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Abstract

We address the problem of incremental few-shot learning (IFSL) by leveraging the
notion of generative feature replay. Learning novel concepts while preserving old knowl-
edge is a long-lasting challenge in machine learning. The main concern in IFSL is to
combat the catastrophic forgetting of the base classes whose training data are not avail-
able during the incremental stage while ensuring good generalization for the few-shot
classes. Existing techniques prefer to preserve some base class samples to tackle for-
getting, which does not comply with the intention of incremental learning. To this end,
we propose a novel framework called Semantics Guided IFSL (SemGIF), which trains
a generative model to synthesize base class samples on demand during the incremental
step. Considering the importance of modeling a discriminative feature space in IFSL for
separating the base and the novel classes, we propose a feature augmentation strategy
where the visual embeddings are supplemented with the semantic features obtained from
a word-embedding space. Such a feature space is found to produce enriched class pro-
totypes to be utilized during classification. Experimental results on CIFAR-100, CUB,
mini-ImageNet, and tiered-ImageNet in the homogeneous (within-dataset) and a novel
heterogeneous (cross-dataset) setup showcase sharp improvements than the literature.

1 Introduction

Deep learning is widely adopted into several application areas due to its superior gener-
alization ability from large-scale training databases. Notwithstanding the above, the data
collection and annotation process are often tedious and costly. As a possible remedy, the re-
search community is devoted to training deep learning models from less training data while
ensuring that the trained models do not overfit [6, 7]. On a different note, it is crucial to
develop inference models to learn continually as and when labeled data are made acces-
sible. The notion of incremental or continual learning [26, 37] is deduced to handle such
non-stationary setups where the model is required to continuously adapt to new tasks while
judiciously controlling the catastrophic forgetting for the past tasks.
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Recently, considerable progress can be observed in the field of few-shot learning (FSL) [7]
which aims to train a network to learn from a small number of examples. Under this premise,
the traditional FSL setup consists of base classes with voluminous labeled samples during
training and a disjoint set of novel classes with a few training samples during testing, and
the performance is always evaluated on the few-shot classes. This strategy has two possible
bottlenecks. First, the discriminative information of the base classes is compromised, which
would otherwise offer good separability for the few-shot categories. Secondly, humans can
quickly learn novel concepts from limited experience on top of the existing knowledge base.
Similarly, it would be interesting to design deep learning models which would attempt to
handle novel categories while retaining the ability to classify a set of original base classes.

In view of the above, we understand that few-shot learning models that perform equally
well on the base and novel classes are much desired. In this line, [22, 25] introduced the
problem of IFSL where a backbone model is pre-trained on the base classes under abundant
supervision, following which novel classes with little training data appear. The base class
samples may not be available at this point due to memory constraints or security issues. In
this situation, the IFSL model needs to combat the forgetting of the base classes while ensur-
ing good generalization for the novel classes. Achieving this objective is non-trivial, and the
direct extension of the FSL models does not work. The few existing works for IFSL focus on
generating the classification weights for the novel classes directly from the base model [27];
however, they fail to generate discriminative class prototypes for the novel classes as the fea-
ture backbone is biased to the old task. It is also worth mentioning that a related but different
problem setup from IFSL is few-shot class incremental learning (FSCIL) [1, 19, 36, 46] con-
sisting of a large number of incremental episodes with each stage accumulating knowledge
from a small number of classes under limited supervision. Moreover, the FSCIL problem
is also primarily different from IFSL due to the former being originally a class incremental
learning problem with the constrain of availability of a small number of labeled samples in
each step. While the latter is fundamentally an FSL problem extended to incrementally ac-
complish more than the traditional FSL in terms of the ability to generalize over the base and
novel dataset.

It is recently found in the class incremental learning literature that the replay-based ap-
proaches can better handle forgetting than the regularization-based methods like in [4, 26];
however, its effects are yet to be formalized judiciously for the IFSL task. From another
point of view, the low-shot learning literature [15, 16] has showcased the importance of a se-
mantic space for modeling better embeddings. Learning a discriminative space from limited
visual data has been a long-lasting issue in FSL in general, and we are interested in finding
the possibility of using semantic side information for improved feature learning in IFSL.

