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Abstract

Video decaptioning aims to remove subtitles from and repair occluded areas in videos.
However, recent deep-learning-based inpainting methods mostly require the masks indi-
cating the corrupted parts, and these masks are unavailable for the input subtitled videos.
Moreover, useful information hidden in the background of subtitles might be lost when
these masked areas are directly regarded as invalid as the common setting of inpaint-
ing methods. In addition, existing blind video decaptioning methods often suffer from
incomplete subtitles removal. In this paper, we propose a generic framework for video
decaptioning, which consists of a caption mask extraction network and a frame-attention-
based decaptioning network. The former is trained with supervision information using
our proposed automatic annotation method, and predicts the position of the subtitle and
background. The latter adopts an encoder-decoder architecture with the skip connection.
The encoder extracts the features of all input frames. Then, multiple frame attention mod-
ules are used to aggregate these features from the spatial and temporal dimensions. Fi-
nally, the fused features are reconstructed into a target frame using the decoder. Extensive
experiments demonstrate that our proposed method can accurately remove subtitles from
videos in real time (60+ FPS), and outperforms the state-of-the-art approaches. Code is
available at https://github.com/Linya-lab/Video_Decaptioning.

1 Introduction
Video inpainting is a challenging task that aims to restore the damaged regions in videos with
plausible content, and has been widely studied by the computer vision community. Video
inpainting technology is often used in video editing applications, such as super-resolution
[10, 19, 28], special effects production [22, 25, 27], and object removal [7, 14, 33]. In
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this paper, we mainly focus on the removal of subtitles in videos and attempt to apply it in
real-world video processing tasks.

Video decaptioning is a video inpainting task that aims to remove subtitles and their
background. A straightforward approach is the use of an image restoration algorithms to
remove the subtitles frame-by-frame. However, this approach ignores the time coherence
of the video, often resulting in the unnatural connections between frames. Furthermore, the
occluded parts of one frame may be intact in other frames of the video, and dealing with a
single frame fails to take advantage of these valid parts. Another way of removing captions
is to extend the 2D image inpainting method to the 3D video scenario, that is, replacing
2D convolution with 3D convolution. Although this approach can guarantee a certain time
continuity, 3D operations usually consume a significant percentage of memory and may
cause error accumulation.

The greatest challenge in video decaptioning is the absence of caption masks in the cur-
rent public dataset. Consequently, the existing image/video inpainting methods cannot be
directly applied to video decaptioning. Although the text detection method can be used to
mark out the captions in the video, many subtitles have backgrounds with varying trans-
parency (as shown in Fig. 1). At the same time, directly considering these regions as invalid
according to the obtained caption mask will result in the loss of the underlying information
hidden in the background of the subtitles. However, when no mask is used, direct blind video
decaptioning always leads to incomplete subtitles removal.

To overcome the above challenges, we propose a generic video decaptioning framework
with two stages. The first stage is a caption mask extraction network, which mainly obtains
the mask of the caption and its background. The second stage is a decaptioning network,
which removes the captions and obtains the final results. Unlike common image/video in-
painting methods, the proposed method does not directly delete the content of the subtitle
region according to the obtained mask. Instead, the mask and the video frames are taken
together as input to the video decaptioning network, and the gated convolution is utilized
to allow the network to adaptively learn what is valid in the video. This approach not only
preserves the information hidden in the background of the captions but also enables the net-
work to deal with various shapes of subtitles. Our model takes multiple reference frames as
input and finally recovers the central target frame. To aggregate the effective features of the
input frames to the target frame, we propose a frame attention module, which is embedded in
the decaptioning network. The frame attention module searches for coherent contents from
all the frames along both the spatial and temporal dimensions to fill the occluded regions
in the target frame. Moreover, the frame attention module stacks multiple layers, allowing
the improvement of the attention results for the occluded regions on the basis of the updated
region features. Our contributions are summarized as follows:

• We propose a caption mask extraction network to predict the mask of the caption and
its background, and this model is trained with the supervision information using our
proposed automatic annotation tool.

• We propose an encoder-decoder decaptioning network with the skip connection, gated
convolution, and embedded multiple frame attention modules to aggregate the effec-
tive features of all input frames to the target frame.

• Our proposed generic decaptioning framework exhibits state-of-the-art performance
on the popular public video decaptioning dataset.
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Figure 1: Selected video decaptioning results of our method. Each group includes subtitled
frame, mask predicted by our caption mask extraction network, and subtitle removal result.

