
to converge, `1 loss will become more sensitive than `2 loss, the network will focus on the
details in transition area.

Lgrad(α̂,α) =
1
|I|∑i∈I

|5 (α̂i)−5(αi)| (4)

Lgrad is defined as `1 loss on the gradient of α̂ and α . I represents the whole image
area. Lgrad makes the network produce sharper alpha mattes. We compute the gradient by
convolving the alpha matte with first-order Gaussian derivative filter.

3.2 Semantic Fusion Module
In matting tasks, advanced semantics from deep levels of the backbone indicate foreground
category and profiles, which can guide low-level features to correctly predict the details of
the foreground region. In order to extract advanced semantics efficiently, we propose to
leverage multi-scale information from the backbone. Another problem is that in order to
obtain a high-resolution output alpha matte, the decoder usually use dilated convolution to
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Table 1: Results on Composition-1k test set. We use dashlines to divide these methods into
three categories, from top to button: trimap-based, trimap-free and ours.

Methods SAD MSE Grad Conn
KNN Matting[2] 175.4 0.010 124.1 176.4
ClosedForm[8] 168.1 0.091 126.9 167.9
Alphagan[13] 90.9 0.018 93.9 95.2
DIM[19] 48.8 0.008 31.0 50.3
IndexNet Matting[12] 45.8 0.013 25.9 43.7
AdaMatting[1] 41.7 0.010 16.9 -
Context-Aware Matting[7] 35.8 0.082 17.3 33.2
GCA Matting[9] 35.3 0.009 16.9 32.5
GCA Matting(Scribblemap_test) 48.7 0.025 22.9 39.5
GCA Matting(Clickmap_test) 53.2 0.029 24.7 41.4
Late Fusion[20] 58.3 0.011 41.6 59.7
HAttMatting[14] 44.0 0.007 29.2 46.4
Ours(Trimap_test) 30.19 0.0061 13.07 26.66
Ours(Scribblemap_test) 32.86 0.0090 14.18 29.09
Ours(Clickmap_test) 34.67 0.0112 15.45 30.96
Ours(No_guidance_test) 36.36 0.0141 15.23 32.76

upsample the feature map, which brings heavy computation. To solve these two problems,
we propose Semantic Fusion Module(SFM) which is composed of two modules, Feature
Pyramid Enhancement Module(FPEM) [16] and Joint Pyramid Upsampling(JPU) [18](see
Fig. 4). For the first time, we use the FPEM and JPU modules in matting tasks. The FPEM is
a cascadable U-shaped module consists of up-scale enhancement and down scale enhance-
ment using the feature pyramid. By fusing the low-level and high-level information, FPEM
is able to enhance multi-scale features. In JPU module, four separable convolutions with
different dilation rates are used to extract information from multi-level feature map. The
JPU module is designed to obtain a feature map similar to the result of using dilated con-
volution but with less computation cost. In SFM module, we simply cascade FPEM and
JPU together(see Fig. 2). Thus we can first use FPEM to extract multi-scale information,
then use JPU to upsample the feature maps with less computational complexity and better
performance.

4 Experiments
In this section, we report the test results of our method. We compare our method with
existing matting methods on DIM dataset [19] and conduct an ablation study of our method.

4.1 Implementation Details

We simply follow GCA-matting[9]’s training strategy and apply their data augmentation
methods during training. The data augmentation operations include random affine transfor-
mation, random cropping, random jitters and random resize and our PTD scheme. The input
resolution of the network is 512 ∗ 512. During training, we set the initial thickness of the
curves to be 800 and gradually decrease to 40 before the step of 530k. The relationship be-
tween the thickness and step is an exponential function which makes the thickness decreases
slower at the later stage of training to avoid performance drop on trimap. After that, we then
train the network with thickness of 40 for 70k steps. The base learning rate is set to 5∗10−4

with cosine learning rate scheduler. We set the β1 and β2 of the Adam optimizer to 0.5 and
0.999. We use batch size of 10 in total on 2 GPUs.
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Figure 5: Visual comparisons on Composition-1k