Inspired by the discussions, we propose a novel IFSL framework called SemGIF, which
uses a generative model as the replay memory for the base classes while class semantics are
used to obtain an improved embedding space by fusing the visual and the semantic informa-
tion. Since the semantic information is generally class discriminative, the new embedding
space shows less variance than the prototypes obtained only with the visual features. SemGIF
follows a two-stage training protocol: in the pre-training stage, a conditional GAN is trained
on the base samples, a visual to semantic mapping module is trained, and both the features
are combined to make a new embedding space. The incremental stage uses the pre-trained
semantic mapping module to train the model on the combined set of synthetic base and novel
class samples. We summarize our significant contributions as,

1) We propose SemGIF, a novel IFSL framework based on a generative replay and the
learning of a semantically influenced embedding space. Specifically, we introduce a se-
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Figure 1: The complete pipeline of the proposed SemGIF framework depicting the visual
block, the visual to semantic mapping module and the semantic guidance module. The
embedding functions and the conditional GAN can also be seen. Details can be found in 3.2.

mantic embedding-based feature augmentation strategy for learning better class prototypes
which is the first of its kind to be explored in the IFSL setting. We are also the first to explore
generative replay in the IFSL domain to the best of our knowledge. ii) Unlike the previous
works, we showcase the efficacy of SemGIF for two distinct experimental scenarios: homo-
geneous where the base and novel classes are obtained from the same distribution (dataset)
and heterogeneous or dataset incremental FSL where the base and few-shot classes arise from
different datasets. iii) We find SemGIF to be superior through rigorous ablations on all the
four benchmark datasets. For instance, the performance boost is significant, with SemGIF
outperforming the closest performing algorithm by about 8.63% and 24.51% in the case of,
say, 5-way 5-shot on standard datasets like minilmagenet and CUB-200, respectively.

2 Related Works

Incremental Learning: The prime goal in incremental learning is to mitigate the effects of
catastrophic forgetting [20, 21]. This forgetting can be controlled by resorting to memory-
based approaches as detailed in the works [22, 26]. [17] proposed to use distillation loss
to retain knowledge corresponding to past tasks. Regularisation can also be used to control
the effect of forgetting without retaining the old samples as seen in the work [14]. Alterna-
tively, rehearsal based approaches [4, 26, 41] relied on retaining a small number of exemplar
samples or resorted to techniques that generate synthetic images [23, 33] or features [11, 43].
Few-shot learning: [6, 7] proposed a new machine learning paradigm called Few-Shot
Learning (FSL) in order to facilitate learning from limited supervised information. The im-
pact of alleviating the data gathering effort can be widely seen from the plethora of fields
benefited from the same like image recognition [39], image retrieval [38] and gesture recog-
nition [24]. Taking into account the relevance of the topic in many domains, there has
been several machine learning approaches proposed in this direction, like embedding learn-
ing [2, 35, 39], meta-learning [8, 31], generative modeling [5, 30]. In this regard, one of
the popular approaches is [34] which introduced a prototypical network to learn an embed-
ding space and achieved promising results. There exist several extensions of this model;
for example, [12] combined prototypical learning along with variational inference to learn a
continuous embedding space.

Incremental Few-shot Learning: The principal objective of IFSL is to learn to classify
novel samples while at the same time preserving the information acquired on the base classes,
given that the novel samples only offer a small set of labeled samples. Most of the prior
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works tackle this problem by generating the classification weights for novel classes while
the pre-trained backbone network weights on base classes are fixed. In [25], novel class
prototypes were directed to be used as the classification weights for both the base and novel
categories. While [9] proposed to learn novel classification weights using a meta-learning
weight generator which is fed with the novel class prototypes and base class weights. The at-
tention attractor network of [27] utilized attention-based regularisation to prevent forgetting.
Very recently, [45] proposed to extract representations for novel samples and perform effi-
cient task-conditioning of base and novel classifiers by utilizing a task adaptive representa-
tion. SemGIF is entirely different from these methods as we explicitly utilize rehearsal-based
feature replay and an additional semantic space while designing the class prototypes.

