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Abstract

We present an algorithm that learns a coarse 3D representation of objects from unposed
multi-view 2D mask supervision, then uses it to generate detailed mask and image texture.
In contrast to existing voxel-based methods for unposed object reconstruction, this approach
learns to represent the generated shape and pose with a set of self-supervised canonical 3D
anisotropic Gaussians via a perspective camera and a set of per-image transforms. This allows
robust estimates of a 3D space for the camera and object, while baselines sometimes struggle
to reconstruct coherent 3D spaces in this setting. We show results on synthetic datasets with
realistic lighting, and demonstrate object insertion with interactive posing. With our work,
we help move towards structured representations that handle more real-world variation in
learning-based object reconstruction. https://visual.cs.brown.edu/gaussigan

1 Introduction
Inferring poseable 3D object representations from image data for tasks like controllable

generation is complex: objects are visible under unknown perspective 3D cameras, have different
forms and shapes, have moving parts in different poses, and vary appearance e.g, due to lighting.
Oftentimes, we have little supervision for learning parametrized models for these properties. Yet,
we would like a flexible structure that does not presume an underlying template and can be shared
between images. This task is similar to discovering an ‘artist’s mannequin’ for an object.

We consider a setting with only mask supervision. This problem is related to shape from silhou-
ette, which assumesknowncameraposes and rigidobjects and recovers shapevia intermediate voxels.
However, in our setting, we do not know the camera poses and the articulated object in the dataset has
unknown pose per image. Prior approaches to related problems rely on voxel prediction [7], which
can conflate 3D spaces across images in the unposed camera setting (Fig. 1), and deep voxel-based
representations [32] that provide too much freedom to recover coherent 3D spaces (Fig. 1, right).

Instead of voxels, we aim to estimate object ‘parts’ in a robust way; this lets us abstract the struc-
ture from the detail in this challenging inference case. For this, we introduce amixture of anisotropic
3D Gaussians as a coarse implicit geometry proxy. These are low dimensional to infer, have an
analytically-differentiable projectionmodel under perspective cameras, are composable for parts, can
represent position, scale, and rotation tomodel part pose transforms, and are simple to self-supervise.
Even then, inferring a coherent 3D space across images is tricky. For this, we employ a canonical 3D
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Input Ours PlatonicGAN HoloGAN

Figure 1: From object masks with unknown camera and object pose, we infer a set of 3D Gaussians
to represent coarse shape and pose. This allows ‘rigging’ detailed 2D mask and texture generation,
disentangling of texture variation (here illumination), and interactive camera and pose control.
PlatonicGAN [7] generates inconsistent shapes from silhouettes, and texturing is a challenge.
HoloGAN [32] on silhouettes has an inconsistent 3D space and, without explicit shape, rotation
and lighting are entangled on RGB foregrounds. Please view in Adobe Acrobat to see animations.

Gaussian set plus per-image camera and per-Gaussian transformation parameters that describe cam-
era and object pose for each image. Through training via 2D silhouette reconstruction, our represen-
tation and losses associate object parts with Gaussians, despite not having any part-level supervision.

For evaluation, we control input variation using synthetic data with varying camera pose, object
pose, and illumination, from which to show recovery of this low-dimensional structure. Then, using
the learned Gaussians within 2DRGB generation, we disentangle pose, view-dependent texture, and
shadingvariation causedby lightingdifferences. This lets us insert objects at arbitrary viewing angles
into backgrounds with matched appearance, and interactively adjust object pose by directly manip-
ulating the Gaussians of our ‘artist’s mannequin’. Looking forward, our work implies a structure to
robustly handle pose and shape to better cope with the increased variation in ‘in the wild’ datasets.

