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Abstract

We propose MONet, a convolutional neural network that jointly detects motion bound-
aries (MBs) and occlusion regions (Occs) in video both forward and backward in time.
Detection is difficult because optical flow is discontinuous along MBs and undefined in
Occs, while many flow estimators assume smoothness and a flow defined everywhere.
To reason in the two time directions simultaneously, we direct-warp the estimated maps
between the two frames. Since appearance mismatches between frames often signal
vicinity to MBs or Occs, we construct a cost block that for each feature in one frame
records the lowest discrepancy with matching features in a search range. This cost block
is two-dimensional, and much less expensive than the four-dimensional cost volumes
used in flow analysis. Cost-block features are computed by an encoder, and MB and Occ
estimates are computed by a decoder. We found that arranging decoder layers fine-to-
coarse, rather than coarse-to-fine, improves performance. MONet outperforms the prior
state of the art for both tasks on the Sintel and FlyingChairsOcc benchmarks without any
fine-tuning on them.

1 Introduction

Thanks to large-scale video datasets [2, 5, 20] and advances in deep learning, recent work [9,
30, 31] has rapidly improved dense optical flow estimation via learning with Convolutional
Neural Network (CNNs). However, flow predictors still suffer near motion boundaries
(MBs), the curves across which the optical flow field is discontinuous [32], and in occlusion
regions (Occs), sets of pixels in one frame that do not have correspondences in the other.
First, flow estimates are typically regularized by imposing spatial smoothness, which harms
predictions near MBs. Second, flow cannot be measured from the input images in Occs and
can only be plausibly guessed from the statistics of the ground truth provided in synthetic
datasets. For instance, the top flow estimator RAFT [31] achieves an End-Point Error of
1.4 pixels on Sintel [2], but of 6.5 for pixels that are within 5 pixels from a MB and 4.7 in
Occs. The accurate detection of MBs and Occs helps understand where flow estimates can
be trusted and provides important visual cues for tracking [27] and video segmentation [12].
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Frame 1

Frame 2

Figure 1: Occs align with MBs in this FlyingThings3D [20] frame pair. Vertical stripes
denote O, i.e., Occs in frame 1. Horizontal stripes are direct-warps to frame 1 of Occs in
frame 2 (D(0)), and checkerboard patterns are O; N D(0;). Red curves are M (similar
notation for MBs M as for Occs O), blue ones are D(M,), and purple ones are M| N D(M>).

(@) (b)

Figure 2: (a) An encoder-decoder network [17]. (b) Our architecture with fine-to-coarse
predictor (b). The encoder is the same, but information flow in the decoder is reversed.

> o >
> o > >

Occs occur near MBs, where motion is discontinuous (Figure 1). In addition, disocclu-
sions in one time direction are occlusions in the other. This suggests estimating MBs and
Occs jointly, and to reason in both time directions simultaneously. Accordingly, we propose
a CNN named MONet to jointly estimate MBs and Occs given two consecutive images and
their estimated flow [30]. The network uses Siamese networks to leverage time symmetry.

Simultaneous reasoning in the two time directions requires mapping all quantities be-
tween frames, and we do this in a novel way. All previous flow [5, 30, 31], Occ [9], and
MB [11] estimators use the flow from frame b to a to reverse warp features from frame a to
frame b. We instead use flow from frame a to b to direct warp features from frame a to frame
b. We show that direct warping both preserves features in Occs and provides additional Occ
information through the regions it leaves undefined (Figure 4).

MBs often contour Occs. Based on this observation, we propose to make the MB predic-
tor of MONet focus on Occ boundaries. Specifically, we use an attention mechanism [35] to
place MB predictions where the gradient magnitude of the Occ map is large, that is, along
predicted Occ boundaries. We use the MB labels to further supervise the attention map.

Since both MBs and Occs disrupt correspondences, MONet computes cost blocks that
measure the lowest discrepancy between each feature of the first frame and its matching
features in a search window in the second frame. A cost block is two-dimensional, and is
the minimum over the search window of the four-dimensional cost volumes used in previous
estimators of flow [5, 30, 31], MBs [11], and Occs [9]. The light-weight cost blocks are
sufficient for our purposes and much less expensive to work with than cost volumes.

