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Abstract

We tackle a novel few-shot learning challenge, few-shot semantic edge detection,
aiming to localize boundaries of novel categories using only a few labeled samples.
Reliable boundary information has been shown to boost the performance of semantic
segmentation and localization, while also playing a key role in its own right in object
reconstruction, image generation and medical imaging. However, existing semantic edge
detection techniques require a large amount of labeled data to train a model. To overcome
this limitation, we present Class-Agnostic Few-shot Edge detection Network (CAFENet)
based on a meta-learning strategy. CAFENet employs a semantic segmentation module
in small-scale to compensate for the lack of semantic information in edge labels. To ef-
fectively fuse the semantic information and low-level cues, CAFENet also utilizes an at-
tention module which dynamically generates multi-scale attention map, as well as a novel
regularization method that splits high-dimensional features into several low-dimensional
features and conducts multiple metric learning. Since there are no existing datasets for
few-shot semantic edge detection, we construct two new datasets, FSE-1000 and SBD-
5%, and evaluate the performance of the proposed CAFENet on them. Extensive simula-
tion results confirm that CAFENet achieves better performance compared to the baseline
methods using fine-tuning or few-shot segmentation.

1 Introduction

Semantic edge detection aims to identify pixels that belong to boundaries of predefined cat-
egories. Boundary information has been shown to be effective for boosting the performance
of semantic segmentation [3, 5] and localization [31, 38]. It also plays a key role in applica-
tions such as object reconstruction [11, 43], image generation [18, 32] and medical imaging
[1, 22]. Early edge detection algorithms interpret the problem as a low-level grouping prob-
lem exploiting hand-crafted features and local information [4, 28]. Recently, there have been
significant improvements in edge detection thanks to advances in deep learning. Moreover,
beyond previous boundary detection, category-aware semantic edge detection became possi-
ble [2, 17, 40]. However, it is still not feasible to train deep neural networks without massive
amounts of annotated data.

To overcome the data scarcity issue in image classification, few-shot learning has been
actively discussed in recent years [12, 20]. Few-shot learning algorithms train machines to
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Figure 1: Network architecture overview of proposed CAFENet. ResNet-34 encoders E ) ~ E® extract multi-
level semantic features. The segmentator module generates a segmentation prediction using query feature from E(*)
and prototypes Prg, Pgg from support set features. Small bottleneck blocks S© ~ S™ transform the original image
and multi-scale features from encoder blocks to be more suitable for edge detection. Dynamic Attention Modules
A0 L A® dynamically generate attention map in every position and every resolution. Decoder DO ~ DM take
attentive multi-scale features to give edge prediction.

learn previously unseen classification tasks using only a few labeled examples. More re-
cently, the idea of few-shot learning is applied to computer vision tasks requiring highly
laborious and expensive data labeling such as semantic segmentation [9, 30] and object de-
tection [13, 19]. In this paper, we consider a novel few-shot learning challenge, few-shot se-
mantic edge detection, to detect the semantic boundaries using only a few labeled samples.
Through experiments, we show that few-shot semantic edge detection can not be simply
solved by fine-tuning a pretrained semantic edge detector or utilizing a nonparametric edge
detector in a few-shot segmentation setting. To tackle this elusive challenge, we propose a
class-agnostic few-shot edge detector (CAFENet) and present new datasets for evaluating
few-shot semantic edge detection.

Fig. 1 shows the architecture of the proposed CAFENet. Since the edge labels do not
contain enough semantic information due to the sparsity of labels, the performance of the
edge detector severely degrades when the training dataset is very small. To overcome this,
we jointly train the segmentation module with segmentation labels generated from given
boundary labels. Although the previous works of [15, 42] show that joint multi-task learning
with segmentation and edge detection can improve the performance, ours is the first attempt
to use the segmentator in low-resolution to supplement semantic information for edge detec-
tion.