2 Related work
Image and object generation and insertion. GANs have improved learning-based whole image
generation [6, 56, 58], including disentangling latent features [14, 22, 38]. Research has also
investigated how to learn to generate and add 2D objects to a given background [52], including
2D object shape generation [20] also via bounding boxes [54], completing bounding boxes with
texture [8], learning to warp 2D foregrounds [25], insert 2D objects [37], or animate in 2D [45].
We learn an explicit 3D representation that allows controllable image generation.
Unsupervised keypoint and part detection. Gaussians are related to keypoints and parts. Learn-
ing these is possible with supervision [26, 31, 39] and without. Here, Thewlis et al. [49, 50] use
equivariance under 2D image transformations like warping to predict object keypoints; however, this
requires the transformations to be known. To address this, Jakab et al. [9] learn keypoints in a self
supervisedwayby reconstructing an object’s appearance and geometry fromdifferent viewpoints. To
make these intuitive, Jakab et al. later use a skeleton prior (e.g., face, eyes, nose) to guide a discrimi-
nator [10]. This has been extended to video predictionwith realisticmotion [16]. Somemethods use
Gaussianswithin their pipelines. Lorenz et al. [27] predict unconstrained 2Dactivationmaps per part
for unsupervised part discovery, then estimate 2DGaussian parameters from these tomark keypoints.
Instead, we directly learn a set of 3D Gaussians to describe the shape and pose of an object.
3D object representations. Learned representations exist for taking 3D input data like point
clouds [1], volumes [44], meshes [2, 12, 53], or textured meshes [3], for generating 3D output data.
These include techniques to fit sets of Gaussians to 3D shapes using 3D supervision [5], and by
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Figure 2: Learning a  -part 3D Gaussian representation with only mask supervision m. Green:
For each instance, we predict 3D anisotropic Gaussians by combining a canonical representation
with scale, rotation, and translation transforms. Yellow: We project these to 2D Gaussians in an
analytically-differentiable way, sampled into  maps. g conditions network �m to generate a
detailed mask m′ as a reconstruction of m. Blue: To learn a meaningful and smooth 3D space, we
self supervise by forcing a random rotation of our estimated 3DGaussians to also produce a plausible
mask m̂′ and for its 3D Gaussian prediction to be consistent after the inverse rotation. Orange: We
penalize reconstruction losses on masks and promote realism via adversarial discrimination.

combining 3D supervision with multi-view silhouette losses [55]. Some works use pre-defined
detailed canonical 3D meshes for 2D images [59], e.g., to learn surface parameterizations [19, 30];
others attempt to learn shape templates via structured implicit functions [4]. Some works learn
representations from 2D input data via 3D representations [15, 35] and flow [40], and often need
multi-viewcamera informationgivenat training time[28, 36]. For instance,DeepVoxels [46]projects
RGB values on known camera rays to learn a deep voxel space that reproduces 2D inputs when
projected and decoded. Otherworks require object-specific pose information, such as human skeletal
data [18]. Without camera poses, Lei et al. build surface parametrizations for rigid 3D objects [21].

For image generation, few works take only 2D input and no camera or object pose information
for supervision—this is hard as there is no explicit constraint on the 3D space. Schwarz et al. and
Niemeyer and Geiger generate fields for 3D objects [34, 44]. Liao et al. use cube and sphere
mesh proxies to represent multiple simple scene objects [23], as is similar to BlockGAN [33], but
neither handle posable objects. HoloGAN uses deep voxels within an implicit rotation space [32],
and PlatonicGAN uses discrimination on random rotations to learn a generative voxel space [7].
Different geometry and appearance proxies have different trade-offs, e.g., voxels can capture
shape detail but are a high dimensional space to predict; our 3D Gaussian proxy is coarse but low
dimensional and can capture transformable parts.

3 Learning Gaussian proxies for shape & pose
We wish to reconstruct a set of Gaussian proxies for an object using supervision only via

performing the task of mask reconstruction. We train a network to predict a set of 3D anisotropic
Gaussians as coarse proxies for the objects’ shape and pose, where each Gaussian emerges to loosely
represent one part of the object; the mean defines the position and its covariance defines the rotation
and scale of the part. Prediction is trained by projecting Gaussians into a perspective camera and
transforming them into a detailed mask via a GAN. In this process, we recover a canonical Gaussian
representation for the object, fromwhich specific pose and shape transforms are estimated per image.
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Input masks and anisotropic 3D Gaussians. We start with a dataset of 256×256 binary
segmentationmasksm∈Mof anobject undervaryingunknowncameraparameters andobject poses.
We also require a given number of unnormalized anisotropic 3DGaussians {G:} :=1 (Fig. 2). Each
GaussianG: hasmean vectorµ: ∈R3 and covariancematrix�: ∈R3×3 with its density declared as:

G: (x)=exp
(
−(x−µ:)>�−1

: (x−µ:)
)
. (1)