Cost blocks are defined on features computed by the MONet encoder, and a two-branch
decoder then computes MB and Occ predictions. While the decoders in all previous estima-
tors that use cost volumes [5, 9, 11, 21, 30] process information from coarse to fine, we do
so Fine-to-Coarse (F2C) and show empirically the benefits of doing so (see Figure 2).
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Summary of Contributions: Direct warping to better preserve information between frames;
Spatial attention mechanism to align MB and Occ predictions; Two-dimensional cost blocks
to measure feature discrepancies between frames; Fine-to-coarse decoder for higher accu-
racy; State-of-the-art performance for both MB and Occ detection on Sintel and FlyingChair-
sOcc without any fine-tuning on either dataset, and even after several ablations.

2 Related Work

In spite of continued advances [3, 5, 7, 30, 34], accurate optical flow estimation remains
an open challenge especially near MBs and Occs. Recent methods [30, 34] starting with
Chen and Koltun [3] use a four-dimensional cost volumes [24] to compute optical flow. DC
Flow [34] and FlowNet [5] build the full cost volume at a single scale, and Sun et al. [30]
show that building cost volumes at multiple scales leads to better models. Teed and Deng [31]
achieve SOTA performance with RAFT, a deep network that builds a complete multi-scale
four-dimensional cost volumes for all pairs of pixels on the input images. MONet instead
uses a simplified two-dimensional cost block for MB and Occ detection.

The related task of detecting occlusion regions has recently received considerable at-
tention [6, 8, 9, 21]. One Occ detector [8] takes as input optical flow estimated with four
different algorithms and trains random forests to classify pixels into Occ or non-Occ cate-
gories. Fu et al. [6] use CNNs to detect Occ boundaries at the patch level and connect these
detections to each other with a conditional random field [23]. Hur and Roth [9] achieve
SOTA performance using a CNN to infer Occs and flow jointly. Neoral ef al. [21] consider
the two problems sequentially by first detecting Occs and then using Occs to help estimate
flow. MONet jointly solves the two closely related problem of MB and Occ detection.

Early work [28] on motion boundary estimation exploits the observation that local
flow histograms are bimodal near MBs. Liu et al. [16] propose to detect MBs by track-
ing and grouping hypothetical motion edge fragments bottom-up in scale. LDMB [32] uses
structured random forests [4] and takes as inputs two consecutive images, optical flow esti-
mates [29], and image warping errors, but produces noisy boundaries and fails on small and
thin objects. In addition to the forward flow estimation from frame i to i+ 1, LDMB also
takes as input the backward flow estimation from frame i to i — 1 and requires three frames.
MO-Net instead utilizes bi-directional flow between frames i and i + 1, and only require two
frames. Ilg et al. [11] uses CNNs incorporating joint training and refinement to simultane-
ously estimate Occs, MBs, optical flow, disparities, motion segmentation, and scene flow in
both temporal directions. However, they simply stack multiple networks for joint-task solv-
ing and do not explicitly utilize the relationships between these tasks. MBs have also been
used to aid in other low-level vision tasks such as video object segmentation [12].

Kramer’s auto-encoder [14] is a precursor to the encoder-decoder architecture with
three hidden layers with an information bottleneck. Long et al. proposes a Fully Con-
volutional Network, a fully-fledged encoder-decoder. Subsequent work makes upsampling
deeper [22] and symmetrizes the architecture into what is called a U-Net [25]. The paper
by Schulz and Behnke [26] proposes a shallow encoder followed by an F2C decoder, and
uses only the coarsest prediction for inference. Our model is deeper and employs a trainable
fusion layer, as we observed that the coarsest prediction is not always the best.


Citation
Citation
{Chen and Koltun} 2016

Citation
Citation
{Dosovitskiy, Fischer, Ilg, H{ä}usser, Haz{T1i }rba{³}, Golkov, v.d. Smagt, Cremers, and Brox} 2015

Citation
Citation
{Horn and Schunck} 1981

Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018

Citation
Citation
{Xu, Ranftl, and Koltun} 2017

Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018

Citation
Citation
{Xu, Ranftl, and Koltun} 2017

Citation
Citation
{Chen and Koltun} 2016

Citation
Citation
{Rhemann, Hosni, Bleyer, Rother, and Gelautz} 2013

Citation
Citation
{Xu, Ranftl, and Koltun} 2017

Citation
Citation
{Dosovitskiy, Fischer, Ilg, H{ä}usser, Haz{T1i }rba{³}, Golkov, v.d. Smagt, Cremers, and Brox} 2015

