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Abstract

Deep learning models are known to be vulnerable to adversarial examples crafted by
adding human-imperceptible perturbations on benign images. Many existing adversarial
attacks have achieved great white-box attack performance, but exhibit low transferabil-
ity when attacking other models. Various momentum iterative gradient-based methods
are shown to be effective to improve the adversarial transferability. In what follows, we
propose an enhanced momentum iterative gradient-based method to further enhance the
adversarial transferability. Specifically, instead of only accumulating the gradient during
the iterative process, we additionally accumulate the average gradient of the data points
sampled in the gradient direction of the previous iteration so as to stabilize the update
direction and escape from poor local maxima. Extensive experiments on the standard
ImageNet dataset demonstrate that our method could improve the adversarial transfer-
ability of momentum-based methods by a large margin of 11.1% on average. Moreover,
by incorporating with various input transformations, the adversarial transferability could
be further improved significantly. We also attack several extra advanced defense models
in the ensemble-model setting, and the enhancements are at least 7.8% on average.

1 Introduction
With the impressive performance of deep neural networks (DNNs) [4, 10, 12, 13, 21], the
vulnerability to adversarial examples [11, 31], which are indistinguishable from legitimate
ones by adding tiny perturbations but lead to erroneous predictions, has raised serious con-
cerns in security-sensitive applications, e.g. self-driving automobile [7], face verification [30]
etc. This issue of DNNs has triggered two research directions, with one trying to improve
the attack ability of adversarial examples [1, 2, 11, 14, 16, 35] and the other line studying
to improve the robustness of neural networks against the adversaries [3, 17, 22, 37, 38, 41].
The two directions, namely adversarial attack and adversarial defense, usually act like spear
and shield that the progress on one side can inspire the improvements of the other side.

For adversarial attack, numerous methods have been proposed in recent years, such as
the one-step gradient-based attacks [11, 34], iterative gradient-based attacks [14, 22], and
optimization-based attacks [2, 31]. Existing adversarial attacks often fall into the category
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of white-box setting, where the adversary is capable to access all information about the
target model. For the counterpart category of black-box attacks, adversarial transferability,
i.e. the ability of adversarial examples generated on one model to mislead other models, is
an important metric. Such property makes it possible to attack deep neural models without
knowing any inner working mechanism in practice. Though white-box attacks achieve good
attack performance, they often exhibit low transferability.

Recently, various methods are proposed to improve the transferability of white-box at-
tacks, e.g. incorporating momentum into iterative gradient-based attacks [5, 18], ensemble-
model attack [19], input transformations [6, 18, 36, 39] etc. Note that both ensemble-
model attack and input transformations are based on existing gradient-based attacks. How-
ever, NI-FGSM, which exhibits the best transferability among existing momentum based
attacks [18], can only achieve the average attack success rate of less than 52% in black-box
setting, as shown in Table 1, indicating that the improvement of ensemble-model attack and
transformation-based attack is rather limited.

MI-FGSM
EMI-FGSM

Start point
Data point for gradient calculation by MI-FGSM
Data point for gradient calculation by EMI-FGSM

Optimization path for MI-FGSM
Optimization path for EMI-FGSM

Figure 1: Illustration of opti-
mization path of MI-FGSM [5]
and EMI-FGSM. At each iter-
ation, MI-FGSM accumulates
the gradient of data point along
the path, while EMI-FGSM ac-
cumulates the gradients of data
points sampled in the gradient
direction of previous iteration,
which helps EMI-FGSM find
better local maxima for higher
transferability.

In this work, inspired by momentum based attacks,
we propose an enhanced momentum iterative fast gradient
sign method (EMI-FGSM), to further promote the transfer-
ability. As shown in Figure 1, different from existing mo-
mentum based methods (e.g. MI-FGSM) that only accu-
mulate the gradients of data points along the optimization
path, EMI-FGSM additionally accumulates the gradients
of data points sampled in the gradient direction of previous
iteration. Such accumulation might help find more stable
gradient direction, leading to better local maxima. Em-
pirical evaluations show that EMI-FGSM achieves higher
attack success rates in white-box setting and significantly
higher transferability in black-box setting.