The main contributions of this paper are as follows. 1) We formulate a novel problem:
few-shot semantic edge detection that aims to perform semantic edge detection on previ-
ously unseen objects using a few training examples. 2) We devise a few-shot semantic edge
detector, CAFENet, which jointly trains a metric-based segmentator with an edge detector
to effectively exploit the few labeled samples. 3) We propose multi-split matching regular-
ization (MSMR) to regularize the embedding space and the metric-based segmentator. 4)
We build a dynamic attention module (DAM) that dynamically generates multi-scale atten-
tion maps to effectively fuse the semantic information and local cues to make accurate but
category-aware edge prediction. 5) We introduce two new datasets of SBD-5' and FSE-1000
for few-shot edge detection and show that CAFENet outperforms baselines by large margins.


Citation
Citation
{Dong and Xing} 2018

Citation
Citation
{Wang, Liew, Zou, Zhou, and Feng} 2019

Citation
Citation
{Fu, Zhang, Zhang, Yan, Chang, Zhang, and Sun} 2019

Citation
Citation
{Karlinsky, Shtok, Harary, Schwartz, Aides, Feris, Giryes, and Bronstein} 2019

Citation
Citation
{Gong, Liang, Li, Chen, Yang, and Lin} 2018

Citation
Citation
{Zhen, Wang, Zhou, Li, Shen, Shang, Fang, and Quan} 2020


PARK, SEO, MOON: CAFENET 3
2 Related Work
2.1 Few-shot Learning

To tackle the few-shot learning challenge, many methods have been proposed based on meta-
learning. Optimization-based methods [12, 25] train the meta-learner which updates the
parameters of the actual learner so that the learner can easily adapt to a new task within a few
labeled samples. Metric-based methods [27, 29, 36] train the feature extractor to assemble
features from the same class together on the embedding space while keeping features from
different classes far apart.

2.2 Few-shot Semantic Segmentation

Few-shot segmentation aims to perform semantic segmentation using a few labeled samples.
OSLSM of [26] adopts a two-branch structure: conditioning branch generating element-
wise scale and shift factors and segmentation branch performing segmentation with task-
conditioned features. Co-FCN [24] also utilizes a two-branch structure. The globally pooled
prediction is generated in the conditioning branch and fused with query features to predict
the mask in the segmentation branch. CANet of [41] adopts masked average pooling to gen-
erate the global feature vector, and concatenates it with every location of the query feature
for dense comparison. PANet of [30] introduces prototype alignment, predicting the segmen-
tation mask of support samples using query prediction results as labels of query samples, for
regularization. PMM of [35] utilizes multiple prototypes with Expectation-Maximization
(EM) process to effectively leverage the semantic information from the few labeled samples.

2.3 Semantic Edge Detection

Semantic edge detection aims to find the boundaries of objects from an image and classify
the objects at the same time. The history of semantic edge detection [2, 17] dates back to
the work of [23] which adopts the support vector machine as a semantic classifier on top
of the traditional canny edge detector. Recently, many semantic edge detection algorithms
rely on deep neural networks. CASENET of [39] addresses the semantic edge detection as a
multi-label problem where each boundary pixel is labeled into categories of adjacent objects.
DFF of [17] proposes a novel way to leverage multi-scale features. The multi-scale features
are fused by weighted summation with fusion weights generated dynamically for each image
and each pixel. RPCNet of [42] and PGN of [15] propose to jointly train segmentation mod-
ule with edge detector in original resolution to improve the performance of edge detection.
AG-CRFs of [34] considers attention-gated CRF to fuse multi-scale features. BAN of [14]
employs a channel-wise attention mechanism to preserve informative features. Our method
also utilizes a segmentation module and attention mechanism. However, CAFENet utilizes a
metric-based few-shot segmentator in low-resolution and relies on segmentation prediction
to supplement semantic information to the edge detector. For the attention mechanism, ex-
isting attention methods are only applicable to non-semantic edge detection problems. To
solve the arduous semantic edge detection problem, we model a novel attention module that
generates a multi-scale spatial-wise attention map to highlight semantically meaningful re-
gions.

