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Abstract

Gaze estimation involves predicting where the person is looking at within an image
or video. Technically, the gaze information can be inferred from two different magnifica-
tion levels: face orientation and eye orientation. The inference is not always feasible for
gaze estimation in the wild, given the lack of clear eye patches in conditions like extreme
left/right gazes or occlusions. In this work, we design a model that mimics humans’ abil-
ity to estimate the gaze by aggregating from focused looks, each at a different magnifica-
tion level of the face area. The model avoids the need to extract clear eye patches and at
the same time addresses another important issue of face-scale variation for gaze estima-
tion in the wild. We further extend the model to handle the challenging task of 360-degree
gaze estimation by encoding the backward gazes in the polar representation along with a
robust averaging scheme. Experiment results on the ETH-XGaze dataset, which does not
contain scale-varying faces, demonstrate the model’s effectiveness to assimilate informa-
tion from multiple scales. For other benchmark datasets with many scale-varying faces
(Gaze360 and RT-GENE), the proposed model achieves state-of-the-art performance for
gaze estimation when using either images or videos. Our code and pretrained models can
be accessed at https://github.com/ashesh-0/MultiZoomGaze.

1 Introduction
Gaze estimation is a critical task in computer vision for understanding human intentions and
has significant potential to be used in unconstrained environments—i.e., in the wild. Saliency
detection [26, 28], human-robot interaction [21, 24], virtual reality [23, 27] are some of its
main applications. The goal of gaze estimation is to predict the gaze direction of a given
person accurately. The predicted direction can be 2D [11, 16], like the (x,y) coordinate of a
mobile or laptop screen, or 3D [31, 35], reflecting the real-world reference system.

This work focuses on 3D gaze estimation. As shown in Figure 1(Top), the task of 3D
gaze estimation in the wild has two unique properties that make it challenging. Firstly,
there can be occlusions, extremely left/right face orientations, and even backward gazes. For
those subjects, details of the face and eye regions are often incomplete or totally absent.
These two regions, each at a different magnification level, arguably carry most information
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Figure 1: (Top) Our model MSA produces qualitatively good gaze prediction (red arrow) in
the wild with backward gazes and varying head sizes. Image taken from www.pexels.
com/photo/photo-of-people-walking-on-street-2416653/. (Bottom)
Head crops from Gaze360 dataset. The head area in the image is referred to as the “scale”
of the input image in this paper. Compared to right image set, left set has larger scale.

for the gaze. Even when eye patches are available, they are of varying resolution because
of the varying camera-person distance. Recent approaches that leverage the face and eye
information for gaze estimation [2, 4] generally rely on separate and therefore complete and
high-resolution patches of the face and eyes. Therefore, those approaches are not suitable
for our task of gaze estimation in the wild. Secondly, images in the wild setting have varying
scales, where “scale” informally means the size of the head region. Varying scales come from
varying camera-person distances and also result in varying resolutions of the subjects. Such
variations cannot be easily handled by usual convolutional neural networks (CNNs) [13, 17].
In particular, we observe that the test performance varies significantly with varying scale.

One simple approach to tackle the scale variation issue is to use a bounding box to crop
and resize the head region, where the bounding box can be generated from a head detector, a
face detector or a facial keypoint detector. For example, Kellnhofer et al. [15] work with the
head crops of the raw images. However, producing a tight head-bounding box in the wild
is challenging because of significant variations in the scale, background, head orientations
and lighting conditions. Therefore, scale variation still persists even after re-scaling the
head-crops, as shown in Figure 1(Bottom). The aforementioned issue of incomplete facial
information also makes it hard to leverage face or facial keypoint detectors for obtaining the
bounding box. That is, approaches that re-scale with bounding boxes do not fully solve the
scale variation issue in this setting.

Most approaches have addressed the scale variation by leveraging image warping [31] to
normalize the input image [3, 6, 25, 37, 38]. Those image-warping approaches re-orient the
camera virtually such that the head orientation and the camera-person distance to the virtual
camera can be fixed [25, 37, 38]. But image warping typically requires locating the midpoint
of the eyes accurately, and the midpoint is not always available under the aforementioned is-
sue of incomplete facial information. That is, image-warping approaches are not satisfactory
for gaze estimation in the wild, either.