Citation
Citation
{Sun, Yang, Liu, and Kautz} 2018

Citation
Citation
{Teed and Deng} 2020

Citation
Citation
{Fu, Wang, Tao, and Black} 2016

Citation
Citation
{Humayun, Aodha, and Brostow} 2011

Citation
Citation
{Hur and Roth} 2019

Citation
Citation
{Neoral, Sochman, and Matas} 2018

Citation
Citation
{Humayun, Aodha, and Brostow} 2011

Citation
Citation
{Fu, Wang, Tao, and Black} 2016

Citation
Citation
{Ren, Fowlkes, and Malik} 2005

Citation
Citation
{Hur and Roth} 2019

Citation
Citation
{Neoral, Sochman, and Matas} 2018

Citation
Citation
{Spoerri} 1991

Citation
Citation
{Liu, Freeman, and Adelson} 2006

Citation
Citation
{Weinzaepfel, Revaud, Harchaoui, and Schmid} 2015

Citation
Citation
{Dollár and Zitnick} 2013

Citation
Citation
{Sun, Roth, and Black} 2014

Citation
Citation
{Ilg, Saikia, Keuper, and Brox} 2018

Citation
Citation
{Kamrani, Naghsh-Nilchi, Sadeghian, Tombari, and Navab} 2019

Citation
Citation
{Kramer} 1991

Citation
Citation
{Noh, Hong, and Han} 2015

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Schulz and Behnke} 2012


4 KIM, YU, TOMASI: JOINT DETECTION OF MOTION BOUNDARIES AND OCCLUSIONS
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Figure 3: Direct and reverse warping in the presence of occlusion. (a) Points x and y at x;
and y; in frame 1 move to the same point X, in frame 2 and y becomes occluded behind x at
x,. If flow is modeled as a function, there is only one flow F>_,;(x7) in the 2 — 1 direction.
(b) Direct warping of x; to frame 1 using F>_,1; (c) Reverse warping of x; to frame 1 using
F1_,2; (d) Direct warping of y; to frame 2 using Fj_.; (e) Reverse warping of y; to frame 2
using F>_,1. Since the flow from x; to y; is not defined, nothing gets mapped in this case.

3 Principles

Section 4 describes MONet, a new neural network that jointly predicts MB scores M €
[0,1]"*" and Occ scores O € [0, 1]"*" both forward and backward in time (Figure 5). It takes
as input two consecutive video frames I;,l, € R">**3 and the corresponding bi-directional
flow estimates F € R"*/*2 from an existing flow estimator. This Section describes the new
principles that MONet embodies.

A first idea is that analysis of image motion in one time direction supports analysis in the
other. As a result, the same inputs are provided in both temporal orders, 1 — 2 and 2 — 1.
The model’s parametric complexity is kept constant by sharing weights between temporal
directions. Second, Occs align with MBs, and predicting Occs and MBs jointly yields richer
insights than separate analyses would. This suggests a network with one Siamese encoder
branch and two Siamese decoder branches that exchange information at all levels.

These principles are supported by the following technical ideas, described next: (i) Direct
warping is more useful than reverse warping when aligning maps across frames; (ii) Atten-
tion can help align MBs and Occs; (iii) Inexpensive cost blocks capture useful information
for MB and Occ detection. Architectural considerations are left for Section 4.

3.1 Direct Warping Provides Rich Occlusion Information

Computing MB maps and Occ maps in both frames requires establishing inter-frame corre-
spondences. If a point that is away from both MBs and Occs is at X, in frame a and at x;, in
frame b, both flows are defined and unique:

Xp =Xg+ Fip(X,) and X, =Xp+ Fpyq(Xp) sothat Fyp(x,) = —Fpa(xp) . (1)

To map image values I, from frame a to estimated values J;, in frame b, one can then use
direct warping, which uses the flow defined in the same temporal direction as the map itself:

ib (Xa +Fasp (Xa)) =1 (Xa) (2)

or reverse warping, which uses the flow in the direction opposite to the desired map:

Ip(xp) = Io(Xp + Fysa(Xp)) - A3)
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defined in [, defined in I»
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Figure 4: Image frames /; and I, show a blue square translating to the right on a static white
background. The MB map M; and Occ map O; in frame 1 can be warped with direct (D(-))
or reverse (R(-)) flows to frame 2. The gray rectangles with question marks in D(M;) and
D(0y) denote regions for which no map values are available because the flow F]_,» maps no
points into those regions.