2 Related Work

2.1 Image Inpainting
Various approaches have been proposed for image inpainting. Diffusion-based algorithms [2,
5, 6] mainly depend on low-level image features to propagate appearance information from
the boundaries to the missing regions. However, these methods often suffer from blur arti-
facts for relatively large holes. Patch-based methods [1, 8, 34] tend to solve this problem
by searching the matching patch from the valid regions and copying them to the missing
regions. These methods work well on the stationary texture regions but often fail in the
non-stationary images.

With the advancement of deep learning, i.e., convolutional neural networks (CNNs),
recent image inpainting methods have been proposed for learning the mapping of corrupted
images to completed images. Context Encoders [24] was first introduced in image inpainting
by employing a CNN model with the adversarial loss [9]. Iizuka et al. [12] utilized global
and local discriminators to enhance the consistency around the boundary of missing regions.
However, their method fails to handle irregular holes. Zhang et al. [40] solved the image
inpainting problem by providing the location of artifacts with a detector. To better collect
contextual information, the attention mechanism [35] was introduced to image inpainting.
Various attention computation methods [17, 32] have been proposed to improve the visual
quality of inpainting results. Moreover, stacked mechanisms [3, 21, 36] and progressive
strategies [15, 16, 38] have also been designed in image inpainting.

2.2 Video Inpainting
Video inpainting can be regarded as the extension of image inpainting in the time dimension.
Many early video inpainting approaches [11, 20, 31] borrowed ideas from traditional image
inpainting methods. Wexler et al. [31] synthesized missing contents by sampling similar
spatial or spatial-temporal patches from valid regions on the basis of a global optimization.
Optical flow estimation was also applied in video inpainting [11, 20]. These methods usually
assume that the missing parts might appear in other frames and often suffer from high com-
putational complexity. Similar to image inpainting, recent works have also begun to devise
deep-learning-based methods to fill the missing areas in videos. Chang et al. [7] proposed
a 3D gated convolution and temporal SN-PatchGAN for free-form video inpainting. Kim et
al. [14] adopted the recurrent network and optical flow to ensure temporal coherence. Xu
et al. [33] completed video frames and their optical flows together, and combined them to
achieve good results. Although these methods can fuse some features in several neighbor-
ing frames, they are limited by the range of the convolutional receptive field and cannot
use the effective information of distant locations. To solve this problem, some recent works
proposed the attention/transformer-based methods. Oh et al. [23] recurrently calculated the
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Input images Output masks

Output image

Mask Extraction 

Video Decaption

: Convolution : Gated Convolution : Frames Attention : Skip Connection

Figure 2: Overview of our video decaptioning framework. It removes the subtitles in two
steps. The first step is to extract the subtitle masks, and the second step is to combine the
input frames with the extracted masks to accurately remove the subtitles in the video.

attention scores between the target and reference frames, and eventually filled holes from
the boundary. Zeng et al. [37] adopted a “multi-to-multi” inpainting strategy, and calcu-
lated the attention scores at different dimensions between the different channels of the image
feature to adapt to various shapes of holes. Very recently, Liu et al. [18] proposed a decou-
pled spatial-temporal transformer for video inpainting. Their networks consist of multiple
interweaving stacks of temporally- and spatially-decoupled transformer blocks.

Video decaptioning, which can be considered a special video inpainting task, has recently
gained increasing attention in the computer vision community. The ECCV ChaLearn 2018
Inpainting Challenge presented the corresponding track for video decaptioning and shared a
public dataset. The BVDNet proposed by Kim et al. [13] achieved the best result. However,
their method fails to address captions with a solid background. Moreover, their method
cannot completely remove subtitles when the video frames change quickly.

3 Proposed Method
In this work, we propose a novel two-stage network for video decaptioning. Fig. 2 presents
an overview of our network. The first stage is a caption mask extraction network, which
can accurately detect the subtitle regions in the video frame. The second stage is a decap-
tioning network, which removes the subtitles with an effective attention modules using the
previously predicted masks. Given a target frame with subtitles It , our network erases the
subtitles with the explicitly extracted location information, through fusing the information
of several neighboring subtitled frames {It−n:t+n} from the spatial and temporal dimensions.