3 Problem Setup

For few-shot semantic edge detection, we use train set Dy, and test set D;.s; consisting of
non-overlapping categories C4i, and Cyoyr. The model is trained only using C,4,, and the
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Figure 2: Example results on SBD-5". Columns from left to right: Input image, total prediction, and partial pre-
dictions from each feature split. The total prediction is obtained by matching the high-dimensional prototypes with
the high-dimensional feature vectors. To generate partial predictions, we equally split feature vectors into 4 low-
dimensional sub-vectors as done in MSMR and match the low-dimensional feature sub-vectors with corresponding
prototype sub-vectors.

test categories Cy.sr are never seen during the training phase. For meta-training of the model,
we adopt episodic training. Each episode is composed of a support set with a few labeled
samples and a query set. When an episode is given, the model adapts to the given episode us-
ing the support set and detect semantic boundaries of the query set. In this work, we address
N.-way N;-shot semantic edge detection. In this setting, each training episode is constructed
by N, classes sampled from C;,4,. When N, categories are given, Ny support samples and
N, query samples are randomly chosen from Dy, for each class. In evaluation, the perfor-
mance of the model is measured using test episodes. The test episodes are constructed in
the same way as the training episodes, except that N, classes and corresponding support and
query samples are sampled from unencountered C;.s and D;,y.

4 Method

We propose a novel algorithm for few-shot semantic edge detection. Fig. 1 illustrates the
network architecture. The proposed CAFENet adopts the semantic segmentation module to
compensate for the lack of semantic information in edge labels. The predictive segmentation
mask is used to generate attention maps which are applied to multi-scale skip connection
features. The final edge prediction is generated using attentive multi-scale features.

4.1 Semantic Segmentator

Most previous works on semantic edge detection directly predict edges from the given input
image. However, direct edge prediction is challenging when only a few labeled samples are
given. To overcome this difficulty, we combine a semantic segmentation module with an
edge detector. With the assistance of the segmentation module, CAFENet can effectively
localize the target object. For few-shot segmentation, we employ the metric-learning which
utilizes prototypes for foreground and background as done in [9, 30]. Given the support
set § = {x7,y{}¥, the encoder E extracts features {E(x{)}*, from S. Also, given support
edge labels {y! }f\i |» we generate the dense segmentation mask {M; }fV; , using a rule-based
preprocessor; pixels inside the boundary are considered as foreground pixels. Using down-
sampled segmentation labels {m] }f\i |» the prototype for foreground pixels Pr¢ is computed
as Prg = N% ﬁ YiYE; (xl‘)ml‘ ; Where j indexes the pixel location and H, W denote height
and width. Likewise, the background prototype Pgg is computed using negative mask 1 —
m; ;. The probability that pixel j belongs to foreground for the query sample xl.q is

exp(—1d(E;(x!), Prc))

q q.
ply; .= FGlx! ,E =
iy i3 E) exp(—1d(E;(x{),Prg)) + exp(—1d(E;(x{), Psc))

ey
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where d(-,-) is squared Euclidean distance between two vectors and 7 is a learnable tem-
. N, .
perature parameter. With query samples {xq} | and the down-sampled segmentation labels

{m .|, the segmentation loss Lg,, is calculated as the mean-squared error (MSE) loss be-
tween predicted probabilities and the down-sized segmentation mask.

1 1 Ny HxW

q \2
LSeg N HXWIZI jZ { _)lj —FG|X ) miJ) } (2)

Note that the segmentation mask is generated in a down-sized scale so that any pixel
near the boundaries can be classified into the foreground to some extent, as well as the
background. Therefore, we regard the problem as regression using the MSE loss.

4.2 Multi-Split Matching Regularization

The metric-based few-shot segmentation method utilizes distance metrics between the high-
dimensional feature vectors and prototypes. However, this approach is prone to overfitting
due to the massive number of parameters in feature vectors. To get around this issue, we
propose a novel regularization method: multi-split matching regularization (MSMR). In
MSMR, high-dimensional feature vectors are randomly split into several low-dimensional
feature vectors, and the metric learning is conducted on each vector split. With the query
feature E (x7) € ROW*H where C is channel dimension, E(x{) is randomly divided into K

sub-vectors {E*(x!)}X_ along channel dimension. Each sub-vector EX(x?) is in R XWxH
Likewise, the prototypes are also disassembled into K corresponding sub-vectors {PFG} p

and {Pf;}K . For the k" sub-vector of query feature EX(x?), the probability that the ]’h
pixel belongs to the foreground class is computed as follows:

exp(—td(EX(xd), P ;)
exp(—td(EX(x), P ) + exp(—d(EX(xf), Phs))

PrO? = FGI:E) = 3)

The prediction result of K sub-problems are reflected on learning by combining the split-
wise losses to original loss in Eq. 2. The final segmentation loss is calculated as

™=

Ny HxW
N AY) a2
Lgeg = N <HXW ; ;1 {(pij —miJ) + (Pt/ miﬁj) b )

Il
-

I

where p; j = p(y]; = FGx[3E), pfj = pk(y;{j =FG|x;E).