Camera. We declare a general perspective pinhole camera with intrinsic matrix K, rotation
R, and translation t such that camera matrix P is represented as K[R, t]. To project a 3D
anisotropic Gaussian into our camera’s image plane to produce a 2D anisotropic Gaussian, we use
analytically-differentiable projection function c [47]. This is valid for perspective cameras, unlike
orthographic [7] or para-perspective [55] projection models that are less applicable to real-world
cameras. In our experiments, K is fixed across images and approximately matches that in the data.
Canonical Gaussians. From a 256-dimensional constant [13], we use a fully connected network
�G2 to predict the canonical 3D Gaussians G2

:
each of mean and covariance (µ2,�2) (Fig. 2, green).

Per-image Gaussian transforms. Given an input mask m, we extract a latent pose vector z∈R8

via a convolutional encoder network �m. Then, from z, we use a fully connected network to predict
two transformations: 1) A camera transformation T$ that moves the camera with respect to the
canonical model; in our experiments, we consider a yaw rotation Rq. 2)  Gaussian local transfor-
mations T: consisting of scale, translation, and rotation (s: ,t: ,θ:) with each in R3 (Fig. 2, green,
bottom). Given the canonical (µ2

:
,�2
:
), we obtain the per-image Gaussians G: with (µ: ,�:) via:

µ: =Rq (µ2:+t:) and �: = (RqR\:U:s:S:)(RqR\:U:s:S:)>, (2)
where R\: is the rotation matrix form of θ: , and S: and U: are obtained via eigenvalue decom-
position of �2

:
: �2

:
= (U:S:)(U:S:)>. S: is a diagonal matrix. The square of its ( 9, 9)-th entry

represents the 9-th eigenvalue of �: . This allows us to control the scale and rotation of each
individual Gaussian via the matrices U: and S: . Training covariance Σ to be positive definite can
be tricky; we describe and compare our eigendecomposition approach in supplemental material.
Conditional mask synthesis. Even a large number of Gaussian proxies will not reconstruct
fine mask detail. As such, we use a conditional mask generator�m to add back the detail using
up-sampling transposed convolutions (Fig. 2, yellow). Given the 3D Gaussians for an image, we
project them to 2D Gaussians on the image plane of our camera: c(G:)= (µc: ,�

c
:
). Then, using

the 2D version of Eq. 1, we sample the density of each projected Gaussian on a raster grid to create
 Gaussian maps {g:} :=1. These are input to�m to condition the synthesis of predicted mask m′,
which is the learned reconstruction of m. We enforce a stronger effect in�m by using layer-wise
conditioning via Gaussian maps at 322,642,1282, and 2562 resolutions.

3.1 Losses
We encourage our network to reconstruct an object via an energy to minimize given by:

L(�G2 ,�m,�m,�m)=_1LRec + _2Lg + _3LĜ + _4Lĝ + _5LAdv + _6LFM. (3)
Reconstruction loss. We encourage synthesized mask m′ to reconstruct input mask m with an
!1 loss: LRec(m,m′)= ‖m−m′‖1.
Density loss. Even though they cannot represent fine detail in m, we still wish for all projected
Gaussians to 1) cover regions of the mask without overlap, and 2) cover as much of the mask as
possible. We encourage this via: Lg (m,g)=



m−Σ 
:=1g:




1. The sum over sampled 2D Gaussians

is equivalent to a grayscale version of the colored parts visualization in Figure 3. Here, both inputs
are in the range [0,1], and we take g at our mask resolution of 256×256.
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Self-supervised transformmask loss. We wish for the 3D space expressed through our recov-
ered object Gaussians and camera transform parameters in T$ to be consistent across varying
camera views even though we only have mask supervision. Thus, we randomly sample a 3D
transformation T', again mainly as a yaw rotation, and apply it via Eq. 2 to produce rotated 3D
Gaussians Ĝ= (µ̂,�̂). As before, these are then projected via c to 2D parameters (µ̂c,�̂c), then
sampled into 2D maps ĝ, and finally via �m to generate a mask m̂′ (Fig. 2, blue).