Reverse warping is preferred when one loops over a grid of locations x, to fill £, completely.
Pixel discretization aside, however, the result is the same either way.

The situation is more complex for points in Occs or on MBs. For example, Figure 3 (a)
shows two points x and y at locations Xy and yj in the first frame that both move to the same
location x; in the second frame. Point x remains visible, while point y becomes occluded
behind point x. The map in the 2 — 1 direction is one-to-many (not a function). However,
it is customary (although somewhat arbitrary) to model flow as a function. If we do so, the
flow at x; in frame 2 maps to X; in frame 1, and there is no flow from x, to y;. The effects
of direct and reverse mapping in the two directions are illustrated in the remaining panels.

All the previous MB [11], Occ [9, 11], and flow [5, 9, 10, 11, 30, 31] estimators that use
cost volumes use reverse warping (equation 3). We are the first to direct warp for motion
analysis. As we illustrate in Figure 4 for a 1 — 2 mapping, direct warping preserves Occ
information and provides additional Occ information through the regions that it leaves unde-
fined. Here and elsewhere, we let M, be the MB maps in frame a, and D(M,) and R(M,,) be
the maps in frame b obtained by direct (equation 2) and reverse (equation 3) warping of M,.
We define O,, D(O,,), and R(O,) similarly. First, the Occ in O (black rectangle) is correctly
mapped to the second frame in D(O;) (recall that the background does not move). In con-
trast, R(O;) overwrites this information with the no-Occ information from the foreground
square, since F>_,; is defined everywhere on that square. Thus, direct warping preserves
Occs but reverse mapping does not. Second, D(O;) has no values in the gray-shaded rect-
angle with the question mark, which is the part of the background that has become newly
visible in frame 2. None of the points that are visible in frame 1 move to that region, and
D(0y) is therefore undefined there. In contrast, R(O;) uses F>_,1, which is defined every-
where in frame 2, and R(O) is therefore defined everywhere there as well. The presence of
undefined values in D(O;) is a useful source of information for the detection of Occs in the
2 — 1 direction, and this information is unavailable when reverse warping is used. Similar
considerations hold for the warped MB maps D(M) and R(M).

3.2 Motion Boundaries Align with Occlusion Regions

In most cases, Occs occur near flow field discontinuities: An object in the foreground moves
differently from its background, and the resulting curve of flow discontinuity sweeps over
the background to make an Occ. Thus, MBs and Occs align, as Figure 1 illustrates.

Some MBs do cut across Occs. For instance, the right edge of the image adds a third MB
to the two MBs between the boxes. Also, Occ patterns for thin regions are complex (small
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Figure 5: MONet predicts bidirectional M,/, and O,/, maps in each level / using bi-
directional predictions (M,, M}, O4, Op) and cost block (B, /b) from the previous level [ — 1.
Blue arrows represent the main flow of information across levels.

potted plant on the left). Furthermore, when the motion difference between foreground and
background is parallel to the MB, there is no occlusion or dis-occlusion (top of the brown
cylinder near the image center). Finally, the “ground truth” used in Figure 1 is not perfect:
Some MBs are two pixels thick, when they should ideally have measure zero. Of the two
pixels at some point on an MB, one is in the foreground and the other is in the background,
so they are warped by different flow values. A D(M;) (blue) MB pixel that is mistakenly
warped by the background motion ends up overlapping an M; (red) pixel, giving purple.
Nonetheless, in spite of exceptions and imperfections, the pattern is clear: MBs are
adjacent to Occ boundaries. This pattern is also borne by statistics: We found that 80.5%
of MB pixels in MPI-Sintel are within one pixel of an Occ boundary, and 89.3% are within
three pixels. MONet therefore decodes MB and Occ features jointly in a cascade of levels
that go fine-to-coarse. (As discussed later on, we found fine-to-coarse to work better than
coarse-to-fine.) The magnitudes of the gradients of the Occ maps at one level are sampled
and passed to the next-level MB predictor. Conversely, the MBs at one level are sampled
and passed to the next level Occ predictor. MONet also incorporates an explicit attention
mechanism [35] to focus the MB predictor on boundaries of Occs. Specifically, an attention
map A € [0, I]WX” is constructed at each level from the gradient of the appropriate Occ map at
that level. This map is then is multiplied with the MB feature at that level with the Hadamard
product before it is sub-sampled and passed to the subsequent level (see Figure 6 (c)).