In this paper, we tackle the two challenges of gaze estimation in the wild, namely extract-
ing information from multiple magnification levels with incomplete facial information and
significant scale variations, from a different perspective. Instead of bounding and normaliz-
ing the head region to one scale in advance, we seek to mimic what humans do when trying
to accurately estimate a gaze: take successively focused looks at the head (face) region. In
particular, we expand an input image to siblings scaled with different zooms, and aggregate
the 2D feature maps from all siblings to make the final estimation. During feature extraction,
every feature-map has an expression in all scales. Then, spatial max-pooling is applied on
multiple 2D feature maps to get one 2D feature map of the same dimension, which reflects
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the intent to pick the best expression for each feature. The aggregation with multiple scales
costs a mild increase of model complexity, but significantly improves the model by aug-
menting and aggregating with domain-justified transforms (zoom-in). Those transforms are
simpler than the ones used in image-warping approaches, thus avoiding the complication of
locating the midpoint between the eyes. In addition, aggregating multiple scales within the
model instead of resizing to one scale in advance arguably makes the proposed model more
robust than bounding-box-based approaches.

Another key challenge that we identify for estimation in the wild is the ambiguous rep-
resentation of −π and π for the yaw angle that causes discontinuity in the parametric space.
For example, the Gaze360 dataset [15] contains backward gazes, for which the magnitude of
the yaw angle is greater than π/2. To resolve the ambiguity, we propose to encode the yaw
angle using the complex exponential (polar) representation. This allows estimating the yaw
angle from two different trigonometric functions. We analyze the two estimates and propose
a weighted averaging scheme that takes the best of them to further improve the prediction.

The contributions of the paper can be summarized as follows: 1) To the best of our knowl-
edge, we are the first to extract information from multiple scales for solving gaze estimation
in the wild. Our strength is in the simplicity of our approach—not requiring sophisticated
external modules for extracting eye patches, head pose or facial keypoints. Instead, our
approach works with a simple head detector that does not have to be perfectly tight. The
simplicity makes it possible to easily couple the approach across multiple backbones and
different input types (images or videos). 2) To improve backward gaze prediction, which is
critical for estimation in the wild, we propose to use the polar representation along with a
robust averaging scheme to estimate the yaw angle. 3) Our proposed approach achieves state-
of-the-art performance on Gaze360 [15], a benchmark dataset in the wild and RT-GENE [6],
another dataset in the wild with a natural environment. We also demonstrate the effectiveness
of the approach on ETH-Xgaze [39], a dataset collected with a controlled environment.

2 Proposed Model

We first present our model for single-image input gaze estimation with full 360◦ variations
in the yaw angle. We then extend the model to a more complicated task of video (sequential)
gaze estimation and then to a simpler task where backward gazes are absent.

Problem Formulation. The state-of-the-art work for gaze estimation in the wild [15] con-
verts the raw images (or video frames) in the wild, like Figure 1(Top), to head-crop images
using an off-the-shelf head detector to construct the training and test data. We follow the
same construction. The construction makes each (head-crop) image roughly face-centered.

Given an input head-crop image I, the 3D gaze estimation task for images aims to predict
the ground-truth yaw angle θg and pitch angle φg of the gaze direction of the subject within I.
We denote the predicted yaw and pitch as θp and φp respectively. The corresponding task for
videos, identical to [15] takes a sequence of video frames V0:2T = {I0, I1, ..., IT−1, IT , .., I2T}
as the input and aims to predict the yaw and pitch angles for the frame IT .

For evaluation, we convert the target gaze and its prediction from polar co-ordinate rep-
resentation (θ ,φ ) to a unit vector in 3D cartesian co-ordinates. We then evaluate on angular
error, which is the angle between the target and predicted unit vectors.