3.1 Caption Mask Extraction
In this stage, the main challenges come from two aspects: (1) the subtitles in the video con-
tain backgrounds with different transparencies, and (2) the current public dataset does not
include annotated subtitle masks (i.e., covering the text and its background). Consequently,
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Figure 3: Overview of the frame attention module. Before calculating the attention score,
the frames have been reduced from images of 128× 128 to feature maps of 16× 16 via an
encoder. In order to remove subtitles of various sizes, we parallelly calculate attention scores
in four different patch sizes (1×1, 2×2, 4×4, and 8×8).

conventional text detection methods cannot achieve complete subtitle masks, while deep
learning-based methods have no mask label for training. Therefore, we propose a caption
mask extraction network (the first row of Fig. 2) based on U-Net [26], and devise a sim-
ple and effective automatic annotation method. This annotation method provides the mask
supervision information for network training. Given a pair of the original frame Io and the
subtitled frame I, we obtain the ground truth annotation of the subtitles via difference, filter-
ing, and thresholding operations as follows:

MGT = F(avg(|Io− I|))> ε, (1)

where | · | is the abstraction, avg computes the average value in the color channels, F(·) is
the mean filter with a kernel size of 5×5, and ε is the threshold (we set ε = 0.05). Filtering
and thresholding operations can make the extracted mask completely cover the area affected
by the subtitles. The ground truth mask can only be accessed in the training phase.

3.2 Video Decaptioning

After obtaining the subtitle masks, we do not directly remove the occluded regions in the
video. Instead, we concatenate the extracted masks and the subtitled frames together as in-
put for the decaptioning network. This network consists of three components, namely, an
encoder, several frame attention modules, and a decoder (the second row of Fig. 2). The en-
coder extracts the hierarchical texture and structure representations, the frame attention mod-
ules predict the appropriate contents in the missing regions, and the decoder progressively
reconstructs the inpainted video frame. In the encoder and the decoder, we employ gated
convolution, which can adaptively perceive the location of corrupted regions and choose
the information from the background of the subtitles. Gated convolution is formulated as
follows:

Gx,y = ∑∑Wg · I, Fx,y = ∑∑Wf · I, Ox,y = φ(Fx,y)�ψ(Gx,y), (2)

where ψ is the sigmoid function to transform gate to value between 0 (invalid) and 1 (valid),
φ is the original activation function (e.g., LeakyReLU), and Wg and Wf are two different
convolution kernels.
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The frame attention module is mainly based on the organic combination of Patch-Match
[1] and attention [29]. This module aims to fill the occluded part of the target frame by
searching for the best matching patches. As shown in Fig. 3, we use Ft ∈ Rc×h×w to denote
the target feature map encoded from the frame-level encoder. Unlike the common attention
mechanism in the transformer [29], we omit the embedding operation and directly divide Ft
into N = h/s1×w/s2 patches Qi ∈ Rc×s1×s2 according to the set size (s1,s2). We use the
same division operation to process all input reference feature maps Ft−n:t+n to obtain T ×N
patches Ki ∈ Rc×s1×s2 , where T = 2n+1. Specifically, we reshape the extracted patches into
1-dimensional vectors, so that patch-wise similarity can be calculated via the dot production.
The similarity between the target feature map and the valid (non-subtitled) regions of the
reference feature maps is denoted as:

si, j =
Qi ·K j√

s1× s2× c
, (3)

where Qi is the i-th patch extracted from the target feature map Ft , K j is the j-th patch ex-
tracted from the feature maps Ft−n:t+n outside the subtitle region, (s1,s2) is the patch size
and c is the depth of the feature map. Given that our caption mask extraction network can
predict a mask indicating the location of subtitles, we calculate the attention score of each
valid patch of all reference frames, avoiding the interference from the subtitle regions. This
is written as αi, j =

exp(si, j)

∑ j exp(si, j)
. Finally, the i-th patch of the target frame is updated via the

weighted summation of all the non-subtitled patches in Ft−n:t+n: Q̄i = ∑ j αi, jK j. Each patch
of the target frame is subjected to the same process, and we update the full feature map of
the target frame. The above computation is based on the patch. Considering that the sub-
titles have different shapes and sizes, we simultaneously calculate the attention and update
the feature maps in the multiple patch sizes. In addition, since we adopt a “multi-to-one”
decaptioning method, it is not necessary to divide the input features along with the channel
dimension and then calculate the attention score to save computational memory as in the
classical transformer. Instead, we calculate the results under different patch sizes and con-
catenate them, and then we obtain the attentive feature maps via a convolution operation. In
this way, we can obtain more complete feature information. Finally, we use gated convolu-
tion to effectively fuse the original and attentive feature maps of the target frame. As shown
in Fig. 2, we stack four frame attention modules to exploit the inpainting capacity of frame
attention. We also visualize the attention maps learned by frame attention in the last layer
as reported in Fig. 4. For the part of the target frame that is covered by the subtitles, frame
attention can search for the effective area in all reference frames to reconstruct it.