Moreover, EMI-FGSM is complementary to ensemble-
model attack and input transformations. When integrated
with these advanced methods, the enhanced momentum
equipped methods can achieve significantly higher trans-
ferability on standard ImageNet dataset than SOTA base-
lines. When attacking seven advanced defenses that ex-
hibit good effectiveness against transferability on ImageNet, our method combined with in-
put transformations in ensemble-model setting achieves an average attack success rate of
86.6%, improving the transferability of existing advanced attacks by a clear margin of 7.8%.

2 Related Work
Given a classifier f and an input image x, where f (x) outputs the prediction label of x. Let
J f (x,y) denote the loss function of classifier f and Bε(x) = {x′ : ‖x− x′‖p ≤ ε} denote the
Lp-norm ball centered at x with radius ε and we focus on L∞-norm as in previous works.

Adversarial attack can be formulated as xadv ∈ Bε(x) s.t. f (x) 6= f (xadv). Based on the
threat model, existing adversarial attacks can be roughly categorized into two settings: a)
white-box attack allows full access to the threat model, e.g. model outputs, gradients and
architectures, etc. b) black-box attack only allows access to the model outputs. Recent works
also find that adversaries have good transferability [19, 26] across different models, i.e. the
adversaries generated on one model can still fool other models, falling into black-box attack.
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Existing white-box adversarial attacks [2, 14, 22, 23, 25] usually optimize the perturba-
tion using the gradient and exhibit good attack performance but low transferability. To boost
the transferability, several gradient-based adversarial attacks have been proposed. Dong et al.
[5] propose to integrate momentum into iterative gradient-based attack. Lin et al. [18] adopt
Nestorve’s accelerated gradient for higher transferability. Liu et al. [19] show that ensemble-
model attack which attacks multiple models simultaneously, can improve the transferability.

Recent works also find that input transformations can further enhance the tranferability.
Diverse Input Method (DIM) [39] creates diverse input patterns by applying random resizing
and padding to the input before feeding the image into the model for gradient calculation.
Translation-Invariant Method (TIM) [6] optimizes the perturbation over an ensemble of the
translated images by convolving the gradient at the untranslated image with a pre-defined
kernel. Scale-Invariant Method (SIM) [18] optimizes the adversarial perturbation over m
scale copies of the input to achieve higher transferability. Gao et al. [8] propose a patch-wise
iterative method (PIM), which projects the excess noise into the surrounding field and could
be integrated with existing iterative gradient-based attacks for more transferable adversaries.
Some works [9, 15, 42] focus on crafting more transferable target adversarial examples.

Ensemble-model attack and input transformation can be combined with gradient-based
methods to further improve the transferability. Our method is a new variation of gradient-
based attack with higher transferability and can be integrated with ensemble-model attack
and input transformation to achieve higher transferability.

3 Methodology
In this section, we first give an overview of gradient-based adversarial attacks, to which our
method belongs. Then we provide detailed descriptions of the proposed Pre-gradient guided
momentum Iterative FGSM (PI-FGSM) and Enhanced Momentum I-FGSM (EMI-FGSM).

3.1 Gradient-based Adversarial Attacks
Gradient-based adversarial attacks are typical methods for adversarial attacks.

Fast Gradient Sign Method (FGSM) [11] generates adversaries by a one-step update:

xadv = x+ ε · sign(∇xJ f (x,y)),

where sign(·) is the sign function and ∇xJ f denotes the gradient of the loss function w.r.t. x.
Iterative Fast Gradient Sign Method (I-FGSM) [14] extends FGSM by iteratively

applying the gradient update:

xadv
t+1 = xadv

t +α · sign(∇xadv
t

J f (xadv
t ,y)),

where xadv
1 = x, α = ε/T is a small step size, and T is the number of iterations.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [5] proposes to inte-
grate the momentum [27] into the iterative attack to achieve higher transferability:

gt = µ ·gt−1 +
∇xadv

t
J f (xadv

t ,y)