3.3 Occlusions or Motion Boundaries Have High Residual Cost

The discrepancies between features computed from the two frames also provide evidence for
Occs and MBs. Specifically, suppose that a feature vector f, with receptive field R, centered
at pixel x, in frame a is tentatively matched to a feature vector f;, with receptive field R,
centered at X, in frame b. Then, if X, and x;, do not correspond to each other because of
occlusion, the vectors f, and fj, are likely to be different from each other. In addition, if, say,
X, is on an MB, then R, contains both foreground and background pixels. Pixels in these
two subsets move differently, so it is unlikely that all of them match up with corresponding
pixels in Ry, again leading to differences between f, and f;,. To exploit this intuition, we also
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Figure 6: Attention map A; (c) and cost block B (d) computed in the finest resolution, using
an example from Sintel [2] (a and b). Black is large and white is small for A; and B;.

construct optional cost blocks to measure feature discrepancies. Many SOTA Occ and MB
methods [9, 11] construct a four-dimensional cost volume Vi (x;,d) € R**#*2s+1)x(2s+1)
of the Euclidean distances between a feature at Xy in the first frame and that of a point at
x; +d for displacement d within s pixels in each dimension in the second frame. These cost
volumes are overkill for us, because we already have flow estimates inputs (F,_,;). Instead,
we construct two smaller two-dimensional cost blocks By, B, € R"*" where

By(xg) = min V,(xg,d+F,53-4(X,4)) for a=1,2. (@))
de[—s,s]2

High values in either By or B; often signal vicinity to MBs or Occs (see Figure 6 (d)).

4 MONet Architecture and Training Details

Encoder We use a fully-convolutional neural network to learn feature maps at multiple
scales from fine to coarse, and compute a cost block on these features at each scale. At
each scale, four convolutional layers with leaky ReLLU activations [18] process down-scaled
input images and output 32-channel feature maps. Each feature map is down-sampled with
stride-2 convolutions and is passed to the next coarser scale.

Motion boundary and occlusion predictors The two decoders for MBs and Occs are
fully-convolutional and Siamese, and process the same set of inputs in opposite temporal
directions and in fine-to-coarse manner, where maps predicted in each scale are used to
predict maps in the following coarser scale. Each scale has five convolutional layers with
3 % 3 kernel and leaky ReLUs [18]. Feature maps from each block pass through a 1 x 1
convolution layer to reduce the channel dimension to 1, a de-convolution layer to up-sample
the map to the original resolution, and a sigmoid layer to output a prediction. A fusion
layer [33] takes the concatenation of L multi-scale maps and computes a weighted average
of the maps using a 1 x 1 convolution layer with kernels initialized to 1/L.

Attention modules Each attention module has three convolutional layers with 3 x 3 ker-
nels followed by a sigmoid. Similar to MB and Occ prediction maps, the output attention
feature maps are passed through a 1 x 1 convolution layer, a de-convolution layer, and a
sigmoid layer to output the full-resolution attention maps.

Fine-to-coarse decoders MONet’s decoders are Fine-to-Coarse (F2C) (Figure 2 (b)), in
contrast with the Coarse-to-Fine (C2F) decoders (Figure 2 (a)) used in current encoder-
decoder CNNs that involve cost volume computations [5, 9, 11, 21, 30]. Skip connections
feed the encoder feature maps (horizontal arrows) to decoder layers of corresponding res-
olution (right pyramid). The only differences between the two types of architecture are (i)
replacing every up-sampling layer in the decoder with a down-sampling layer, and (ii) con-
necting every layer to the immediately finer layer below it, rather than the coarser one above.
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A fusion layer combines the multi-scale predictions into the high-resolution output. Without
adding computation, the new F2C architecture improves over C2F (Section 6).