Target Domain Transformation. A gaze is said to be a backward gaze when θg ∈{[−π,−π/2]
∪[π/2,π]}. The model proposed in [15] directly predicts θ and φ , which we discovered to
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Figure 2: MSA (right) and data pre-processing for static (middle) and sequence (left) model.

be causing considerable losses on backward gazes due to a discontinuity in the yaw domain:
the yaw value jumps discontinuously from π to −π . Refer supplemental for details. We
tackle this problem via target space transformation: we predict sin(θ), cos(θ), and sin(φ).
We use tanh activation to ensure apppropriate prediction range.

To estimate θ from the predicted sin(θ) and cos(θ), we use a two-step method. First,
we estimate θ in two ways. In the sine-based way, we estimate yaw θS from sin(θ) and
sign(cos(θ));1 in the cosine-based way, we estimate yaw θC using cos(θ) and sign(sin(θ)).

In the second step, we calculate our final estimate of yaw, θp. Initially we used θp = θSC
where θSC = (θS + θC)/2. However, θS is much more accurate than θC around 0◦ which
can be observed in the distribution of θg, θS, and θC shown in supplemental. From the
dip in the distribution of θC around 0◦ primarily and that of θS slightly around ±90◦, one
can say that model is having difficulty in predicting those regions. We argue that the low
derivative of the tanh activation function near ±1 makes it difficult for the model to predict
values very close to ±1, and that the high derivative of the sin−1 and cos−1 functions around
1 discourages the prediction of angles close to ±90◦ and 0◦ respectively. We address this
using a weighted averaging scheme. Specifically, our yaw prediction θWSC is defined as
θWSC = w ∗ θS +(1−w) ∗ θC. Here, w is defined as w = |cos((θS + θC)/2)|. Defined this
way, in practice, θS is assigned greater weight when θg is near 0◦ and θC is assigned greater
weight when θg is near ±π/2.
Loss Function. Following the Gaze360 paper [15], we use Pinball loss for all experiments
on the dataset. In generic terms, if yg is the target and yp is prediction, then the quantile loss
Lτ for quantile τ is defined as

Lτ(yp,σ ,yg) = max(τyτ ,−(1− τ)yτ) yτ =

{
yg − (yp −σ) for τ ≤ 0.5
yg − (yp +σ) otherwise

(1)

Here, σ can be understood as the uncertainty in prediction, which is yet another output
from our network. This formulation is used on all three gaze targets, namely sin(θ), cos(θ),
and sin(φ). The final loss is the average of these losses over quantiles τ = 0.1 and τ = 0.9.
See [15] for more details.
Architecture for Static Model. In Gaze360 [15], as shown in Figure 1 (Bottom), head crops
have varying scales. Additionally, the pinball static model [15] together with the proposed
sine-cosine transformation does not handle images of varying scales any better (refer to the
Experiments section for details). We use center-cropping along with spatial max-pooling to
handle scale robustly and extract multi-scale features.

1sign(·) returns +1 on a non-negative number, and −1 otherwise.
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The architecture of the proposed MSA (Multiple Scale Aggregation) model and data
preprocessing for single image input case is shown in Figure 2 (Middle and Right). The
input image is center-cropped with multiple sizes CCropL= {Ci, i∈ [0,T ]} and subsequently
scaled back to the original size, yielding a set of images with varying scales, which are then
fed into the proposed MSA module. It comprises of a pre-trained backbone network and a
final dense layer. Images are fed into the CNN portion of the backbone network to produce
2D feature maps for differently scaled images. We then use max-pooling on these stacked 2D
feature maps along the scale dimension, and pass the output thereof through the backbone
head, which is comprised of dense layers. Finally, the output from the backbone head is
passed through a dense layer and an appropriate activation to yield the predictions. To predict
sin(θ), cos(θ), and sin(φ), we use tanh activation. We then use the θWSC formulation to get
θ . To predict σ , we use sigmoid activation.

Architecture of Sequence Model. With sequence model, we use MSA with a different data
preprocessing as shown in Figure 2 (Left). Given input image sequence I0, I1..I2T , we center-
crop the images with sizes C0,C1..CT−1,CT ,CT−1..C1,C0 respectively and rescale them back
to original size. We also introduce the constraint that Ci > Ci+1∀i. The specific crop-size
ordering and constraint is placed to implicitly preserve information about frame ordering.
Notably, CT , the crop size for the target frame IT , is the smallest which gives the greatest
zoom-in effect. This should encourage the model to extract more micro-level details from
eye region in IT . These rescaled images are then fed to MSA to get the prediction.