3.3 Network Training

In this work, we first train the caption mask extraction network and then the decaptioning
network. We sequentially process the input frames in a sliding window manner (window
size: T = 2n+1 = 7, frame stride: s = 3) and produce the decaptioning results in real time.
With the automatically annotated subtitle masks as the supervision information, the caption
mask extraction network is trained with the binary cross entropy loss.

As with most inpainting tasks, we optimize the decaptioning model by taking the original
video frames as ground truths without any other labels. We apply the L1 losses calculated
between the generated and original frames to ensure pixel-wise reconstruction accuracy. The
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Figure 4: Illustration of the attention maps for subtitled regions learned by frame attention.
In order to recover the part of the target frame that is occluded by the subtitles, our model can
find the most suitable area from the non-subtitled area in the reference frames for repairing.
Attention regions are highlighted with bright red.

L1 losses for the subtitled and non-subtitled regions are respectively expressed as follows:

Lsub =

∥∥M̂� (Io− Î)
∥∥

1∥∥M̂
∥∥

1

, Lnon_sub =

∥∥(1− M̂)� (Io− Î)
∥∥

1∥∥1− M̂
∥∥

1

, (4)

where M̂ is the extracted mask, Î and Io respectively indicate the predicted and target ground-
truth frames, � denotes the element-wise multiplication, and the values are normalized by
the region sizes. Similar to [13], we also apply the SSIM loss with a small patch window:

Lssim =
(2µÎ µIo + c1)(2σÎIo + c2)

(µ2
Î
+µ2

Io + c1)(σ2
Î
+σ2

Io + c2)
, (5)

where µ and σ denote the average and the variance, respectively; and c1 and c2 are two
constants for stabilizing the division (c1 = 0.012, c2 = 0.032). To this end, the final objective
for training the decaptioning network is as follows:

Ltotal = λsub ·Lsub +λnon_sub ·Lnon_sub +λssim ·Lssim. (6)

We set λsub = 6, λnon_sub = 1, and λssim =−1 in all our experiments.

4 Experimental Results

4.1 Dataset and Experimental Settings
A public large-scale dataset, that is, the ECCV Chalearn 2018 LAP Video Decaptioning
Challenge dataset, is used for training and testing. Each sample is a 5 seconds MP4 video
clip, including 125 RGB frames of 128×128, and each frame pair contains encrusted subti-
tles and without subtitles. The captions in this dataset have different sizes, colors, positions,
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Method MSE↓ PSNR↑ DSSIM↓ LPIPS↓ VFID↓
Onion-Peel 0.0035 28.8437 0.0672 0.0769 1.1805
DSTT 0.0023 30.5102 0.0562 0.0939 1.0684
STTN 0.0022 30.7003 0.0553 0.0928 1.0177
BVDNet 0.0013 34.1275 0.0365 0.0529 0.8001
Ours 0.0011 35.0251 0.0317 0.0497 0.6995

Table 1: Quantitative comparisons of our method with Onion-Peel [23], DSTT [18], STTN
[37], and BVDNet [13]. ↑: higher is better; ↓: lower is better.

and shadows. Following the default splitting, we use 70K samples for training and 5K sam-
ples for testing. All video clips are converted to PNG images for training and testing.

Our model is implemented with PyTorch v1.8.1, and run on a NVIDIA RTX 3090 GPU.
The Adam optimizer with β1 = 0.9 and β2 = 0.999 is used to train the model. The batch size
is 64, and the learning rate is set to 1×10−4. During training, we also use random horizontal
flipping for data augmentation and early-stopping to avoid over-fitting.

(a) Input frame (b) Onion-Peel (c) DSTT (d) STTN (e) BVDNet (f) Ours (g) Ground Truth

Figure 5: Visual results of subtitles removal with different backgrounds. From left to right:
input subtitled frames, Onion-Peel [23], DSTT [18], STTN [37], BVDNet [13], our method,
and ground truth.
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4.2 Quantitative and Qualitative Comparisons

We compare the proposed model with state-of-the-art video inpainting models, Onion-Peel
[23], DSTT [18], and STTN [37], and the blind video decaptioning method BVDNet [13].
Following the common setting of video inpainting, for Onion-Peel, DSTT, and STTN, we
remove the subtitle and their background to simulate missing regions and use the extracted
mask (the output of our caption mask extraction network) to indicate the missing regions.