In Fig. 2, we evaluate the quality of partial predictions generated from 4 low-dimensional
sub-vectors to figure out the effect of MSMR. While the model trained with previous met-
ric learning shows inconsistent partial predictions, the model trained with MSMR shows
consistent partial predictions and generates a better total prediction as well.

4.3 Dynamic Attention Module

In few-shot edge detection, it is important to appropriately utilize semantic information and
low-level details together. As shown in Fig. 1, we adopt the nested encoder structure to
exploit rich hierarchical features. The multi-scale side outputs from encoder E M ~E® are
post-processed through bottleneck blocks § M~ 5™, We employ the Atrous Spatial Pyramid
Pooling (ASPP) block of [6] in front of S3). We have empirically found that locating ASPP
there shows better performance.


Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2017


6 PARK, SEO, MOON: CAFENET

Input image

Encoder side-output Pixel-wise dynamic attention Decoder input

Figure 3: An example of activation map of [37] before and after pixel-wise semantic attention (warmer color has
higher value). As seen, the attention mechanism makes encoder side-outputs attend to the regions of the target
object (horse in the figure).

D Even though the multi-scale features provide local de-
tails, it is difficult to localize the target object from the
multi-scale features as shown in Fig. 3. To appropriately
fuse semantic information and low-level cues, we propose
to build Dynamic Attention Module(DAM) which gener-
ates attention values for every pixel location, in every res-
olution. Using the attention maps generated by DAM, the
multi-scale features are refined to support semantic edge
detection. As shown in Fig. 4, Our DAM consists of 5
convolutional blocks, and each block AD is composed of
3 successive convolutional layers. AW takes the feature
from SU) and AU*1 as inputs, and outputs the attention
map a¥) and the feature. Especially, the block A(®) in the lowest scale takes a concatenated
feature vector [E*(x?),8*(x?), p(x?)] as the input where p(x{) contains predictive distribution
for segmentation. To the best of our knowledge, this is the ﬁrst attempt to adopt a bottom-top
attention module to generate multi-scale spatial-wise attention map. For applying the atten-
tion map (), multi-level side output from S is pixel-wisely weighted by 1+ a() to obtain
SO, selectively highlighting the semantically important region. We visualize the effect of
semantic attention of DAM in Fig. 3. Interestingly, the attention map a') in low resolution
highlights the semantically related region, while the counterpart in high resolution focuses
on local details like sudden changes in pixel values.

(5D, Convi®, Conv2®] AD

a®

st-0 —0)

[S®, Conv1+D), Conv2(+D)

Figure 4: Architecture of DAM

4.4 Semantic Edge Detector

As shown in Fig. 1, the decoder network is composed of five consecutive convolutional
blocks. The outputs of decoder blocks DY ~ D@ are bilinearly upsampled by two and
passed to the next block. Similar to [10], the up-sampled decoder outputs are then con-
catenated to the skip connection features from the previous decoder block and the attended
multi-scale features S(°) ~ §®). The hierarchical decoder network in turn reﬁnes the outputs
of the previous decoder blocks and ﬁnally produces the edge prediction §7 of query samples

q . Given a query set Q = {xl , yl l 7., the cross-entropy loss is computed as
Legp =— Z{Zlogy, +Zloglf (5)
i=1 jeyy Jjey-

where Y, and Y_ denote the sets of foreground and background pixels. To produce crisp
boundaries, cross-entropy loss is combined with Dice loss of [§]

+y.(v1)?
Lo — Y (& LOLP 4200 ©)