‖∇xadv
t

J f (xadv
t ,y)‖1

, xadv
t+1 = xadv

t +α · sign(gt),

where gt−1 is the accumulated gradient at (t−1)-th iteration with a decay factor µ and g0 = 0.
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MI-FGSM [5] NI-FGSM [18]

(a) (b)

Previous Gradient Current Gradient Momentum Update Direction

(c)

PI-FGSM (Ours)

(d)

EMI-FGSM (Ours)

Calculation for

Figure 2: Illustration of gradient update at t-th iteration for various momentum based attack,
where g(x) denotes the gradient of x. (a) MI-FGSM [5] accumulates the gradient of xt for
update. (b) NI-FGSM [18] accumulates the gradient of xt +µgt−1 for update. (c) PI-FGSM
accumulates the gradient of xt +α g̃t−1 for update, where g̃t−1 is the gradient of the previous
iteration. (d) EMI-FGSM accumulates the average gradient of the sampled data points in the
direction of ḡt−1 for update, where ḡt−1 is the average gradient of the previous iteration.

Nesterov Iterative Fast Gradient Sign Method (NI-FGSM) [18] integrates Nesterov’s
accelerated gradient (NAG) [24] into the iterative attack method to further improve the trans-
ferability of adversarial examples:

x̃adv
t = xadv

t +α ·µ ·gt−1, gt = µ ·gt−1 +
∇x̃adv

t
J f (x̃adv

t ,y)

‖∇x̃adv
t

J f (x̃adv
t ,y)‖1

, xadv
t+1 = xadv

t +α · sign(gt).

3.2 Pre-gradient Guided Momentum based Attack
As shown in Figure 2 (a), MI-FGSM [5] accumulates the gradient of each iteration to stabi-
lize the update direction and escape from poor local maxima, and achieves higher transfer-
ability than I-FGSM [14]. As depicted in Figure 2 (b), NI-FGSM looks ahead by accumu-
lating the gradient after adding momentum to the current data point so as to converge faster
and achieve higher transferability [18].

The performance improvement of NI-FGSM over MI-FGSM is mainly due to the looking
ahead property of the Nesterov’s accelerated gradient. We observe that NI-FGSM adopts
the accumulated momentum in MI-FGSM to look ahead, which is designed to obtain more
stable direction by considering the history gradient. This inspires us to study a new problem:
Although the direction of accumulated momentum helps craft more transferable adversaries,
is it the optimal direction for looking ahead?

To explore the direction of looking ahead, we propose a variation of NI-FGSM, called
the Pre-gradient guided momentum Iterative FGSM (PI-FGSM), which looks ahead by the
gradient of the previous iteration. Specifically, as shown in Figure 2 (c), PI-FGSM accumu-
lates the gradient of data point obtained by adding the previous gradient to the current data
point at each iteration. The update procedure can be summarized as:

x̃adv
t = xadv

t +α · g̃t−1, g̃t = ∇x̃adv
t

J f (x̃adv
t ,y),

gt = µ ·gt−1 +
g̃t

‖g̃t‖1
, xadv

t+1 = xadv
t +α · sign(gt),

where g̃t−1 denotes the gradient of the previous iteration. Instead of considering all the
history gradient as in NI-FGSM, PI-FGSM looks ahead guided by the local gradient infor-
mation and achieves better attack performance, as demonstrated in Sec. 4.2.
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3.3 Enhanced Momentum based Attack
We continue to investigate the family of momentum based attacks and observe that at each
iteration, MI-FGSM [5], NI-FGSM [18] and our PI-FGSM accumulate the gradient of differ-
ent data points, and they all exhibit higher transferability than I-FGSM [14] that only adopts
the gradient of the current data point for update. This indicates that the accumulated gradient
is helpful for crafting highly transferable adversaries. Since the accumulation of gradient of
these methods are on different data points, this inspires us another question: At each iter-
ation, could we further improve the attack transferability by accumulating the gradients of
multiple data points around the current data point for the iterative gradient-based attacks?