3 Methodology

3.1 Problem statement and preliminaries

In a standard N way K shot FSL problem the model is meta trained on the base dataset
Dpase = { Xseens Vseen } With N number of semantic categories, and further finetuned & eval-
uated on the few-shot dataset Dppe; = { Xunseen, Yunseen } With N classes and K labelled sam-
ples per class. The seen and unseen classes are disjoint in nature: YVseen (| Vunseen = ¢. In-
spired from [34], the support set {X;, Vs } with X; = {X', ..., XV} where the cardinality of
each X' is K and the query set, X, respectively work as the training and the validation sets
used to learn a generic few-shot classification model by mimicking the testing scenario.

Even though we follow a similar episodic approach, the IFSL paradigm is alternatively
tested on the entire Vieen | Vunseen consisting of N + N, categories. Thus, for the evaluation
of the model (©) on a joint prediction over both the base and novel dataset, a mini-batch of
unlabelled query set is sampled in every episode, Q = Qjeen | Qunseens such that the mapping,
®(Q) — Yo would satisfy, Vo C Veen U Vunseen-

3.2 Semantics Guided Incremental Few-shot Learning Framework

1. Model overview: The model () consists of a visual block, a semantic guidance mod-
ule (W), and a learnable visual to semantic mapping block (I') (Figure 1). The visual block
consists of Resnet-18 backbone encoder (®), the support image branch (6) and query im-
age branch (6,) for the labeled support set (Xy) and the unlabelled query sample set (A7),
respectively. Our overall objective is to learn an efficient visual encoder (® + {6;,6,}) and
embedding functions ¢,, ¢; with the guidance from the support set &X;. Note that ¢, and
¢, are responsible for mapping the features of each class of the support and query sets to
an embedding space where the samples from each class tend to cluster around a representa-
tive class prototype. We use the shorthand, ® «— @ + {6, + {¢s},6, + {¢,} } to denote the
resultant model obtained after training.

2. Training and inference: The overall training process shown in the Algorithm 1, can be
split into two stages: a pre-training stage using Dp,,. on the classification objective and an
incremental stage once D, is introduced. Amongst different model components, we note
that I is trained on the pre-training stage, which is directly used to approximate the semantic
embeddings for the novel classes during the incremental stage. The complete flow of both
the pre-training stage and the incremental stage is shown in Figure 2. We follow an episodic
training scheme for both the stages where we generate an episode by randomly sampling
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Figure 2: Tllustration of flow of the proposed method. The figure on the left corresponds to
the pretraining stage while that on the right depicts the active blocks in the incremental stage.

K labeled samples to act as the support set X over some randomly selected N classes from
Dpase, While the remaining class-specific samples are considered to form the query validation
set X,. In the incremental stage, we tune the model again in an episodic manner, over the
novel dataset D,,,,.; and the synthetic base samples generated using the C-GAN to mitigate
forgetting since Dy, is unavailable during the incremental stage. Both these stages, the
visual-to-semantic mapping module, the augmented support features, and the C-GAN for
the replay, are discussed below, along with the cost functions involved.

a. Pre-training stage: During the pre-
training stage over the base dataset Djyq,,
we pass the set of query and support set
samples through the encoder ® to obtain Ensure: © «+— ©+ {6, +{¢,},0,+ {9,}}
the visual feature vectors f.‘q and F,, re- 1 while iterqtian < max iteration do
spectively. Subsequently, the support set 2 | Getepisode

Algorithm 1: The complete SemGIF frame-
work.
Require: Dbasev Dnovel: ®7 Gsa ¢S7 eqs d)qv Fv v

BCDuse_> Xﬁyﬁ 9 X
features JF; are fed to the visual to se- $ i S At
mantic mapping module I to obtain W, =
I'(F;). T is trained by minimizing the vi-

Fyq— G)(Xq), Fs +— O(X;)
Loos +— g L4 T 1900 ~T(F)Il
Refer Egn 2

sual to semantic conversion loss L,y as 5 | Ly —logp(y=klxg)Refer Eqn 4
shown in Equation 2. The output of the  ° Er = Lyot Lo
isual R . dule W. i 7 Update: @ =0 —aVLr
visual to semantic mapping module W is | 1r4in C.GAN as per Equation 6
then concatenated with the corresponding 9 end
visual support features, fy = 0,(F;) to form 10 Incremental learning stage
the new augmented support feature, A, = 11 @< {0594}

12 while iteration < max iteration do

fs @ W, which then acts as the input to the
embedding function ¢ : RY — RP (& de-
notes concatenation operation), where M =