09 1
i=1 2):1 Vi jYij
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Metric | Method (5-shot) SBD-5° SBD-5! SBD-52 SBD-53 Mean
DFF + Finetune 887 925 | 554 863 | 491 808 | 295 7.83 | 557 845
ME PGN + Finetune 14.83 19.11| 16.89 19.95| 16.13 19.24 | 13.94 1681 | 1545 18.78
(ODS) PANet + Sobel 18.13  19.47| 23.17 23.33| 21.04 21.04| 17.75 17.78 | 20.02 20.41
PMM + Sobel 31.18 3173 | 2923 29.99| 29.38 29.91| 2565 26.03| 28.86 29.42

CAFENet (Ours) | 34.92 39.02| 40.83 4252 | 34.75 3841 | 32.16 3554 | 35.67 38.87

DFF + Finetune 791 9.17 3.71 6.77 3.31 7.04 1.55 6.14 412 728

PGN +Finetune 10.81 1296| 11.49 13.67 | 10.73 1246 | 8.43 10.18 | 1037 1232
AP PANet + Sobel 11.56  11.52| 1478 14.10 | 1240 11.84| 946  9.29 12.05 11.69
PMM + Sobel 22777 2326| 2021 20.76 | 19.85 2038 | 17.56 17.94| 20.10 20.59
CAFENet (Ours) 31.29 3541| 3595 38.92| 29.32 3341 | 25.89 29.73| 30.61 34.37

Table 2: Comparison results on SBD-5/. Both 5-shot (right) and 1-shot (left) performances are considered.
where j denotes the pixels of a label. The final loss for meta-training is given by Lyi,q =
M Lseg + Mo Leg + A3Lpjce, Where A1, A, A3 are hyperparameters to balance various losses.
S Experiments
5.1 Datasets

SBD-5': based on the SBD dataset of [16] for Metic | Method l-shot  5-shot
semantic edge detection, we propose a new SBD-5" | . | PANet+ Sobel 3868  39.83
dataset. With reference to the setting of Pascal-5¢, 20 (ops) | PMM + Sobel 3239 3653

. ctiing o O CAFENet (Ours) | 57.88  59.52
classes of the SBD dataset are divided into 4 splits. In PANet + Sobel 2837 2928
the experiment with split i, 5 classes in the i' split are ~ AP | PMM + Sobel 2782 3345

CAFENet (Ours) 58.78 60.93
Table 1: Comparison results on FSE-1000.

used as G5, While the remaining 15 classes are uti-
lized as GCyqin. The training set Dy, is constructed
with all image-annotation pairs whose annotation includes at least one pixel from the classes
in G4 For each class, the boundary pixels which do not belong to that class are considered
as background. The test set D,y is also constructed in the same way as Dy 4in, using Cyeg
this time. We conduct 4 experiments with each split of i = 0 ~ 3, and report the performance
of each split as well as the averaged performance.

FSE-1000: the datasets used in previous semantic edge detection research such as SBD
of [16] and Cityscapes of [7] are not suitable for few-shot learning as they have only 20 and
30 classes, respectively. We propose a new FSE-1000 dataset based on FSS-1000 of [33].
FSS-1000 is a dataset for few-shot segmentation and composed of 1000 classes and 10 im-
ages per class with foreground-background segmentation annotation. From the images and
segmentation masks of FSS-1000, we build FSE-1000 by extracting boundary labels from
segmentation masks. For dataset split, we split 1000 classes into 800 training classes and
200 test classes. Detailed class configuration can be found in the Supplementary Material.

5.2 Evaluation Settings

We use two evaluation metrics to measure the few-shot semantic edge detection performance
of our approach: the Average Precision (AP) and the F-measure (MF) at optimal dataset
scale (ODS). In evaluation, we compare the unthinned raw prediction results and the ground
truths without Non-Maximum Suppression (NMS) following [2, 40]. For the evaluation of
edge detection, we set a matching distance tolerance to be zero which is an error threshold
between the prediction result and the ground truth. In addition, we evaluate not only the
positive predictions from the area inside an object but also the zero-padded region as false
positives, which is stricter than the evaluation protocol in prior works of [16, 39]. 1000 test
episodes are randomly sampled for the evaluation. The scores are given in percentages. For
more implementation details, see Supplementary Materials.