As m̂′ does not correspond to a known input image, we cannot directly enforce LRec. Instead,
we encourages the projected novel view Gaussians ĝ to be consistent with the synthesized novel
view m̂′ via a second density loss: Lĝ (m̂′,̂g)= ‖m̂′−

∑ 
:=1 ĝ: ‖1. Without this loss, g can describe

well the input mask m, but the rotated ĝ may not describe well the generated mask m̂′.
Self-supervised transform inverse 3D Gaussian loss. We can also pass m′ back through our
3D Gaussian prediction stages (Fig. 2, green) to recover an estimate of the proxies under random
transform T'. Then, we can invert this transform and penalize a loss against our initial estimate of
the 3D Gaussians. With slight notation abuse: LĜ (G,Ĝ

′)= ‖G−T−1
'
([(m̂′))‖1, where [ predicts

3D Gaussians for a mask.
Adversarial loss. Training using only reconstruction losses tends to produce blurry images,
so we adopt an adversarial training strategy. �m attempts to generate realistic masks to fool a
discriminator �m, while �m attempts to classify generated masks separately from real training
masks. Within this, we also discriminate against our self-supervised transform masks m̂′: these
should also fool �m. We use a hinge-GAN loss LAdv for better training stability [24, 29, 51]:

LAdv(�m,�m)=Em̂′ [min(0,−�m (m̂′)−1)]+ (4)
2Em [min(0,�m (m)−1)]+Em′ [min(0,−�m (m′)−1)].

To reconstruct the 3D shape within a consistent world space, along with m and m′, we find
that it is sufficient to give the discriminator a mask m̂′ generated from only one random rotation
per image (as similarly found by Henzler et al. [7]), rather than multiple random rotations.
Feature match loss. We improve sharpness by enforcing that real and generated images elicit
similar deep feature responses in each layer ; of the discriminator � (;)

"
[42, 57]:

LFM(�m)=Em,m′,m̂′
[
Σ!;=1



� (;)m (m̂′)−�̄ (;)m (m)

2
2 +



� (;)m (m′)−�̄ (;)m (m)

2
2

]
, (5)

where �̄ (;)m is the moving average of feature activations in layer ;, and ! is the number of layers.
Constraining pose and shape. We bound µ: to [−1,1] and the diagonal values of �2

:
to

[0.01,0.51]. We prevent any Gaussian from being too small/too large; this encourages learning to
use all Gaussians. To remove implausible canonical G2, we constrain T: = (s: ,t: ,θ:) to produce
per-image G that remain somewhat close to G2 while still giving freedom to accommodate shape
and pose changes (Figure 3). Discriminating masks generated from G2 is also possible, with
self-supervision via random transforms, and may help relax per-image transform constraints.
Importance of losses and components (Figure 3). Removing the reconstruction losses on m′

allows a mask to only approximately correspond to the Gaussians as long as it satisfies the discrimi-
nator andLg. Removing the density loss on g causes lessmeaningful Gaussians: they are not forced
to represent the generated mask, yet�m can still produces a high detail mask from these Gaussians.
Finally, the transform inverse loss ‘closes the loop’ for the self supervision and helps maintain 3D
space consistency and mask quality, especially under cases when penalizing the 2D maps ĝ′ alone
cannot accurately predict 3D, such as when objects have strong rotation-dependent self occlusion.

Canonical G2 encourages a meaningful 3D space as each image should be consistent with
other images. Directly estimating per-image Gaussians fails for thin front/back views as the
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a) Ours b) No L'42 c) No Lg d) No LĜ e) No G2 f) Free T:

Input mask
m

Gaussians G
as g

Reconst.
mask m′

Rotate 240◦
Ĝ as ĝ

Rotate 240◦
reconst.
mask m̂′

IoU N 83.96 65.09 82.98 84.75 86.62 73.16
DSSIM H 6.22 14.20 6.83 6.16 5.32 10.94

Figure 3: Ablations for Giraffe. (a)Our full loss model. (b)Without a reconstruction loss on m′,
the Gaussians only approximately correspond to the input mask. (c)Without a density loss on g,
the Gaussians do not well represent the input mask, yet�m still produces the correct mask from
these less ‘coherent’ Gaussians. (d) Not ‘closing the loop’ in the self-supervised loss hurts self
occlusion cases or when the 2D Gaussian layouts are insufficient to recover 3D information. (e)
Not using a canonical representation fails to rotate Gaussians for thin front/back views. (f) Not
bounding the per-instance transforms allows nonsense canonicals.
Note: We vary input masks per column as certain effects are only visible at particular angles;
please see Figure 1 and supplemental video for rotations. Gaussian colors vary across columns.
Table: Over the test set, mean IoU×100 and DSSIM×100 of reconstructed vs. ground truth masks
at specific camera angles. Our qualitative results show these metrics do not tell the whole story.