To address this question, we enhance the momentum by not only memorizing all the
past gradients during the iterative process, but also accumulating the gradients of multiple
sampled examples in the vicinity of the current data point. Considering the performance
improvement of PI-FGSM, to help sample more useful data points for the gradient calcula-
tion, we sample multiple data points along the direction used in PI-FGSM, i.e. the gradient
direction of the previous iteration. Specifically, as shown in Figure 2 (d), we calculate the
gradient of the t-th iteration as follows:

x̄adv
t [i] = xadv

t + ci · ḡt−1 (1)

ḡt =
1
N

N

∑
i=1

∇x̄adv
t [i]J f (x̄adv

t [i],y), (2)

where N is the sampling number, ḡt−1 is the gradient calculated at the previous iteration
and ci is the i-th coefficient sampled in interval [−η ,η ]. In our experiments, we adopt linear
sampling, which samples N linearly spaced data points in the interval [−η ,η ] and also try
other sampling methods as shown in Sec. 4.5. We denote such accumulated gradient as the
enhanced momentum.

Note that the proposed enhanced momentum is generally applicable to any iterative
gradient-based attacks, such as I-FGSM [14], PGD [22], and the ensemble-model attack [19].
Here we incorporate the enhanced momentum into I-FGSM, denoted as Enhanced Momen-
tum I-FGSM (EMI-FGSM), to craft highly transferable adversarial examples. The update
procedure can be summarized as:

gt = µ ·gt−1 +
ḡt

‖ḡt‖1
, (3)

xadv
t+1 = xadv

t +α · sign(gt). (4)

where ḡt is calculated by Eq. (2). The algorithm is summarized in Algorithm 1.

4 Experiments
In this section, we provide the experimental setup, report comparisons of gradient-based
attacks on four normally trained models and comparisons when integrated with input trans-
formations and ensemble-model attack, as well as results of attacking seven advanced de-
fenses. We further provide ablation studies for the sampling method and hyper-parameters.
We also give discussions on other possible variant methods in Appendix B. Code is available
at https://github.com/JHL-HUST/EMI.

4.1 Experimental Setup
Dataset. Similar to [18, 35, 39], we randomly choose 1,000 images from the ILSVRC 2012
validation set [28]. All these images are resized to 299×299×3 beforehand.
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Algorithm 1 EMI-FGSM.
Input: A classifier f and loss function J f . A benign example x and its ground-truth label y.
Input: The maximum perturbation ε , number of iteration T and decay factor µ . The bound

η for the sampling interval and sampling number N.
Output: An adversarial example xadv ∈ Bε(x).

1: α = ε/T ; g0 = 0; ḡ0 = 0; xadv
1 = x.

2: for t = 1→ T do:
3: Sample N coefficients ci ∈ [−η ,η ] for Eq. (1).
4: Calculate the average gradient ḡt of N sampled data points by Eq. (2).
5: Update the enhanced momentum gt by Eq. (3).
6: Update xadv

t+1 by Eq. (4).
7: end for
8: return xadv = xadv

T+1.

Baselines. We compare our method with six gradient-based attack methods including
FGSM [11], I-FGSM [14], PGD [22], CW [2], MI-FGSM [5] and NI-FGSM [18]. We also
integrate our method into the ensemble-model attack [5, 19], input transformations [6, 18,
39], and Patch-wise attack [8] to show the performance improvement of our method over
these baselines.