Changes for Non-Backward Gaze Estimation. When solving the simpler non-backward
gaze estimation, the absence of yaw discontinuity means that the proposed sine-cosine trans-
formation is not needed. Therefore, in this setting, we directly predict θ and φ which es-
sentially reduces the dimension of last dense layer from 4 to 3. We test this setting on the
RT-GENE dataset [6] and ETH-Xgaze [39] dataset.

3 Experiments

3.1 Implementation Details and Data

Implementation Details Besides using pretrained Resnet18 [10] for the backbone as done
in [15], MobileNet [29], SqueezeNet [12], ShuffleNet [20], and Hardnet [1] were also used.
All weights get updated during training. Like [15], T = 3 was used for sequence model. For
all experiments on all datasets and both model types, unless specified otherwise, we used
[224,200,175,150] for CCropL, obtained empirically. More details given in supplemental.

Data We conducted experiments on Gaze360 [15], RT-GENE [6] and ETH-XGaze [39].
Gaze360 includes images of both indoor and outdoor scenes, with a full 360◦ range of yaw
angles. The camera-to-person distance varies considerably (1 m to 3 m) leading to variable
head sizes and image resolutions. Most existing datasets [11, 16, 22, 30, 31, 38] don’t
contain this much variation in camera-person distance and yaw angle. Using 238 subjects,
this dataset comprises 129K training images, 17K validation images, and 26K test images.
Similar to [15], we only work with head crops provided in the dataset.

RT-GENE [6] also has varying camera-person distances (80–280 cm). RT-GENE in-
cludes four sets of images: two original sets and two inpainted sets. There are two versions
of both sets: the raw version and a MTCNN [36] based normalized version. As in [5], we find
the inpainted sets to be noisy and therefore we only use the Raw-Original and Normalized-
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Model + Backbone All
360

Front
180

Back

Pinball Static [15] 15.6 13.4 23.5
Pinball Static [15]
Re-Implemented

15.6 12.8 26.0

Spatial Weights
CNN [38]

20.7 16.8 34.9

Spatial Weights
CNN [38] + Resnet

15.5 12.8 25.4

CA-Net [4] 18.2 15.3 28.6
CA-Net [4] + Resnet 15.2 12.8 23.6
Static+avg 14.4 12.8 20.4
Static+wavg 14.4 12.7 20.4
MSA+raw 15.8 12.4 28.1
MSA+avg 14.0 12.3 19.9
MSA 13.9 12.2 19.9

Model All
360

Front
180

Back

Pinball LSTM [15] 13.5 11.4 21.1
SSA+avg+Seq 13.1 11.5 18.9
SSA+avg+Seq +
LSTM

13.2 11.5 19.4

SSA+wavg+Seq +
LSTM

13.1 11.4 19.3

SSA+wavg+Seq 13.0 11.4 18.8
MSA+avg+Seq +
LSTM

12.7 10.9 19.2

MSA+avg+Seq 12.5 10.8 19.0
MSA+Seq + LSTM 12.7 10.9 19.2
MSA+Seq 12.5 10.7 19.0

Table 1: Performance comparison on Gaze360 dataset [15]. For each configuration, three
models were trained. Average angular error is reported in this table. Resnet18 is used as
backbone in our model and its variants. (Left) Comparison on Static models. (Right) Com-
parison on Sequential (Temporal) models.

Original set. However, since the normalized version used facial keypoints for rescaling the
image, we note that those image sets are therefore not relevant for the unconstrained setting.

ETH-XGaze data covers a wide range of head poses, gaze angles and lighting conditions
and has high resolution images. It has 1M images comprising of 80 subjects in train set and
15 in test set. While the pre-processed images, which we use, have fixed camera-person dis-
tance, the wide range of head poses and gaze angles makes it a useful dataset for evaluation
of in the wild performance.

