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Abstract

In egocentric videos, actions occur in quick succession. We capitalise on the action’s

temporal context and propose a method that learns to attend to surrounding actions in

order to improve recognition performance. To incorporate the temporal context, we pro-

pose a transformer-based multimodal model that ingests video and audio as input modal-

ities, with an explicit language model providing action sequence context to enhance the

predictions. We test our approach on EPIC-KITCHENS and EGTEA datasets reporting

state-of-the-art performance. Our ablations showcase the advantage of utilising tempo-

ral context as well as incorporating audio input modality and language model to rescore

predictions. Code and models at: https://github.com/ekazakos/MTCN.

1 Introduction

Action recognition in egocentric video streams from sources like EPIC-KITCHENS poses

a number of challenges that differ substantially from those of conventional third-person ac-

tion recognition – where training and evaluation is on 10 second video clips and classes are

quite high-level [30]. Actions are fine-grained (e.g. ‘open bottle’) and noticeably short, of-

ten one second or shorter. Along with the challenge, the footage offers an under-explored

opportunity, as actions are captured in long untrimmed videos of well-defined and at-times

predictable sequences. For example the action ‘wash aubergine’ can be part of the following

sequence – you first ‘take the aubergine’, ‘turn on the tap’, ‘wash the aubergine’ and finally

‘turn off the tap’ (Fig. 1). Furthermore, the objects (the aubergine and tap in this case) are

persistent over some of the neighbouring actions.
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Figure 1: Egocentric video demonstrating two temporal context windows (pink, green), cen-

tred around the action to be recognised. We can infer ‘wash aubergine’ with higher accuracy

if we know that the tap was turned on before and turned off afterwards.

In this work, we investigate utilising not only the action’s temporal context in the data

stream, but also the temporal context from the labels of neighbouring actions. We propose a

model that attends to neighbouring actions1. Concretely, we use the attention mechanism of a

multimodal transformer architecture to take account of the context in both the data and labels,

using three modalities: vision, audio and language. We are motivated by previous works that

demonstrate the significance of audio in recognising egocentric actions [31, 64, 68], and thus

include the auditory temporal context in addition to the visual clips. We also utilise context

further, by training a language model on the sequence of action labels, inspired by the success

of language models [8, 13, 69] in re-scoring model outputs for speech recognition [11, 24,

45] and machine translation [23] (Fig. 2).

Our main contributions are summarised as follows: First, we formulate temporal context

as a sequence of actions surrounding the action in a sliding window. Second, we propose

a novel framework able to model multimodal temporal context. It consists of a transformer

encoder that uses vision and audio as input context, and a language model as output context

operating on the action labels. Third, we obtain state-of-the-art performance on two datasets:

(i) the large-scale egocentric dataset EPIC-KITCHENS, outperforming high-capacity end-to-

end transformer models; and (ii) the EGTEA dataset. Finally, we include an ablation study

analysing the importance of the extent of the temporal context and of the various modalities.

2 Related Work

Action Recognition. There is a rich literature of seminal works in action recognition inno-

vating temporal sampling [31, 63, 73], multiple streams [17], spatio-temporal modelling [21,

41, 61] or modelling actions as transformations from initial to final states [65]. Our work

is related to the more recent transformer-based approaches [1, 7, 9, 21, 48, 49, 51]. We

compare our model with four recent works [1, 9, 48, 51]. [1] investigated spatio-temporal

attention factorisation schemes, while in [9] the authors propose full-attention within a tem-

poral window. [51] proposes temporal attention along trajectories with learnt tokens. [48]

proposes fusion bottlenecks for cross-modal attention. These approaches require training on

large-scale datasets and strong data augmentation for generalisation. Our model operates on

pre-extracted features which are processed with a lightweight transformer and outperforms

these works by relying on multimodal temporal context.

In egocentric action recognition, researchers propose a range of techniques to address its

unique challenges [2, 31, 38, 47, 58]. [58] considered long-term understanding through an

LSTM with attention to focus on relevant spatio-temporal regions, but the approach operates

within the action clip solely. [2] shows that modelling hand-object interactions is beneficial,

1Note that these action start/end times are readily available in labelled datasets for untrimmed videos and do not

require additional labels. We just leverage these.
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while in [38] the authors pre-train egocentric networks by distilling egocentric signals from

large-scale third-person datasets. [31] shows that audio is key to egocentric action recog-

nition due to sounds produced from interactions with objects. In [47], the authors propose

a multimodal unsupervised domain adaptation approach to tackle the distribution shift be-

tween environments. We build on these works but propose the first approach to incorporate

both audio-visual and language-model predictions.

Temporal Context for Video Recognition Tasks. A few works have considered temporal

context to improve the models’ performance for action anticipation [18, 54], action recog-

nition [10, 50, 67, 71], and object detection [3, 6]. [54] proposes a model that operates on

multi-scale past temporal context for action anticipation while they also test on action recog-

nition by modifying the architecture to consider both past and future context. In [71], a set

of learnable query vectors attends to dense temporal context to identify events in untrimmed

videos. In [50], an encoder-decoder LSTM is proposed for classifying sequences of human

actions, effectively attending to the relevant temporal context of each action. Closest to our

work is [67], where long-term features from the past and the future of an untrimmed video

are utilised, to improve the recognition performance of the ongoing action. A key difference

is that we exploit both the temporal bounds and predicted labels of neighbouring actions.