Models. Four normally trained models, i.e. Inception-v3 (Inc-v3) [32], Inception-v4
(Inc-v4), Inception-Resnet-v2 (IncRes-v2) [33], Resnet-v2-101 (Res-101) [12], as well as
three ensemble adversarially trained models, i.e. ens3-adv-Inception-v3 (Inc-v3ens3), ens4-
Inception-v3 (Inc-v3ens4), ens-adv-Inception-ResNet-v2 (IncRes-v2ens) [34], are considered.
Without ambiguity, we simply call the three ensemble adversarially trained models as adver-
sarially trained models. Moreover, to show the efficacy of our methods, we also incorporate
seven advanced defense methods, including the top-3 submission in the NIPS 2017 defense
competition, i.e. high-level representation guided denoiser (HGD, rank-1) [17], input trans-
formation through random resizing and padding (R&P, rank-2) [38], NIPS-r3 (rank-3) 1,
randomized smoothing (RS) [3] and adversarially randomized smoothing (ARS) [29] for cer-
tified defense, feature distillation (FD) [20] and bit depth reduction (Bit-Red) [40]. Here we
do not consider some SOTA adversarial training methods, e.g. PGD-AT [22], TRADES [41],
which only validates the effectiveness on CIFAR-10 or CIFAR-100 datasets.

Attack Settings. We follow the settings in [5] with the maximum perturbation of ε =
16/255, pixels normalized into [0,1] and the number of iteration T = 10. For the momentum
term, we set the decay factor µ = 1 [5]. For DIM, we set the transformation probability to
0.5 and the input x is first randomly resized to an r× r× 3 image with r ∈ [299,330), and
then padded to 330×330×3 [39]. For TIM, we adopt Gaussian kernel with size 7×7 [6].
For SIM, the number of scale copy is set to m = 5 [18]. For EMI-FGSM, we set the number
of examples N = 11, the sampling interval bound η = 7, and adopt the linear sampling.

4.2 Comparison with Gradient-based Attacks
We first craft adversaries by various gradient-based attacks in single-model and ensemble-
model setting respectively, and report the attack success rates, which are the misclassification
rates of the corresponding models using adversarial examples as the inputs.

Single-model Setting. The results for adversaries crafted on Inc-v3 are depicted in Ta-

1https://github.com/anlthms/nips-2017/tree/master/mmd
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Attack Inc-v3* Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

FGSM 67.3 25.7 26.0 24.5 10.2 10.4 4.5
I-FGSM 100.0 20.3 18.5 16.1 4.6 5.2 2.5
PGD 98.3 17.8 15.5 11.9 5.8 5.9 3.3
CW 100.0 19.6 15.7 13.3 4.1 5.2 2.4
MI-FGSM 100.0 44.5 42.0 36.3 13.4 13.7 6.5
NI-FGSM 100.0 51.9 50.4 41.0 13.4 13.2 5.7
PI-FGSM (Ours) 100.0 60.2 59.1 49.0 14.9 14.6 6.5
EMI-FGSM (Ours) 100.0 72.7 69.9 59.5 20.3 19.9 10.9

Table 1: Attack success rates (%) against seven baseline models in single-model setting. The
adversaries are crafted on Inc-v3.* indicates the white-box model being attacked.

Attack Inc-v3* Inc-v4* IncRes-v2* Res-101* Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

FGSM 64.8 49.3 43.9 68.8 15.8 15.1 8.9
I-FGSM 99.9 98.6 95.6 99.8 19.1 16.8 10.4
PGD 100.0 99.7 99.4 99.9 11.4 11.0 6.7
CW 100.0 99.8 98.8 100.0 15.4 14.4 9.5
MI-FGSM 99.9 98.7 95.0 99.9 39.7 35.5 23.8
NI-FGSM 100.0 99.8 99.2 99.9 41.2 34.9 22.9
PI-FGSM (Ours) 100.0 99.2 98.5 99.9 52.5 45.3 29.6
EMI-FGSM (Ours) 100.0 99.8 99.8 100.0 69.0 62.0 43.0

Table 2: Attack success rates (%) against seven baseline models in ensemble-model setting.
The adversaries are crafted on ensemble models, i.e. Inc-v3, Inc-v4, IncRes-v2 and Res-101.