3.2 Model Performance Comparison

Benchmarks. Due to the challenging nature of the dataset, we could not find any other
work on Gaze360 dataset apart from the original work [15] of which we directly report the
performance from their paper. On implementing their Static model [15], we found different
performance in few yaw ranges and so we report our implementation as ’Pinball Static [15]
Re-Implemented’. We adapt work of Cheng et al. [4] which also makes use of features from
multiple scales by extracting features from eye region and face. We use the eye bounding
boxes provided with the dataset for this work. We also adapt work of Zhang et al [38] where,
similar to us, they work with just face images. For both of above mentioned works, we also
report results by replacing their face feature extractor (backbone network) with Resnet18 and
the loss with pinball loss so as to have a more authentic comparison.
Ablation Study. We compare our MSA model with multiple variants of itself. Here, we
mention differing points for each variant against our model. MSA+avg and MSA uses the
θSC and θWSC formulation for yaw respectively. MSA+raw directly predicts θ , φ and un-
certainty σ , and does not use the sine-cosine transformation. Static+avg and Static+wavg
do not use the multi-crop based idea and can be understood as being MSA+avg and MSA
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(a) (b) (c) (d)
Figure 3: All results are computed on Gaze360 dataset. For (a), (b) and (d), B1, B2, B3, B4,
and B5 denote Squeezenet, Shufflenet_V2, Mobilenet_V2, Resnet18, and Hardnet68 back-
bones respectively.(a) Performance of Static model variants. (b) Angular error on samples
having front ±20◦ as yaw. (c) Top: Angular error variation with variation in Head bounding
bbox area (in fractions) on front 180◦ images. Head bbox area is binned into 10 equal sized
bins and average angular error is reported for each bin. Bottom: Percentage benefit of our
MSA model over Static+wavg model with Head bbox area variation.(d) Percentage increase
in average angular error on front 180◦ gazes with varying amount of magnification.

respectively with CCropL = [224],T = 1. SSA, used in sequential model is MSA with no
multicrop, i.e, CCropL = [224,224,224,224],T = 3.
Performance. In Table 1 (left) we compare Static model performance. Firstly, by comparing
Static+avg model’s performance (20.4◦) on Back gazes with [15] (23.5◦), benefit of sine-
cosine transformation can be seen. Next, benefit of multi-scale aggregation can be seen on
Front 180 gazes by observing MSA+raw’s performance (12.4◦) with [15](13.4◦). Finally,
MSA model outperforms on all three gaze categories namely front 180◦— |θg| ∈ [0◦,90◦]
(12.2◦), back — |θg| ∈ [90◦,180◦] (19.9◦) and overall (13.9◦). It is worth noting the inferior
performance of [4] (overall 15.2◦) which used both eye and face patches. It shows that
absence of clear eye patches in such conditions significantly hampers the performance.

In Table 1 (right), we show that in Sequence model type, our model MSA+Seq outper-
forms the benchmarks on all three gaze categories. We also show the performance on using
the LSTM module as an aggregation module instead of our max-pool operator for a closer
comparison to [15]. More details are given in the supplementary material, where we do an
experiment of varying the aggregation modules.
Individual Effect of Different Components. Figure 3 (a) shows the performance gains
achieved by different components. We observe the benefit of the sine-cosine transformation
by comparing Static with Static+avg, and observe the benefit of multiple zoom scales by
comparing MSA with Static+wavg. We argue that reason for inferior performance of MSA
with Squeezenet was that it being the lightest backbone (1.2M parameters), could not manage
multiple scales. Finally, as θWSC was introduced to fix issues with θSC around primarily 0◦,
its benefit can be observed on frontal gazes in Figure 3 (b).
Performance Variation With Head Crop Area. In Gaze360 dataset, the authors provide
the head bounding box dimensions as a fraction of the original fixed size full body image.
Firstly, as seen in Figure 3 (c), for front 180◦ gazes, we find considerable variation in per-
formance with change in head bounding box area. Secondly, MSA gets better performance
consistently on most bounding box area bins.
Performance Variation with Camera-Person Distance We look at how much MSA out-
performs the Static+wavg model on front 180 gazes as we vary the distance. We binned
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Method Bkb Image Input Err
Spatial weights
CNN [38]