4.2 Experiments on DIM Dataset

The DIM dataset[19] contains 43100 synthetic image with 431 unique foreground objects.
The Composition-1k test set consists of 1000 synthetic images. In addition to testing with
trimap, we also use the trimap in Composition-1k to generate scribblemap test set and
clickmap test set in the same way as in our PTD. To obtain clickmaps, we simply draw
circles of diameter 40 with 1 and 0 on foreground and background sampled points respec-
tively. We also test our network without guidance information by using one-channel tensor
with a value of 0.5 on each pixel as guidance input.

We follow the previous methods to evaluate the results by using Sum of Absolute Dif-
ferences(SAD), Mean Squared Error(MSE), Gradient(Grad) and Connectivity(Conn) met-
rics, and all metrics are to be minimized. As shown in Table. 1, compared with previ-
ous trimap-based methods, our method outperforms all previous methods when tested with
trimap. When using clickmap as guidance information, our method is still superior to GCA-
Matting in the SAD metric. Moreover, the previous trimap-based methods all need an accu-
rate trimap, while ours can get a better result with just a few clicks or scribbles. We also show
the results of GCA-matting tested on our generated scribblemap test set and clickmap test
set in Table. 1. When both tested on scribblemap or clickmap, our method can outperform
GCA-Matting on all metrics. This is largely due to our PTD scheme, while GCA-matting
is trained only on trimap. Compared with previous trimap-free methods, ours(No Guidance
test) surpasses previous state-of-the-art methods by a large margin. The reason is mainly
because previous trimap-free methods didn’t use any guidance information in the training
stage while ours gradually reduce guidance information.

When comparing our method using different guidance input, we can find that the results
get worse as the guidance information decreases. The experiments prove that our method
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Table 2: Our method tested using different Scribblemap test sets and Clickmap test sets.
Scribblemap Clickmap

Num SAD MSE Grad Conn Num SAD MSE Grad Conn
1 32.86 0.0090 14.18 29.09 1 34.67 0.0112 15.45 30.96
2 33.08 0.0093 14.22 29.32 2 34.45 0.0109 15.24 30.74
3 32.70 0.0086 14.10 28.91 3 34.46 0.0110 15.27 30.74
σ 0.1557 0.00029 0.0498 0.1678 σ 0.1014 0.00012 0.0927 0.1037

Table 3: Ablation study of our method. Baseline: ResNet34 U-net with FPN structure.
Num Method SAD MSE Grad Conn
1 Baseline + Trimap_train + Trimap_test 31.87 0.0068 13.48 28.55
2 Baseline + FPEM + Trimap_train + Trimap_test 32.94 0.0069 14.42 29.85
3 Baseline + JPU + Trimap_train + Trimap_test 33.48 0.0072 14.89 30.49
4 Baseline + SFM + Trimap_train + Trimap_test 30.99 0.0064 12.81 27.54
5 Baseline + SFM + Trimap_train + Scribblemap_test 44.33 0.0203 16.40 39.12
6 Baseline + SFM + Trimap_train + Clickmap_test 48.53 0.0250 17.84 42.92
7 Baseline + SFM + Trimap_train + No_guidance_test 52.97 0.0323 18.56 47.43
8 Baseline + PTD + Trimap_test 32.86 0.0069 14.01 29.92
9 Baseline + PTD + Scribblemap_test 35.96 0.0118 14.79 32.92
10 Baseline + PTD + Clickmap_test 37.44 0.0138 15.41 34.50
11 Baseline + PTD + No_guidance_test 38.67 0.0165 15.34 35.91
12 Baseline + SFM + PTD + Trimap_test 30.19 0.0061 13.07 26.66
13 Baseline + SFM + PTD + Scribblemap_test 32.86 0.0090 14.18 29.09
14 Baseline + SFM + PTD + Clickmap_test 34.67 0.0112 15.45 30.96
15 Baseline + SFM + PTD + No_guidance_test 36.36 0.0141 15.23 32.76

can enhance the network’s ability to make full use of the guidance information to distinguish
the foreground from the background. The more accurate the guidance input is, the better
result it can achieve. Even without any guidance information, our method still shows great
robustness. We provide some comparison results in Fig. 5. We also test our method by using
real images, the results are shown in Fig. 6.