Get episode B — {{X;,Vs},{Q}}
Fq = 0O(X,), Fs «— O(X)
L1 +— L — —log p(y = klx)

| fs| +|Ws|. Simultaneously, we also obtain 16 | Update: ® =& —aVLy

the output ¢, ( f,) of the embedding function Evaluate © on @ — QseenJ Qunseen 3

0y : R" — RP corresponding to the un- 18 end

labelled query set, where f, = 6,(F,) and

m = |f,|. We seek to minimize the distance between the query samples and corresponding
class prototypes u obtained from the augmented support features as explained in Equation 3
thus facilitating ¢, to learn better embedding for the unlabelled query set. This is achieved
by minimizing the few shot loss function L, given in Equation 4. The total cost function
employed in this stage is shown in Equation 1.

Ly :Ef's+£v25 (D

- Visual-to-semantic mapping module (I'): The Visual-to-semantic mapping module, I,



6 S D BHAT, B BANERJEE, S CHAUDHURI: SEMGIF

aims at learning a mapping from the visual to the semantic space aided by the Semantic
Guidance module during the pretraining stage. In the Semantic Guidance module, we em-
ploy a set of fully connected layers similar to the visual branches (6,/6,) to map the vector
output from the fastText [10] module to the shared semantic space. Here we employ the
simple MSE loss to train the Visual-to-semantic module as shown in Equation 2.

1

K
Loy =1 VY WO~ (F)l3 )

1j=1

Mz

i

- Few-shot learning and feature fusion: The output W, obtained from the Visual-to-
semantic module is fused with the corresponding support visual feature f; to obtain the
semantically augmented feature vector A;. The query features and the augmented support
feature vectors are passed through the corresponding embedding functions, ¢, and ¢;. We
compute a D dimensional prototype vector for each class through the embedding function
o5 : RM — RP. Each class prototype, i for a class k such that k € 1...N in a given episode
is computed as the mean vector of the embedded support points as shown in Equation 3,
where Aj ; is a feature from the augmented support feature set A’S‘ of the class k.

1
M = W Z ¢s(As,j) (3)
S .AA-.J'G.Af

Learning progresses by minimizing the objective function in the embedding space over the
features ¢,(f;) corresponding to the query samples, x;, € X, for a sample indexed by j as
shown in Equation 4,

Lys=—logp(y =kixg) )
where p(y = k|x,) for j' sample is defined as,
exp(— |l — 0,7 )
xyexn(— [ — 94| )

ply=klx)) = 5)

Simultaneous to the N way K shot learning in the initial stage of training over the base dataset
Dpase» We also train a conditional GAN to generate pseudo samples from the base dataset as
in the incremental stage we do not retain any samples from it. Instead, we only need to retain
the GAN generator parameters.

- C-GAN for Dy, replay: The conditional GAN is trained only using the support set
samples of Dy, in each episode, with X; as the real samples against the fake samples
generated from the noise vector z conditioned on the label. We employ a mean square error
based adversarial loss function seen in [18] to train the C-GAN as shown in Equation 6 via
the standard min-max optimization,

min 7 (D) = 3By ey [(D0) = D3]+ 3B o [(D(G() ~ )]
1 ©)

SEp.0)[(D(G(2) —¢)?]

m(i;nj(G) =3

where y and )s denotes the labels corresponding to fake and real data while c is the label
which the generator wants the discriminator to believe for fake samples. While, pyarq(Xs)
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denotes the distribution over the data Xy and p,(z) denotes the normal distribution from
which the noise vector z is sampled.

b. Incremental learning stage: The incremental stage commences with the introduction
of the unseen incoming dataset D,,,,.;. In this stage, we freeze weights of all modules ex-
cept that of the sub-networks corresponding to the embedding functions ¢; and ¢, as seen in
Figure 2. We remove the Semantic Guidance module altogether in this stage, and the seman-
tic mapping module, I', operates independently, relying only on the mappings learned from
the pre-training stage. The training over the novel dataset commences in a similar episodic
fashion as carried out in the pre-training stage.