ble 1 and the results on other three models are shown in Appendix A. All the attacks achieve
100% attack success rates in white-box setting except for FGSM. For black-box attacks,
some attacks (e.g. I-FGSM, PGD, CW) that have demonstrated high effectiveness in white-
box setting, exhibit low transferability when evaluated on other models. On the contrary, the
transferability of PI-FGSM is much higher (8-9%) on normally trained models, and is con-
siderably higher (0.8-1.5%) on adversarially trained models than MI-FGSM and NI-FGSM.
With the enhanced momentum, EMI-FGSM exhibits much higher transferability on normally
trained models (10.5-12.5%) and adversarially trained models (4.4-5.4%) than PI-FGSM,
and outperforms NI-FGSM with a clear margin of 11.1% on average.

Ensemble-model Setting. As in [5], we implement the attacks in ensemble-model set-
ting by fusing the logit outputs of four normally trained models, i.e. Inc-v3, Inc-v3, IncRes-
v2 and Res-101, with equal ensemble weights. As shown in Table 2, I-FGSM, PGD and CW
attack still show lower transferability than other attacks. In contrast, PI-FGSM exhibits bet-
ter attack success rates than I-FGSM and MI-FGSM in white-box setting and achieves much
higher transferability on three adversarially trained models. This validates our first concern
that due to considering too much history gradient, the accumulated momentum adopted by
NI-FGSM provides imprecise direction compared with PI-FGSM, which is not optimal for
looking ahead. Moreover, EMI-FGSM achieves the best results in both white-box and black-
box setting and outperforms the powerful baseline NI-FGSM by a large margin of more than
20%, which demonstrates the high effectiveness of enhanced momentum.

4.3 Integrated with Input Transformations or Patch-wise attack
We further incorporate EMI-FSGM with various input transformations, i.e. DIM, TIM, SIM,
and the combination of three input transformations, dubbed DTS for abbreviation and patch-
wise attack (PIM), in single-model and ensemble-model setting respectively. For fairness, all
the transformations are integrated into MI-FGSM as baselines [6, 39]. We integrate PIM into
I-FGSM, MI-FGSM and our EMI-FGSM, termed PIM, MI-PIM and EMI-PIM, respectively.
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Attack Inc-v3* Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

DIM 99.0 64.6 60.9 52.1 18.3 17.7 9.5
EMI-DIM (Ours) 99.1 83.5 78.0 70.6 27.8 26.0 13.4
TIM 100.0 47.0 44.5 40.5 24.3 22.0 13.2
EMI-TIM (Ours) 100.0 79.4 76.3 67.2 44.3 40.8 26.2
SIM 100.0 70.3 68.0 62.4 32.4 30.8 17.2
EMI-SIM (Ours) 100.0 91.9 90.0 85.4 45.2 41.8 23.8
DTS 98.9 83.1 80.7 75.8 65.2 62.7 46.0
EMI-DTS (Ours) 99.6 94.1 92.6 89.4 78.9 75.3 60.4
PIM 100.0 43.4 32.3 36.2 33.2 34.9 24.3
MI-PIM 100.0 50.7 46.6 43.9 18.3 19.8 10.5
EMI-PIM (Ours) 99.7 51.7 40.2 43.5 42.6 44.8 33.4

Table 3: Attack success rates (%) against seven baseline models in single-model setting. The
adversaries are crafted on Inc-v3.

Attack Inc-v3* Inc-v4* IncRes-v2* Res-101* Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

DIM 99.4 97.4 94.7 99.8 56.3 50.7 36.4
EMI-DIM (Ours) 99.9 99.6 99.7 99.7 77.0 70.1 50.3
TIM 99.8 98.0 95.0 99.9 61.3 56.7 47.8
EMI-TIM (Ours) 100.0 100.0 99.7 100.0 89.0 83.9 78.2
SIM 99.9 99.3 98.5 100.0 78.5 74.4 60.4
EMI-SIM (Ours) 100.0 100.0 100.0 100.0 90.1 87.3 74.2
DTS 99.6 98.9 97.9 99.7 92.1 90.2 86.6
EMI-DTS (Ours) 100.0 99.9 100.0 100.0 97.4 96.1 94.1
PIM 100.0 99.9 99.9 99.7 60.2 60.3 45.6
MI-PIM 100.0 100.0 100.0 99.9 42.7 41.1 29.3
EMI-PIM (Ours) 100.0 99.9 99.8 99.8 84.6 86.2 80.6

Table 4: Attack success rates (%) against seven baseline models in ensemble-model setting.
The adversaries are crafted on ensemble models, i.e. Inc-v3, Inc-v4, IncRes-v2 and Res-101.