Citation
Citation
{Hariharan, Arbel{á}ez, Bourdev, Maji, and Malik} 2011

Citation
Citation
{Hariharan, Arbel{á}ez, Bourdev, Maji, and Malik} 2011

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Wei, Li, Chen, Tai, and Tang} 2019

Citation
Citation
{Acuna, Kar, and Fidler} 2019

Citation
Citation
{Yu, Liu, Zou, Feng, Ramalingam, Vijayaprotect unhbox voidb@x penalty @M  {}Kumar, and Kautz} 2018{}

Citation
Citation
{Hariharan, Arbel{á}ez, Bourdev, Maji, and Malik} 2011

Citation
Citation
{Yu, Feng, Liu, and Ramalingam} 2017


8 PARK, SEO, MOON: CAFENET

Metric | Method SBD-5° SBD-5! SBD-52 SBD-5° Mean
baseline 28.89 30.02| 30.80 31.27| 2829 28.23| 2523 26.10| 28.30 28.91
ME Seg 3443 37.63| 3936 41.13| 33.19 35.16| 30.82 3333 | 3445 36.81
(ODS) Seg + DAM 3429 38.67| 39.67 41.75| 3331 35.82| 31.22 3391 | 3462 37.54
Seg + MSMR 33.66 38.11| 40.09 41.65| 34.19 37.62| 3045 3428 34.60 37.92
Seg + DAM + MSMR | 34.92 39.02| 40.83 42.52| 34.75 3841 | 32.16 35.54| 35.67 38.87
baseline 25.11 26.09| 2636 2649| 21.87 22.47| 20.63 21.58| 2349 24.16
Seg 29.98 33.04| 3456 36.69| 2652 29.66| 25.02 26.64| 29.02 31.51
AP Seg + DAM 3043 3458 | 34.89 37.54| 27.62 29.94| 2531 27.95| 29.56 32.50
Seg + MSMR 29.24 33.95| 34.64 37.05| 28.94 32.84| 2390 28.12| 29.18 32.99
Seg + DAM + MSMR | 31.29 3541 3595 3892 2932 3341 | 2589 29.73| 30.61 34.37

Table 4: Ablation studies on SBD-5'. 5-shot (right) and 1-shot (left) performances are considered.

Metric | Method l-shot  5-shot To verify the proposed method, we compare
baseline 5271 5352 CAFENet with two baselines. The first base-
ME | Seg 603 5798 LA d e edoe d . el
©DS) Seg + DAM 5641 5691 1ne 1S a fine-tuned semantic edge detection mode
Seg + MSMR 57.50 5938 with only a few labeled samples. A meta-learning
Seg+DAM +MSMR | 57.88  59.52 4 .
baseline 66 siso Strategy is not used for the first baseline. We em-
Seg 5682 5821  ploy the DFF of [17] and PGN of [15] with the
AP | Seg+DAM 5790 5938 . .
Sea + MSMR 5836 603 1mplementation offered by the authors. For each

Seg+DAM+MSMR | 5878 6093  split of SBD-5, we pretrain a 15-way edge de-

Table 3: Ablation studies on FSE-1000. tector with training classes and fine-tune the pre-
trained edge detector with a few labeled samples for new classes in the test split. During
pretraining, we follow the training strategies and hyperparameters of [17] and [15], respec-
tively. In fine-tuning, we randomly initialize some sub-modules that are closely related to
the final classification ("side5", "side5-w", and "ada-learner" for [17] and "edge branch",
"segmentation branch" and "refinement branch" for [15]) and train them altogether using the
support images. The second baseline is constructed by combining a rule-based edge detector
with a few-shot segmentation algorithm. It is occasionally believed that semantic edge detec-
tion can be replaced by segmentation, but prior works of [2, 21] verify that the semantic edge
detector outperforms the segmentator combined with the Sobel operator. In our experiments,
we combine PANet [30] and PMM [35] with the Sobel operator based on the implementation
provided by the authors. For each split of SBD-5/, we meta-train the PANet and PMM on
training classes. In evaluation, we obtain edge predictions by applying the Sobel operator on
the segmentation predictions as done in [2]. For a fair comparison, we thoroughly find the
best kernel size for the Sobel operator. See Supplementary Material for more details.