We sample the support set from the novel dataset and generated pseudo samples of the
base classes, and ensure that the corresponding joint query set classes are such that they
form a subset of both the base and novel classes. Both these sets are then passed through the
encoder © to get the features F, and Fy, respectively. The features F are then fed to the
trained visual to semantic mapping module I trained in the pre-training stage to obtain the
vector W;. The vector W concatenated with the corresponding visual support features, f;
will form the augmented support feature, .4, which is the input to the embedding function
¢s. The output of the embedding function ¢, corresponding to the unlabelled query set is
also obtained over which the model is fine-tuned and evaluated.

Even though we do not retain any samples from the base dataset after the pre-training
stage, we need to ensure that the model does not forget previously acquired knowledge. This
is done by replaying the base class pseudo samples obtained using the C-GAN trained in the
previous stage. We use the generated base samples and the novel unseen samples in equal
proportion in every iteration. During the N way K shot incremental training stage, we use
only the objective function shown in Equation 4 to tune the parameters of the sub-networks
¢s and ¢,. As discussed, we evaluate the model simultaneously on the query set from both
the base and novel classes again in an N way K shot episodic fashion.

4 Experiments

4.1 Datasets

We consider a total of four standard datasets to evaluate the proposed SemGIF framework:
CIFAR100 [3], minilmagenet [39], CUB200-2011 [40] and TieredImagenet [28]. Thus span-
ning a comprehensive set of datasets, including the two challenging subsets of Imagenet [29].
For each of these datasets, we utilize the train split as Dy, and the test split as D,,,,,; Which
is more challenging due to the absence of the meta-training stage.

4.2 Model Architecture and Implementation Details

We use a Resnet-18 encoder as the backbone feature extractor network to obtain the visual
features from the input images. While the image branch and text branch sub-networks used,
as seen in Figure | are each a two-layer fully connected network. The Visual-to-semantic
module is a simple encoder-decoder network using just two fully connected layers each.
Similarly, each of the embedding functions uses a minimal three-layer densely connected
network. Throughout this implementation, we have used leaky-ReL U as the activation func-
tion with a negative slope value of 0.01. We also have employed batch-norm between the
layers in the image branch, text branch, and the Visual-to-semantic mapping networks, while
the embedding function also utilizes a dropout with p = 0.5 between its layers. fastText word
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Dataset CIFAR100 minilmagenet CUB200 TieredImagenet®
Method Sway-1shot Sway-5shot Sway-1shot 5way-5shot Sway-1shot Sway-5shot Sway-1shot Sway-5shot
ProtoNet [34] B, 40.96% 62.50% 41.07% 55.15% 29.45% 46.00% 30.04% 41.38%
CADA-VAE [32] B, - - - 54.15% 62.05% - -
aCASTLE [44] B> - - 43.63 % 56.33% - - 22.23% 33.54%
LwoF [9] - - 52.37% 59.89% - - 52.40% 62.63%
Imprint [25] - - 41.25% 43.92% 47.62% 61.59% 39.13% 53.60%
Attractor [27] - - 53.62% 62.83% - - 56.11% 65.52%
XtarNet [45] - - 55.28% 66.86% - - 61.37% 69.58%
Ours without semantic ~ 42.86% 55.17% 38.98% 49.89% 39.74% 63.29% 49.65% 62.83%
Ours (full) 57.21% 79.95% 56.75% 75.49% 57.35% 86.56% 55.63% 69.89%

Table 1: A comparative study with existing algorithms in the literature. We report the Har-
monic mean (Accy) obtained for our framework across the four datasets under consideration.
(’-* denotes the value is not reported). * For Tieredlmagenet performance reported by our
model shows lesser improvement as our approach does not rely on a meta-learning stage
despite which we beat the SOTA on other datasets with a considerable margin.

embedding trained on Wikipedia is used in the semantic guidance module, which is active
during the pretraining stage. C-GAN architecture used in this work is adopted from the
implementation available here'. Throughout the training process in both stage, we use the
Adam optimiser [13] with a learning rate of 0.0001 and weight decay of 0.0001. C-GAN’s
generator and the discriminator are trained during the initial stage with a learning rate of
0.0002 which again uses the Adam optimizer with the beta values set as 0.5 and 0.999. We
implemented our model using a single Nvidia GeForce GTX 1080 Ti GPU.

Evaluation Protocols: For all the results discussed in this paper, we have used classification
accuracy to evaluate the performance.