Single-model Setting. The results for adversaries generated on Inc-v3 are summarized
in Tabel 3. We can observe that EMI can significantly boost the transferability on each of
the transformation-based attack methods. In general, the EMI based attacks consistently
outperform the baseline attacks by 3.9%∼ 32.4%. Even for white-box setting, EMI further
promotes the attack success rates of the baseline attacks. For instance, EMI-DTS outper-
forms DTS by 0.7% against Inc-v3. For PIM, we find that MI-PIM boosts the transferability
on clean models but degrades the transferability on adversarially trained models. In contrast,
EMI-PIM enhance the transferability of PIM on both clean models and adversarial trained
models. The results for adversaries crafted on other three normally-trained models are con-
sistent with that generated on Inc-v3, as shown in Appendix A.

Ensemble-model Setting. As in Sec. 4.2, we also evaluate the attacks in ensemble-
model setting and the results are summarized in Table 4. EMI based method remarkably
improves the attack success rates across all experiments over the baseline attacks. In partic-
ular, the final combination of EMI-DTS has achieved the attack success rates of over 94.1%
for black-box attacks against the three adversarially trained models. Such intriguing results
convincingly demonstrate the success on the combination of EMI-FGSM, input transforma-
tions and ensemble-model attack for improving the attack transferability.

4.4 Attacking Advanced Defense Models
With the remarkable improvement on the baselines, we further evaluate EMI-FGSM on seven
advanced defenses with various input transformations in ensemble-model setting to show its
high efficacy. We test the defenses using the adversaries crafted in Sec. 4.3.
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Attack Sampling Method Inc-v3* Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

EMI-FGSM
Linear 100.0 74.4 71.9 60.5 21.2 19.5 9.9

Uniform 100.0 74.7 71.5 61.2 18.9 18.8 8.8
Gaussian 100.0 73.0 70.4 60.0 20.2 19.0 9.9

EMI-DTS
Linear 99.6 94.5 92.8 90.2 78.8 76.0 60.3

Uniform 99.5 92.9 91.9 87.9 77.1 71.5 57.0
Gaussian 99.5 94.8 92.6 89.7 78.5 74.3 58.7

Table 5: Attack success rates (%) of EMI-FGSM and EMI-DTS against the seven baseline
models with various sampling methods. The adversarial examples are crafted on Inc-v3.

The results of EMI-FGSM with three input transformations are shown in Figure 3(a)-
3(c). EMI-FGSM remarkably improves the transferability of three input transformations on
all defense models. On average, the performance is improved by 14.8%, 24.5% and 11.8%
respectively. We also integrate the combination of three input transformations into EMI-
FGSM as in [18] to further improve the transferability. As shown in Figure 3(d), EMI-DTS
achieves an average attack success rate of 86.6%, boosting SOTA methods by a clear margin
of 7.8%. Given that the adversaries are crafted on the ensemble models without any defense
mechanisms but with such high attack performance, it identifies the inefficiency of existing
defenses and indicates that they are far from being deployed in real-world applications.

4.5 Ablation Study
To gain more insights on the performance improvement by enhanced momentum based
methods, we conduct ablation studies to explore the impact of sampling method and hyper-
parameters for sampling interval η and sampling number N, respectively. To simplify the
analysis, we only consider the transferability of adversaries crafted on Inc-v3 by vanilla
EMI-FGSM and EMI-DTS. The default setting adopts linear sampling, η = 7 and N = 11.