- NOrig Face 10

RT-Gaze [6] - NOrig Eye 8.6
RT-Gaze [6] - NOrig + NIn Eye 7.7
FAR-Net [5] - NOrig Face + Eye 8.4
Static B4 Orig Face 7.9
MSA+raw B4 Orig Face 7.1
Static B5 Orig Face 7.0
MSA+raw B5 Orig Face 6.7
Static B4 NOrig Face 7.2
MSA+raw B4 NOrig Face 7.3
MSA+raw+175 B4 NOrig Face 6.9

Table 2: Performance comparison on RT-GENE dataset.
NOrig, Orig and NIn stand for Normalized-Original, Raw-
Original and Normalized-Inpainted image type respectively.
B4 and B5 stands for Resnet18 and Hardnet68 respectively.

Method Bkb Err
ETH-
XGaze [39]

– 4.5

Pinball
Static [15]

B4 4.4

MSA+raw B4 4.1
MSA+raw B5 4.0

Table 3: Performance com-
parison on ETH-XGaze
dataset. B4 and B5 stands
for Resnet18 and Hard-
net68 respectively

images on camera-person distance into three equal bins. We show percentage improvement
achieved by MSA over Static+wavg in Table 5. MSA gives more benefit for larger distances.
Performance Degradation with Scale Perturbations. Here we quantify performance degra-
dation if a zoomed-in/zoomed-out image is given instead as input at evaluation. For every
magnification level, we created one zoomed-in image and one zoomed-out image. For a
magnification of c, we center-cropped the original image with size 224− c and rescaled it
back to size 224 to create a zoomed-in image. To produce a zoomed-out image, we padded
the original image with c/2 pixels on the boundary and rescaled it down to 224. Thus, the
greater the magnification c, the greater the zoom-in and zoom-out effect. In Figure 3 (d), we
plot the percentage increase in angular error (averaged over zoom-in and zoom-out) with the
amount of magnification on front 180◦ gazes. In the majority of cases across backbones and
magnification levels, MSA has lower percentage increment in angular error as compared to
Static+wavg thereby showing robustness of multi-zoom approach on scale variations.
On Time Complexity and GPU RAM MSA+Seq takes same time and RAM as Pinball
LSTM [15]. MSA takes L times more time w.r.t Pinball Static [15], L being the number
of crop sizes. However, unlike LSTM, MSA can be parallelized since the 2D feature map
computation for each magnification level is independent and so MSA+Seq can run faster
than Pinball LSTM [15] and MSA can achieve comparable speed to Pinball Static [15].
If we parallelize MSA, then it however would take L times more GPU RAM over Pinball
Static [15]. Otherwise, 2 times GPU RAM is needed for which one would need to compute
feature map for each cropsize one by one while simultaneously updating the max feature
map stored in a buffer. But since all our experiments needed just 4 crop-sizes, we argue
that even for Static model type, this is not a big limitation for MSA. MSA with Resnet18
evaluates 279 images in 1s wall time and takes 2.5GB GPU RAM on a single 2080 Ti GPU
with 64 batch size and 4 workers. With 1 batch size and 1 worker, it is 80 images/sec.
Comparison with feature-map upscaling One way to get a faster model could be to rescale
feature map instead of rescaling input image. Inspired from [9], here, we passed the image
through the initial portion of the backbone network (Resnet18) to get a 2D feature map. We
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Res All 360 Front 180
7∗7 14.5 12.8
14∗14 14.5 12.8
28∗28 14.5 12.6

Table 4: Performance of upscaling based idea
on Gaze360 dataset. First column, Res stands
for feature map resolution

Distance(m) % Improvement
0.9-1.8 3.9%
1.8-2.7 4.5%
2.7-3.5 5.2%

Table 5: Variation of % improvement
of MSA over Static+wavg model w.r.t
camera-person distance on Gaze360.

Figure 4: Showing some of the better (Left) and worse (Right) performing images for MSA
model on Gaze360 (Row 1), RT-GENE (Row 2) and ETH-Xgaze (Row 3) dataset. Green
and purple arrow denote the ground truth and predicted gaze directions respectively.

then center-cropped the feature map with different sizes and rescaled them back. We obtain
these cropsizes by transforming CCropL. For 14*14 feature map, Ci crop-size will transform
to Ci∗14

224 . These rescaled feature-maps are then averaged and passed through the remaining
network to get the prediction. We used θWSC formulation. From Table 4, we find feature-map
upscaling to be worse than MSA for all feature-map resolutions.