self-supervised rotation must only be consistent with Lg and discrimination LAdv,FM (Fig. 3e),
instead learning a non-linear space that only rotates between front/back views. Further, estimating
`,Σ values without the const+FC layers [13] led to worse performance.

We compute IoU and DSSIM between ground truth and generated masks (Fig. 3, bottom).
Removing LĜ or G2 improve the metrics slightly, but qualitatively our model is more meaningful:
parts can flicker in and out without LĜ, and without G

2 the mask does not rotate correctly.

4 Mask texturing
We apply our 3D Gaussian proxies as a conditioning rig to an image generation task [48]. We

demonstrate object posing and inserting into an existing image (Fig. 4). For this, we condition a
second separately-trained GAN on the mask and on a background image to let us approximately
match scene lighting. Given limited space, please see the supplemental document for details of
the architecture and combination of reconstruction and adversarial losses used.

Given a database of RGB images i ∈ I and corresponding binary masks m ∈M, we wish
to learn a generative model of texture inside the mask conditioned on the background. First, we
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\=0◦ \=40◦ \=80◦ \=120◦ \=160◦ \=200◦

Figure 4: Left: Explicitly recovering camera, shape, and pose allows interactive 3D Gaussian
manipulation to generate novel instances. Right: Our method can produce plausible 3D Gaussians
from low-quality and highly-varied masks fromMS COCO.

compute the background image i1= i�(1−m) and the foreground image i 5 = i�m, where � is
the element-wise product. Next, we use an appearance encoder �i to extract a latent representation
zi ∈R8 for the foreground texture: zi=�i (i 5 ); this lets us sample foregrounds at test time. We tile zi
and concatenate itwith the background image i1, and pass it into aU-Net-like network�i to generate
texture. In�i’s encoding phase, we layer-wise condition via zi. In�i’s decoding phase, we concate-
nate the Gaussian maps g obtained from m and apply layer-wise conditioning as per�m. The final
image i′ is created from the output of�i with the original background: i′=�i (i1,zi,g)�m+i1.

5 Experiments
Datasets. We render RGB images and masks using path tracing with ten real-world 360◦ HDR
lighting maps of outdoor natural environments for realistic lighting. For each image, we randomly
rotate the camera around the up vector at a fixed distance from the object, to match settings in the lit-
erature [32]. We use four datasets without pose variation and of increasing shape complexity (Maple,
Airplane,Carla, andPegasus), and four animated datasets with pose variation (Bee,Giraffe,Manuel,
Old Robot). These include hovering and flapping wings, walking, neck bending, and dancing (each
with 110-400 frames; see video). We randomly sample animation frames: poses are not matched
across viewsor in any temporal or rotation order, andwediscard object and camera poses during train-
ing. Weuse1,000/2,000 images for static/animateddatasets, with a random90/10% training/test split.

Training and hyperparameters. We train mask and texture generators for 200 epochs on 2 RTX
2080 TI GPUs. We use the ADAM optimizer with a learning rate of 14−4, and V=0.5. For static
datasets, we predict the yaw rotation Xq per image on the canonical Gaussians. We set _1=100,
_2=100, _3=100, _4=100, _5=1, _6=10. We chose_1, _2, _3. _4 over the interval [0,10,50,100].
For Giraffe with slower animation, _3=10 and _4=50 led to a slightly better Gaussians.