We also test our method using different generated scribblemap test sets and clickmap
test sets of Composition-1k. The results are in Table. 2. The scribblemaps in different
scribblemap test sets of the same image have the same thickness but different shapes, so do
clickmaps. The standard deviation of all metrics in "scribblemap" column are very small,
and "clickmap" column has the same phenomenon, proving that our method is robust to
guidance maps of the same level(e.g. scribblemap, clickmap) but with different shape.

4.3 Ablation Studies

To show the effectiveness of our SFM and PTD, we conduct ablation studies in Table. 3.
Compare 1,2,3 and 4, we can find that the SFM module can improve the network’s perfor-
mance on trimap, while using only FPEM or JPU will make the performance worse. Com-
pare 8,9,10,11 and 12,13,14,15, we can also find that SFM can enhance the performance
when training with PTD. Compare 4 to 12, the results show that when both tested on trimap,
training with PTD is slightly better than training with trimap. This is probably because our
PTD scheme can enhance the network’s ability to leverage guidance information. Moreover,
when testing with scribbles, clicks and no guidance information, our PTD scheme(13,14,15)
can achieve far better results than training with trimap(5,6,7). The results show that our PTD
scheme can ensure the performance on trimap, and can still achieve high accuracy with re-
duced guidance information. Note that we only shrink the trimap to scribblemap, but the
performance on clickmap and no guidance is also enhanced. This is probably because dur-
ing the shrinking process, the gray areas continue to expand, and the network is forced to
leverage all given FG and BG information and improve the performance in gray areas. When
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Figure 6: Visual results of real images. Each column from left to right: input images, guid-
ance map, predicted alpha matte, foreground object result.

Table 4: Results of our PTD applied on GCA and DIM matting. Note that the GCA and DIM
in this table are based on our own training results.

GCA DIM
SAD MSE Grad Conn SAD MSE Grad Conn

Trimap_test 35.03 0.0086 16.54 30.78 56.77 0.0166 27.34 50.37
Scribblemap_test 46.92 0.0205 19.92 36.95 81.98 0.0523 33.59 65.90
Clickmap_test 52.57 0.0251 21.35 39.46 87.02 0.0596 35.17 68.83
No_guidance_test 60.15 0.0359 22.86 44.06 90.10 0.0654 35.52 71.32

GCA+PTD DIM+PTD
SAD MSE Grad Conn SAD MSE Grad Conn

Trimap_test 32.71 0.0082 14.01 27.78 52.50 0.0150 29.42 46.11
Scribblemap_test 34.08 0.0111 13.93 28.65 61.80 0.0298 31.07 51.79
Clickmap_test 37.70 0.0172 14.90 30.98 64.12 0.0336 31.83 53.08
No_guidance_test 41.05 0.0242 15.63 32.57 65.67 0.0370 31.63 54.16

tested with less guidance information, the network will still make full use of the given hints
and try to predict the alpha matte in gray areas.

We also apply our PTD scheme on other trimap-based methods to enhance their perfor-
mance on multiple kinds of guidance inputs. In Table. 4, we show the results of applying
our PTD on GCA and DIM matting. Experiments show that our PTD can improve the
performance of GCA and DIM on trimap, and significantly enhance the performance on
scribblemap, clickmap and no extra guidance.

5 Conclusion

In this paper, we propose a matting method that use flexible guidance input as user hint. Our
method can use trimap, scribblemap or clickmap as guidance information or even work with-
out any guidance input. To achieve this, we introduce our Progressive Trimap Deformation
scheme and Semantic Fusion Module. The experiments show that our method can achieve
state-of-the-art results compared with existing trimap-based and trimap-free methods.
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