Qualitative Analysis In Figure 4, we look at few of the better and worse performing images
from all three datasets. One could see that in cases where (1) the head orientation is highly
oblique and when (2) eyeball is deviated from center position but is less visible, the model
performs poorly. Performance on some backward gazes were also worse but we didn’t in-
clude them here since there is little visual cue to glean from them. Model naturally performs
best on relatively more frequent head poses.

Model performance on RT-GENE and ETH-XGaze In Table 2, we see that MSA+raw
gets state-of-the-art results on RT-GENE. We directly report the performance of Spatial
weights CNN and RT-Gaze on RT-GENE from [6]. Likewise for FAR-Net from [5]. How-
ever, MSA+raw(7.3◦) with default CCropL does not outperform Static model(7.2◦) with
Normalized-Original (NOrig) images. This makes sense because unlike Raw-Original, NOrig
images do not have significant variations in scale and also are a bit zoomed in. Consequently,
the proposed minimum cropsize of 150 in CCropL proves too low and results in inferior per-
formance. However, when CCropL is set to [224,208,191,175] (MSA+raw+175 model),
which has the higher min-cropsize 175, it outperforms Static model. As mentioned in Sec-
tion 3.1, comparing on Normalized-Original is unfair to the in the wild setting on which we
focus on. Next, Table 3 compares the performance on ETH-XGaze dataset. It is important
to note that here, we worked with normalized images— the camera-head distance is fixed.
In absence of scale variation, the outperformance of MSA+raw model over Static pinball
model [15] points to its ability to extract information from multiple scales.
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4 Related Work

Initial work on gaze estimation was model-based [8, 14, 32, 33], involving modeling the
geometry of the eye and then using this for gaze estimation. With the rise of computational
resources, the increase in dataset sizes, and the emergence of deep learning, appearance-
based approaches [3, 6, 25, 34, 37] came to being. As the name suggests, this approach
involves estimating the gaze directly from the image appearance. A typical appearance-
based model is a neural network which takes as input an image containing a human face or
an eye patch and then predicts the gaze from this. Unlike the model-based approach, here the
setup is quite practical and the environment more relaxed. Most appearance-based models
require a single camera with lower requirements for high-resolution images. However, since
this does not capture eye geometry, it is highly susceptible to changes in head pose. The
fact that several appearance-based approaches take the head pose as input along with the
image [7, 18, 19, 31] is a testament to the sensitivity of this approach to head pose changes.

Initial appearance-based models worked with eye patches [37]. Subsequently, face im-
ages began to be used as input [38]. More recently, both face and eye patch have been used
together as input, demonstrating the presence of useful information at multiple scales [2, 4].
As discussed before, one problem with this is the need for bounding boxes for the eyes,
especially when dealing with large gaze angles, low-resolution images, or occlusions.

As with the development in models, there has been a gradual evolution of datasets. With
recent datasets we see a larger number of participants [16], greater variation in head pose and
gaze angle [6, 15], and greater variation in camera-person distance, background variations,
and so on. Notably, the Gaze360 dataset [15] has several interesting properties. With full
360◦ variation in yaw, significant camera-person distance variations, and both indoor and
outdoor background settings, Gaze360 is a promising dataset for 3D gaze estimation in the
wild. In the context of scale, we also find the RT-GENE dataset [6] to be quite useful, due to
its significant variation in camera-person distance (80–280 cm).

5 Conclusion

We present a novel approach for gaze estimation in the wild where we extract information
from different magnification levels by aggregating features from images belonging to these
levels. Our work is simple and can be easily coupled with different input types (images or
videos). Furthermore, the approach reaches state-of-the-art performance for gaze estimation
in the wild without relying on more complicated components like eye patch detector, face
pose detector, or image warping. The multi-zoom approach has potentials for other vision
problems in the wild as well, where the scale variation is a crucial issue.
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