Baselines. To show the value of model components, we compare to HoloGAN [32], Platonic-
GAN [7], and Liao et al. [23], and provide methods with just masks and just RGB foregrounds.
As geometry proxies, HoloGAN and PlatonicGAN use voxels: the HoloGAN bottleneck has 64-
dim. deep appearance vectors in 163 voxels that are projected to 2Dand decoded, while PlatonicGAN
directly predicts a 643 RGBA voxel space per image to handle variation. As a constraint, HoloGAN
employs a weaker (but flexible) latent reconstruction loss vs. our projection and pixel-wise recon-
struction loss. PlatonicGANalso uses a pixel-wise reconstruction loss and, via projection, this can be
related to unposed voxel carving when given masks as inputs. Liao et al. estimate multiple 3D prim-
itives (cubes or spheres) as proxies for objects with simple geometry. Please see our supplemental
material for comparisons to Liao et al. and to unsupervised 2D part maps of Lorenz et al. [27].
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AnimatedResults—Figure 1. For this qualitative overview, the ‘Input’ column is the training set.
For the ‘Our’ column, we train our model and then infer Gaussians from two different test-set input
masks as prompts. From each set of Gaussians, we generate a mask and then an RGB image given
a background. For PlatonicGAN, we train two models: one on just masks (left), and one on masked
RGB foregrounds (right). Then, given the same prompt test-set images, we show the output voxel
space as occupancy (left) or as RGBA composited onto the same background image as used in the
‘Our’ column (right). Both ‘Ours’ and ‘PlatonicGAN’ use the same camera poses. HoloGANhas no
explicit camera pose, only a latent non-metric ‘rotation’ variable. We train twomodels on just masks
(left) and on RGB foregrounds (right). We see that the latent produces inconsistent rotation between
the models. As rotation is latent, matching to a specific camera pose is tricky—for RGB, we see
that a global rotation offset is insufficient. For compositing, HoloGAN does not model occupancy,
and thresholding the black background often removes the object itself, so we leave it unedited.
Interpretation—mask only. This setting compares reconstruction of a 3D camera and object
space. For the static datasets (Fig. 6), HoloGAN’s deep voxels reconstruct the input masks, but its la-
tent rotation space can be incoherentwithmasks at incorrect angles. PlatonicGAN’s voxel spaces are
naturally3Dandwith shapedetail, but suffer some incorrect rotations and include spuriousormissing
geometry. Our approach infers plausible coarse 3D structure that controls 2D mask generation.

For the animated datasets, methods must accommodate image pose variation, and all baselines
perform worse. HoloGAN has both part errors (incorrect leg placement) and a low-coherence
3D space (rotation is not smooth; Fig. 1). PlatonicGAN’s shapes are incorrectly reconstructed,
with missing or misplaced legs and spurious content: even though the method estimates per-image
shape, without a canonical model these are incorrectly corresponded in the 3D estimation task,
combining parts of objects from across poses. Our method by construction has a canonical 3D
G2 and transformable parts, producing a coherent 3D camera and coarse posable object space.
Interpretation—foregroundonly. Here, the task ismorecomplexwithadded textureand lighting
variation. Even for static scenes, HoloGAN struggles to generate high-quality appearance, and the
resulting 3D spaces for dynamic scenes mix all input variations (Fig. 1) or fail to correctly rotate the
image (Fig. 6,Maple). PlatonicGANsuccessfully generates detail (Fig. 1) but again these have object
geometry errors and the predicted voxel coloring only approximates the intended output (Fig. 6, all).
Liao et al. generated images are of broadly good quality, though the pose is entangledwith the camera
rotation and texture is low resolution and less consistent. Asmight be expected, our approach demon-
strates that using additional mask information to separate shape and appearance allows conditioning
higher-fidelity 2D texture generation with disentangled 3D camera, pose, and lighting consistency.

On masks IoU×100 N DSSIM×100 H

Ours 81.97 9.35
PlatonicGAN [7] 77.29 21.29

On RGB KID×100 H FID×100 H

Ours (via masks) 9.16 ± 0.60 117.81
PlatonicGAN [7] 49.7 ± 0.89 375.26
HoloGAN [32] 32.72 ± 0.87 298.35
Liao et al. [23] 34.2 ± 0.84 292.89

Table1: Metrics arecomputedperdataset and then
mean averaged (supplemental has full results).