In the incremental learning stage for evaluating the model, we sample a few-shot episode
consisting of classes sampled from both base and novel classes. The model accuracy is
then reported on the joint evaluation over the query set with classes consisting of the seen
base classes and unseen novel classes. We have maintained an equal proportion of base and
novel classes in our experiments. For the experiments, say for N-way K-shot, we consider
K support examples. (i.e., shots) Furthermore, we use a query set of 15 samples per class
from base and novel datasets. We also report the individual accuracy of the model over
both the unseen and seen data during the incremental stage as shown in Table 3. We use
pretrain Accy, to denote the accuracy over the base classes during the initial stage, while Inc
Accy, denotes the same achieved during the incremental stage over the generated base image
samples. While Acc,, is used to report the model’s accuracy over the novel dataset and Accy
denotes the harmonic mean. For the incremental stage where evaluation over the base and
novel dataset is considered, we report the harmonic mean as defined in [42]. For this we
calculate the accuracies Acc, and Acc,, separately to compute the harmonic mean, Accy.

Table 1 shows the comparison of performance of the proposed framework with the exist-
ing literature in both the incremental few-shot [9, 25, 27, 34, 45] and generalised few-shot
domains [32, 44]. The traditional FSL work in [34] acts as our preliminary baseline B, while
the GFSL works in [32, 44] will serve as the baseline comparison B, for the performance
over the combined evaluation over the base and novel dataset with the data from the base
dataset still being accessible. While the IFSL works in [9, 25, 27, 45]are used as the final
set of baseline. Note that unlike other algorithms in the literature, we evaluate our frame-

Uhttps://github.com/eriklindernoren/PyTorch-GAN
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Dataset CIFAR100 minilmagenet CUB200 TieredImagenet
Sway-5shot 2way-5shot Sway-5shot 2way-5shot Sway-5shot 2way-5shot Sway-5shot 2way-5shot
Pretrain 74.93% 95.61% 69.00% 95.54% 90.00% 89.27% 46.00% 66.70%
Incremental 88.57% 96.77% 83.57% 95.56% 87.00% 86.98% 69.58% 78.68%
Table 2: 5 shot Results for SemGIF using Resnet-50 backbone encoder
Dataset ‘ CIFAR100 ‘ minilmagenet ‘ CUB200 ‘ TieredImagenet
pretrain  Inc Inc Inc | pretrain  Inc Inc Inc | pretrain  Inc Inc Inc | pretrain  Inc Inc Inc
Accyp Accy  Accp,  Accy Accyp Accy  Accp,  Accy Accy Accy  Accp  Accy Accp Accy Acep  Accy

5-way S-shot 66.52 79.95 8727 73.76 63.63 7549 86.09 67.22 84.41 86.56 91.09 8246 47.23 69.89 83.16 60.27
2-way 5-shot 93.40 9123 8482 98.68 95.41 9521 9244 98.15 88.12 83.56 88.22 79.37 69.44 7971 9439 68.98
S-way 1-shot 44.22 5721 7550 46.06 | 40.22 56.75 71.89 46.87 43.01 57.35 6731 49.96 33.04 55.63 6725 4743
2-way 1-shot 69.08 75774 7446 77.06 65.21 75.16 7132 79.44 64.13 5844  70.30 50.00 60.03 6223 71.19 5528
S-way 10-shot | 72.65 87.61 94.64 81.54 69.82 83.39 92.09 76.20 91.56 87.45 85.00 90.03 51.85 68.47 9420 53.78
2-way 10-shot 96.24 9774  96.67 98.84 96.27 96.59 9452 98.75 90.00 89.24 88.22 79.37 71.55 8195 95.64 71.68

Table 3: IFSL Results on multiple combinations of N-way K-shot across the four datasets

work across a wider variety of datasets. We also evaluate the performance in a cross-domain
setting where Dy, and Dy, are derived from completely different datasets as in 4.