On sampling distribution. We try EMI-FGSM and EMI-DTS with three types of sam-
pling methods, i.e., linear sampling, uniform sampling and Gaussian sampling. Linear sam-
pling samples N linearly spaced data points in the interval. Uniform and Gaussian sampling
sample N data points in the interval by uniform and Gaussian distribution, respectively. As
shown in Table 5, the three sampling methods achieve similar attack performance. In general,
linear sampling exhibits slightly higher results, thus we adopt linear sampling in experiments.

On sampling interval. To validate the impact of sampling interval η , we try different
values of η from 1 to 10 and the results are summarized in Figure 4. For all the values of η ,
the white-box attack success rate is 100%. The transferability increases when η ≤ 3 for both
EMI-FGSM and EMI-DTS. For 4≤ η ≤ 7, the attacks exhibit similar transferability and the
performance decays slightly when η > 7. Thus we adopt η = 7 in experiments.

On sampling number. We explore the impact of the sampling number N, as shown in
Figure 5. The white-box attack success rate for various values of N is 100%. When N = 1,

(a) DIM vs. EMI-DIM (b) TIM vs. EMI-TIM (c) SIM vs. EMI-SIM (d) DTS vs. EMI-DTS
Figure 3: Attack success rates (%) against seven advanced defenses. The adversaries are
crafted on ensemble models, i.e. Inc-v3, Inc-v4, IncRes-v2, Res-101. (Zoom in for details.)
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(a) EMI-FGSM
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(b) EMI-DTS
Figure 4: Attack success rates (%) on the
other six models with adversarial examples
generated by EMI-FGSM and EMI-DTS on
Inc-v3 for various sampling interval.
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(a) EMI-FGSM
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(b) EMI-DTS
Figure 5: Attack success rates (%) on the
other six models with adversarial examples
generated by EMI-FGSM and EMI-DTS on
Inc-v3 for various sampling number.

Attack Inc-v3* Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

MI-FGSM 100.0 39.3 36.6 31.5 8.9 8.6 3.3
EMI-FGSM (Ours) 100.0 72.7 69.9 59.5 20.3 19.9 10.9

Table 6: Attack success rates (%) of MI-FGSM (T=110) and EMI-FGSM (T=10, N=11)
against the seven baseline models under the same computational cost.

EMI-FGSM degrades to MI-FGSM and exhibits the lowest transferability. When we increase
the value of N, the transferability increases rapidly before N = 11 for EMI-FGSM and N = 7
for EMI-DTS. When N > 11, increasing N can still bring small performance improvement
for EMI-FGSM. However, the bigger the value of N, the higher the computational cost. To
balance the performance gain and the cost, we set N = 11 in experiments.

4.6 Discussion on Computational Cost
The computational cost for gradient-based attacks mainly depends on the forward and back-
ward propagation for the gradient calculation, which is related to the number of gradient
calculation at each iteration N and the total number of iterations T . Under the same num-
ber of iterations, EMI-FGSM needs N times number of gradient calculation, leading to N
times overhead. To further validate the effectiveness under the same cost, we set T = 110 for
MI-FGSM while T = 10 and N = 11 for our EMI-FGSM. As shown in Table 6, with larger
number of iterations, MI-FGSM tends to overfit the target model and achieves even lower
transferability than MI-FGSM with 10 iterations. This indicates larger computational cost
does not guarantee better transferability and shows the superiority of our method.

5 Conclusion
Inspired by momentum based attacks, we propose an enhanced momentum that accumulates
the gradient of each iteration as well as the gradients of the sampled data points in the gradi-
ent direction of previous iteration. Empirical evaluations on ImageNet dataset demonstrate
that our enhanced momentum can significantly improve the attack success rates in white-box
and black-box settings. Our EMI-DTS, integrated with input transformations in ensemble-
model setting, could achieve an average black-box attack success rate of over 94%, showing
very high transferability. Our work also indicates that existing defenses are far from being
deployed in real-world applications and stronger robust deep learning models are needed.
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