Training We minimize the focal loss [15] on MB, Occ, and attention maps with Adam [13]
and with an initial learning rate of 10~%. We use flow estimated from PWC-Net [30] as input
for training, and various flow estimators [9, 11, 30, 31] for evaluation. We implement MONet
in Tensorflow [1], and is available at https://github.com/hannahhalin/MONet.

5 Datasets and Performance Evaluation

We train on FlyingThings3D [20] dataset and evaluate on FlyingChairsOcc [5, 9] and MPI-
Sintel [2] datasets without any fine-tuning. FlyingThings3D [20] (FT3D) is created by mov-
ing graphics-generated objects along random 3D trajectories and includes 21818 training
images and 4248 testing images. FlyingChairs [5] is a synthetic dataset generated by ap-
plying random affine transformation to Flickr images as backgrounds, and a set of rendered
moving 3D chairs as foreground. It consists of 22872 image pairs and corresponding ground
truth flow. FlyingChairsOcc [9] adds ground-truth forward and backward Occ maps to Fly-
ingChairs. MPI-Sintel [2] contains 23 high resolution sequences of 20 to 50 frames each
from the open-source computer-animation short "Sintel". Fast motion and large Occs make
this dataset challenging. We follow the literature [9, 11, 32] and evaluate Occ predictions
by average Fi-score after thresholding the map at 0.5, and evaluate MB predictions by mean
Average-Precision (mAP) computed with the BSDS evaluation code [19].

6 Results

MONet outperforms the state of the art in both MB [11] and Occ [9] detection. Table 1
compares MONet to the existing SOTA MB detectors, LDMB [32] and FlowNet-CSS [11],
and to the SOTA Occ detectors, FlowNet-CSSR-ft-sd [11] and IRR-PWC [9]. FlowNet-CSS
is trained on FlyingChairs [5] and FT3D [20] to achieve the current SOTA performance on
MB detection, and it is further fine-tuned on ChairsSDHom [10] to obtain FlowNet-CSSR-ft-
sd for Occ detection. IRR-PWC is trained on FlyingChairsOcc and FT3D, and LDMB [32]
is trained on Sintel. Performance of our proposed MONet is obtained by training on FT3D
only without any fine tuning on Sintel or FlyingChairsOcc. We also include a baseline MB
performance by taking the gradient of estimated flow from RAFT. Specifically, we cap the
flow gradients at 25%, 50%, 75%, and 100% of the maximum gradient over the entire dataset,
and report the highest performance. MONet bests the SOTA methods for both tasks in all
datasets (bold). Figure 7 shows precise and clean MB and Occ predictions by MONet.

Figure 8 stratifies occlusion performance in terms of false-positive rate and accuracy by
each point’s distance to the closest Occ or MB. All three methods, IRR-PWC, FlowNet-CSS,
and MONet, degrade closer to MBs or Occs. While FlowNet-CSS and MONet detect MBs
and Occs jointly, IRR-PWC does not predict MBs and degrades most sharply. MONet shows
the best performance across all distances in all plots: Joint detection helps Occ detection,
especially when the relationships between MBs and Occs are leveraged explicitly.

Table 2 shows the effects of removing combinations of the proposed components in
MONet. Even without all the components, MONet still improves over the SOTA meth-
ods [9, 11] (underlined). Using everything yields the best performance in both tasks (bold).
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Motion Boundary (mAP) Occlusion (Fy)
Dataset Baseline [32] [11] MONet | [11] [9] MONet
FlyingChairsOcc [9] - - - - 78.9 75.7 82.7
Sintel (Clean) [2] 72.6 76.3 86.3 93.1 703 712 74.4
Sintel (Final) [2] 62.9 68.5 79.5 79.8 654 66.9 68.7