4.3 Results

From the results shown in Table 1, it is clear that the proposed semantic augmentation-based
approach outperforms the existing algorithms”. For the minilmagenet dataset, our frame-
work outperforms all other methods and achieves a relative improvement of 8.63% in 5-way
5-shot and 1.47% in 5-way 1-shot over the closest performing method [45]. Similarly, our ap-
proach shows an increase in performance on CUB-200 of about 24.51% in 5-way 5-shot and
3.2% in the 5-way 1-shot case in comparison with [32].
Tieredimagenet is a larger subset of the ILSVRC-12,
which is more realistic and challenging as argued in [27].
For this, our approach yields superior performance in
the 5-way 5-shot setting, with a relative improvement of gt
0.31% over the closest performing method [45], while our

5-way 1-shot result is only marginally inferior. This dip

in performance can mainly be attributed to the high vari-

ability in the test class samples relative to the base classes

learned. Meanwhile, our model shows an improvement
in performance on CIFAR-100 on both the 5-way 5-shot T Reonomserasses
and 5-way 1-shot classification by 17.45% and 16.25%
respectively, with [34] being the only available approach

to compare to.

4.4 Ablation study

—e—cifar100
—e—minilmagenet

Harmonic mean accuracy (in %)

Figure 3: Change in accuracy
with the variation in the number
of base classes considered

Multiple combinations of N-way K-shot: Table 3 shows more experimental results using
multiple combinations of N-way K-shot in a detailed manner. It can be observed that the
proposed method shows significantly less forgetting of the base classes and even depict im-
proved performance on base classes during the incremental stage across all the datasets. The
superior discriminative nature of our fine-grained features to which the performance of our
model can be attributed is established by the t-SNE plots for both the base and novel dataset
shown in Figure 4 for both the minilmagenet and TieredImagenet datasets.

2More quantitative and qualitative results are included in the supplementary material.
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Base Dataset CIFAR100 minilmagenet CUB200 TieredImagenet
Novel Dataset ~ Sway-1shot Sway-S5shot Sway-1shot Sway-Sshot Sway-1shot Sway-Sshot Sway-1shot Sway-Sshot
CIFAR100 - - 60.73% 81.00% 57.91% 78.63% 54.87% 78.45%
minilmagenet 55.89% 75.95% - - 51.41% 75.68% 50.69% 74.86%
CUB200 56.32% 84.61% 57.19% 83.03% - - 50.38% 82.19%
TieredImagenet  55.19% 69.07% 55.88% 67.75% 51.42% 69.49% -

Table 4: Heterogeneous evaluation by choosing Djys. and Dy, from different domains

Heterogeneous evaluation study: We perform a heterogeneous evaluation study using the
standard datasets considered. That is, we create the base dataset Dy, from one dataset while
the novel dataset D,,,.; in the incremental learning stage comes from a different domain.
We observe that the proposed method shows excellent performance consistently across the
datasets even when there is a domain shift between the Dy, and D,,,.;. The results for this
experiment are shown in Table 4.

Effect of the number of base classes: We also study the effect of the number of training
classes used during the pre-training stage. This, as expected, shows an upward trend for
accuracy with the increase in the number of base classes considered as seen in Figure 3.

:‘5-.

.

2
* ne
.

(a) minilmagenet base (b) minilmagenet novel (c) TieredImagenet base (d) TieredImagenet novel
Figure 4: TSNEs for both generated base and incoming novel images from Dy, for mini-
Imagenet and Tieredimagenet datasets. Each color indicates a different class.

Effect of encoder size: Finally, Table 2 shows how the model performance varies with the
increase in the size of the visual encoder ® used. Although we observe a performance gain
with the increase of capacity of the feature extractor as expected, the extent of this boost
is not in proportion with the growth of visual encoder from resnet-18 to resnet-50. Thus
it is safe to assume that even though the role played by the visual encoder is significant in
our model; it does not supersede the performance gain resulted from the introduction of our
novel SemGIF approach. This notion is again reinforced by the results shown in Table 1,
wherein we show how the performance of the model degrades in the absence of semantic
fusion.

5 Conclusions

We proposed SemGIF, a generative modeling-based IFSL framework that uses an additional
semantic space to generate discriminative class prototypes. The conditional GAN-based gen-
erative module helps synthesize data from the base classes on demand, which subsequently
helped incorporate the base knowledge while incrementally adapting the model to the novel
few-shot categories. We have performed extensive experiments on four benchmark datasets
where we consistently observed our model outperform the literature on different IFSL set-
tings. We further introduced a heterogeneous experimental scenario where the base and
novel classes originate from distinct datasets. In the future, we are interested in extending
our framework to support open-set classes in incremental episodes.
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