For quantitative evaluation, we choose the metrics frequently used in inpainting tasks, in-
cluding mean square error (MSE), peak signal-to-noise ratio (PSNR), structural dissimilarity
(DSSIM), and learned perceptual image patch similarity (LPIPS) [39]. Furthermore, we cal-
culate the video-based Fréchet Inception Distance (VFID) [7] with the I3D [4] pre-trained
video recognition CNN as Vid2vid [30]. The corresponding results are reported in Table 1.
Our method significantly outperforms the three advanced video inpainting methods mainly
because video inpainting directly removes subtitles, which leads to information loss, espe-
cially for subtitles with transparent backgrounds. Our method exhibits better decaptioning
performance than BVDNet.

Fig. 5 shows the qualitative results of the above five methods. Our method clearly
achieves the best results. Onion-Peel, DSTT, and STTN often suffer from blur artifacts,
and BVDNet displays the subtitle remnant phenomenon, and fills the smooth content in the
subtitle regions with a solid background (see last two rows). Given that the caption mask
extraction network provides the exact location of subtitles and decaptioning network applies
the frame attention modules to effectively use the valid features in the reference frames, our
method can achieve reasonable semantics and rich textures.

4.3 Ablation Study

We conduct ablation studies to evaluate the effectiveness of the different components of our
model, and the corresponding results are reported in Table 2 and Fig. 6. The full model
achieves the best performance. With mask guidance, the decaptioning network can mainly
focus on the subtitle regions and prevent information loss. The gated convolution can better
extract effective features by adaptively perceiving the valid regions in the video. In addition,
the original details can be better preserved with the skip connection (e.g., the first row of
Fig. 6). With multiple frame attention modules, plausible structures and textures are obtained
(e.g., the second and third rows of Fig. 6).

Other network details, visual results, and ablation studies are presented in the supple-
mentary material.

Exp Mask Gated. Skip Con. Frame Att. MSE↓ PSNR↑ DSSIM↓
1 0.0014 32.6915 0.0416
2 X 0.0013 32.9352 0.0400
3 X X 0.0013 33.1307 0.0384
4 X X X 0.0012 34.3264 0.0356
5 X X X X 0.0011 35.0251 0.0317

Table 2: The ablation studies on mask extraction, gated convolution, skip connection, and
frame attention. We evaluate on ChaLearn 2018 LAP Inpainting Track2 validation set.
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(a) Input frame (b) Conv. (c) Mask+Conv. (d) Mask+Gated. (e) Mask+Gated.
+Skip Con.

(f) Mask+Gated.
+Skip Con.+Frame Att.

(g) Ground Truth

Figure 6: The visual evaluation of different components of our model. (b)-(f) separately
corresponds to the settings (Exp 1-5) in Table 2.

5 Conclusions and Future Work

In this paper, we propose a generic framework for video decaptioning with two stages. The
first stage is a caption mask extraction network, marking the position of subtitles and their
backgrounds in the video. The second stage is a decaptioning network, which adopts an
encoder-decoder structure with the skip connection to ensure the details of the results. We
propose a simple and effective automatic annotation method to provide supervision for the
training of the caption mask extraction network. For the model to make full use of the
information of the input reference frames, the frame attention module is also proposed to
fuse the features from the spatial and temporal dimensions to reasonably reconstruct the
occluded part of the target frame. The final model can automatically remove subtitles from
the video and restore the original contents in real time.

For very large caption, our results sometimes are slight smooth, and we would like to im-
prove it by introducing the distant key frames into the process window. In our framework, we
predict the binary mask of the subtitle and its background to assist the subsequent decaption-
ing network, which achieves the good performance. In the future, we would like to improve
the cases with translucent backgrounds by providing more exact subtitle and background
mask or non-binary mask. In addition, for a fair comparison, we mainly conduct experi-
ments and comparisons on the only public video decaptioning dataset. We would also like
to collect a large-scale high-resolution video dataset with diverse subtitle styles and motion
in the area of the subtitles, and extend our method for high-resolution scenarios.
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