Table 1: Average F; score for occlusion detection (right) and mean average precision (mAP)
for motion boundary detection (left). Our MONet bests the state of the art for both tasks
without any fine tuning on FlyingChairsOcc or Sintel (bolded).
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Label [9] [11]
Figure 7: MB (blue) and Occ (magenta) predictions of examples from Sintel [2], thresholded
at 0.5. MONet yields precise and clean predictions. (Best viewed magnified and in color.)
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Figure 8: False Positive Rate (FPR) and accuracy for Occ detection by IRR-PWC [9] (blue),
FlowNet-CSSR-ft-sd [11] (green), and our MONet (magenta), stratified by the distance to
the closest true Occ or MB. Smaller is better for FPR, and larger is better for accuracy.
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MB (mAP) 90.8 92.1 91.6 922 93.1
Occ (F)) 69.8 71.6 74.0 73.6 74.4

Table 2: Effect of proposed components, direct warping (D), attention (A), and Cost Block
(B), in Occ and MB detection performance on Sintel. Even without all the proposed compo-
nents, MONet still improves over the SOTA methods (underlined).

Table 3 evaluates MONet with various input flows [9, 11, 29, 30, 31]. Performance in
both MB and Occ detection increases with better input flow estimates. Even with Clas-
sic+NL [29], also used by LDMB, MO-Net still outperforms the SOTA for MB detection.
Similarly, using the flow from the SOTA MB and Occ estimators [9, 11], MONet outper-
forms SOTA for both MB and Occ detection shown in Table 1. Regardless of flow input
quality, MONet improves on the prior SOTA performance for both tasks (underlined).

Table 4 compares the performance of MONet (joint task solving) with that of estimating
MBs or Occs separately. To make a single-task version of MONet, we simply remove the de-
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Flow (EPE) ‘ 6.04 [29] 2.55 [30] 2.08 [11] 1.88 [9] 1.43 [31]
MB (mAP) 90.2 91.8 92.1 922 93.1
Occ (F1) 69.2 723 73.0 734 744
Table 3: Effect of flow estimation input quality (End-Point Error) in Occ and MB detection
performance of MONet on Sintel [2]. Regardless of input flow quality, MONet still improves
over the SOTA performers in Table I (underlined).

Single task  Joint task Single task  Joint task
91.6 93.1 72.5 74.4
Table 4: Effect of joint task learning in MB and Occ detection performance on Sintel [2].

MB (mAP) Occ (F1)

Occ ([9) Occ (ours) MB (ours)
Dataset C2F F2C C2F F2C C2F F2C
FlyingChairsOcc 75.7 78.5 80.9 82.7 - -
Sintel (Clean) 71.2 71.9 73.3 74.4 91.2 93.1
Sintel (Final) 66.9 67.1 65.6 68.7 72.4 79.8

Table 5: Performance of MB (mAP) and Occ (F;) detection with C2F and F2C decoders.
The F2C version outperforms the C2F version for both IRR-PWC [9] and MONet.

coder for the other task and all the connections between the two decoders. MONet estimates
both MBs and Occs better jointly than separately.

Finally, Table 5 compares C2F and F2C decoders. The current SOTA Occ detector, IRR-
PWC [9], utilizes an encoder-decoder architecture, and we simply reverse the information
flow of its decoder to make it F2C, using the same training scheme as for its C2F version. The
Table shows that the F2C version of each system consistently outperforms its C2F version.

We speculate that the F2C predictor preserves spatial details better when compared to
C2F predictor as the finer predictions do not evolve from the bottleneck features in the C2F
predictor that suppress spatial details. Specifically, in a F2C decoder, layers at finer resolu-
tion process information that is closest to the full resolution of the input, and can focus on
getting the initial predictions right. The overall picture is captured well by coarse resolution
predictions, which can be upsampled to full resolution and combined with good predictions
along boundaries from the finer predictions. This process does not work in a C2F predictor,
because the finer-resolution predictions are made many layers away from the input, and the
only fine-resolution information they get is from the skip connections. The flow of informa-
tion in F2C decoder is consistent with what is done in the edge detection literature [33].

7 Conclusion

We propose MONet to jointly detect MBs and Occs in both time directions given two video
frames and their estimated bi-directional flow. We direct-warp maps between frames, use an
attention mechanism to align MBs and Occs, and provide correspondence information with
a cost block within an encoder-decoder architecture with F2C decoders. Fine-to-coarse bests
coarse-to-fine both for our architecture and for IRR-PWC. This reversal of information flow
can be applied at no cost to any encoder-decoder. MONet improves the SOTA for both MBs
and Occs on the Sintel and FlyingChairsOcc without any fine-tuning on either dataset.
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