Quantitative results. PlatonicGAN and our
method infer explicit 3D spaces. As such, we
compute IoU andDSSIM onmasks at a known
camera angle and compare to test-set ground
truth masks: if a method forms a coherent
3D camera and object space, then masks will
match (Tab. 1). For methods that infer implicit
3D spaces (without meaningful angles), we
compute KID and FID on generated RGB
foregrounds (KID/FID are pre-trained for RGB
via ImageNet).
Comparison to Structure from Motion. We might consider how SfM fares given that we
recover each of a camera pose, a coarse shape, and a detailed 2D mask. From our giraffe training
dataset, we sample 225 images randomly, with both lighting and pose variation. Then, we perform
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both sparse and dense 3D reconstruction using COLMAP [43]; note that COLMAP is not designed
for data like ours. On masks only, COLMAP cannot extract meaningful 2D feature points and fails.
Our method works with masks because it models 3D density via Gaussians, and so fares better in
this ‘shape from silhouette’ task. On RGB foregrounds, COLMAP can extract 2D features, but the
significant lighting and pose variation cause some cameras to have no solution, only half the space
to be reconstructed, and camera poses and 3D points to be noisy. Key object details are missing,
such as the giraffe head, because COLMAP cannot cope with object pose variation (Fig. 5).

Figure 5: As a static-scene SfM method,
COLMAP struggles to accurately reconstruct
the object under pose variation from RGB fore-
grounds: note the noisy half-space camera poses
with errors (inset), andmissing giraffe head (right).

Real-world data. We show the benefits of a
mid-level 3D structure via the managed control
of variation available in synthetic data. Many
other variations exist in real-world datasets. To
show this gap, we demonstrate our method on
highly-variedMSCOCO data (Fig. 4). Our 3D
space and Gaussians are plausible, even though
there is significant quality variation in the hand-
drawn input masks especially for front/back
views; better masks would improve this [17].

6 Discussion
3D/2D Bridge and Objectness. Our approach infers a coarse 3D shape and pose as an interme-
diate structure, rather than deep or explicit detailed 3D appearance. This is simple, robust, gives
interactive control over camera and pose for ‘rigging’ generation, and can apply to many objects as
it assumes no explicit connectivity like a skeleton. Integrating hierarchies [11] or kinematic chains
could constrain the per-Gaussian transforms, though this is challenging without a template. Further,
work in Gaussian transmittance functions [41] could help resolve front/back ambiguity.
Limitations—Shape and Texture. While our method can handle intra-class pose and some
appearance variation (lighting), future work should explore additional structure to handle variation
of objects within the same class. Our approach is limited to modest shape variation via the Gaussian
covariance matrices, and large variations in shape or topology (such as a human in loose clothing)
would lead to less useful Gaussians. For texture, the capability to generate variation is limited by 1)
the capacity of generator G8 and latent control z8, 2) as inputs to G8, the ability of the silhouette
and Gaussian mid-level structure to determine appearance, 3) the variation within the training data.
Significant extrapolation away from the training data, such as in backgrounds in supplemental
Figure 6, may lead to some less plausible results. For lighting, our method does not perform an
intrinsic decomposition into albedo and shading; merely shape and texture disentangling.
Illusions. Finally, humans can be fooled by silhouette illusions like the Spinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning DancerSpinning Dancer that
appears to rotate either way. For certain objects and a sufficiently-small  , our output 3D space can
also end up ‘rotated’ even though it is smooth, i.e., an input mask representing 45◦ is reconstructed
at 315◦. This can be fixed by reflecting the space.
Conclusion. As we move toward ‘in the wild’ settings, we need intermediate structures for varied
objects and training losses that can produce meaningful 3D spaces. Given unposed silhouettes, we
reconstruct a coarse Gaussian representation of 3D camera and object space along with variations
in object pose. We discuss trade-offs with two voxel-based baselines, and display a potential use
of our approach to condition 2D texture generators. Future work could explore deep appearance
Gaussians and additional ways to self supervise reconstruction under variation to move closer still
to handling complex objects in natural images.
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Figure 6: Please zoom in to see detail. Rows in each block: Reconstructed Gaussians, masks, and
RGB images, across three output angles and with any texture-specific latent variables fixed, with
comparisons to HoloGAN [32] and PlatonicGAN [7] run on just masks and just RGB foregrounds.
Note that HoloGANonly infers a latent ‘angle’, makingmapping to an explicit 3D space not possible.
Top block of five rows: Datasets of objects of fixed pose showing increasing shape complexity:
Maple, Airplane, Carla, Pegasus. Bottom block of five rows: Datasets of animated objects with
varying pose showing increasing shape complexity: Bee, Giraffe, Manuel, Old Robot.
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