We utilize the ResNet-34 backbone for CAFENet and PANet. For PMM, the ResNet-50
backbone is used. We also employ higher shot training in 1-shot experiments for both base-
lines as done in CAFENet experiments. The results in Tables 2 and 1 show that the proposed
CAFENet outperforms all baselines in both MF and AP scores by a significant margin; few-
shot semantic edge detector can not be simply substituted by a few-shot segmentator or a
fine-tuned semantic edge detector. This is an impressive result because CAFENet wields
a ResNet-34 backbone which is smaller than the ResNet-50 backbone of PMM. For FSE-
1000, we only experiment with the few-shot segmentation baseline since it is hard to train a
semantic edge detector with a large number of training classes. We can see that the proposed
CAFENet outperforms the baseline even when the dataset contains more diverse classes.

5.3 Ablation Studies on DAM and MSMR

In this section, we show the results of ablation experiments to examine the impact of the
proposed DAM and MSMR. The results on SBD-5' and FSE-1000 are shown in Tables 4
and 3, respectively. The baseline method does not utilize a segmentation module. The pro-
totypes for edge and non-edge classes are computed using down-sampled edge labels, and
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Figure 5: Qualitative Results on the SBD-5' Dataset.

the edge prediction is done using a metric-based method. The low-scale edge prediction
is concatenated with the encoder feature and the skip connection feature, and then passed
to the decoder to predict the edge in the original scale. The Seg method utilizes the seg-
mentation module, and conducts semantic segmentation in low scale using the segmentation
labels generated from the edge labels. As done in the baseline, the segmentation result is
concatenated with the encoder feature and skip connection feature and directly passed to the
decoder. Seg + DAM applies the dynamic attention module with the segmentation module.
DAM applies multi-scale and pixel-wise attention to features in the skip architecture. Seg +
MSMR applies MSMR on the top of the segmentation module, with the auxiliary regular-
ization loss for training. The Seg + DAM + MSMR method utilizes both DAM and MSMR.
For a fair comparison, all methods use the same network architecture and hyperparameter
settings. Tables 4 and 3 demonstrate that segmentation process in Seg gives significant per-
formance advantages over baseline for both SBD-5' and FSE-1000. It is also seen that Seg
+ DAM benefits from the additional usage of DAM and exhibits the better performance than
Seg. MSMR regularization also gives a performance gain and Seg + MSMR outperforms
Seg. Finally, applying DAM and MSMR together provides extra gains, as seen by the scores
associated with Seg + DAM + MSMR. Clearly, when compared to baseline, our overall
approach Seg + DAM + MSMR provides large gains.

5.4 Qualitative Results

In Fig. 5 and Fig. 6, we illustrate qualitative results of our method as well as the baseline
methods for SBD-5 and FSE-1000, respectively. From the result, we can see that the DFF
method succeeds in finding the edges of the objects, but it fails to distinguish the boundary
of target object from the boundary of the other objects. On the other hand, PANet + Sobel
and PMM + Sobel methods successfully localize the target object, but they fail to refine the
correct boundary. In contrast, the proposed CAFENet is capable of localizing the objects
from target class and detecting the correct boundary at the same time.

6 Conclusion

In this paper, we establish the few-shot semantic edge detection problem. We proposed
the Class-Agnostic Few-shot Edge detector (CAFENet) based on a skip architecture utiliz-
ing multi-scale features. To compensate for the shortage of semantic information in edge
labels, the segmentation module is employed in low resolution. A dynamic attention mod-
ule generates attention maps from segmentation masks effectively combining the semantic
information and local details. The attention maps are applied to multi-scale skip connec-
tions to localize the semantically related region. We also present the MSMR regularization
method splitting the feature vectors and prototypes into several low-dimension sub-vectors
and solving multiple metric-learning sub-problems with the sub-vectors. We built two novel
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Figure 6: Qualitative Results on the FSE-1000 Dataset.

datasets of FSE-1000 and SBD-5' well-suited to few-shot semantic edge detection. Experi-
mental results demonstrate that the proposed method significantly outperforms the baseline
approaches relying on fine-tuning or few-shot semantic segmentation.
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