Multimodal transformers. The self attention mechanism of transformers provides a natural

bridge to connect multimodal signals. Applications include audio enhancement [16, 62],

speech recognition [25], image segmentation [62, 70], cross-modal sequence generation [20,

36, 37], video retrieval [19] and image/video captioning/classification [27, 28, 35, 43, 59,

60]. A common paradigm (which we also adapt) is to use the output representations of

single modality convolutional networks as inputs to the transformer [19, 34]. Unlike these

works, we use transformers to combine modalities in two specific ways – we first combine

audio and visual inputs to predict actions based on neighbouring context, and then re-score

these predictions with the help of a language model applied on the outputs.

Language models for action detection. There are a few works that incorporate a language

model in action detection. The most relevant work is [53], which utilises a statistical n-gram

language model along with a length model and an action classifier. [42] combines the Con-

nectionist Temporal Classification (CTC) [22] with a language model to learn relationships

between actions. Both of these works improve the results by considering the contextual struc-

ture of the sequence of actions, albeit relying on a statistical language model, whereas in this

work we utilise a neural language model which has shown better performance [5, 15, 33].

3 Multimodal Temporal Context Network (MTCN)

Given a long video, we predict the action in a video segment by leveraging the temporal

context around it. We define the temporal context as the sequence of neighbouring actions

that precede and succeed the action, and aim to leverage that information, when useful,

through learnt attention. We utilise multimodal temporal context both at the input and the

output of our model. An audio-visual transformer ingests a temporally-ordered sequence of

visual inputs, along with the corresponding sequence of auditory inputs. We use modality-

independent positional encodings as well as modality-specific encodings. The language

model, acting on the output of the transformer learns the prior temporal context of actions,

i.e. the probability of the sequence of actions, using a learnt text embedding space.

Inspired by similar approaches [66], and instead of using a single summary embedding

as in prior works for image [14] and action classification [1], the audio-visual model utilises

two separate summary embeddings to attend to the action (i.e. verb) class and the object (i.e.
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Figure 2: The Multimodal Temporal Context Network (MTCN). Visual and auditory tokens

are tagged with positional and modality encodings. An audio-visual transformer encoder

attends to the sequence. Verb and noun summary embeddings with independent positional

encodings, predict the action at the centre of the window (‘take washing liquid’). The classi-

fier also predicts the sequence of actions to train an auxiliary loss that enhances the prediction

of the centre action. The language model filters out improbable sequences.

noun) class. This allows the model to attend independently to the temporal context of verbs

vs objects. For example, the object is likely to be the same in neighbouring actions while the

possible sequences of verbs can be independent of objects (e.g. ‘take’ → ‘put’). Each sum-

mary embedding uses a different learnt classification token, and the classifier predicts a verb

and a noun from the summary embeddings. The predictions of the audio-visual transformer

are then enhanced by filtering out improbable sequences using the language model. We term

the proposed model Multimodal Temporal Context Network (MTCN).

In the next three subsections, we detail the architectural components of MTCN, as well

as our training strategy. An overview of MTCN is depicted in Fig. 2.

3.1 Audio-Visual Transformer

Let Xv ∈ R
w×dv be the sequence of visual inputs from a video, and Xa ∈ R

w×da the cor-

responding audio inputs2, for w consecutive actions in the video (i.e. the temporal context

window), with dv, da being the input dimensions of the two modalities respectively. Xv and

Xa correspond to features extracted from visual and auditory networks, respectively. Our

temporal window is centred around an action bi with surrounding action segments, exclud-

ing any background frames. That is, each action b j within the window, i− w−1
2

≤ j ≤ i+ w−1
2

is part of the transformer’s input.

Encoding layer. Our model first projects the inputs Xv, Xa to a lower dimension D and tags

each with positional and modality encodings. Then, an audio-visual encoder performs self-

attention on the sequence to aggregate relevant audio-visual temporal context from neigh-

bouring actions. Because all self-attention operations in a transformer are permutation invari-

ant, we use positional encodings to retain information about the ordering of actions in the se-

quence. We use w learnt absolute positional encodings, shared between audio-visual features

to model corresponding inputs from the two modalities. Modality encodings, mv, ma ∈ R
D,

are learnt vectors added to discriminate between audio and visual tokens.

A classifier predicts the action bi, using two summary embeddings, acting on the learnt

verb/noun tokens. We use the standard approach of appending learnable classification tokens

to the end of the sequence but use two tokens, one for verbs and one for nouns, denoted as

CLSV, CLSN ∈ R
D, with unique positional encodings. To summarise, the encoding layer

transforms the inputs Xv and Xa as follows:

Xe
v j
= gv(Xv j

)+ p j +mv Xe
a j
= ga(Xa j

)+ p j +ma ∀ j ∈ [1, ...,w] (1)

CLSe
V = CLSV + pw+1 CLSe

N = CLSN + pw+2 Xe = [Xe
v ;Xe

a ;CLSe
V;CLSe

N], (2)

2Video and audio inputs/features are synchronised, therefore they have the same length w.
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where [; ] denotes input concatenation and p ∈R
(w+2)×D are the positional encodings. gv(·) :

R
dv 7→ R

D and ga(·) : Rda 7→ R
D, are fully-connected layers projecting the visual and audio

features, respectively, to a lower dimension D. The input to the transformer is Xe ∈ R
(2w+2)×D.

In appendix E, we compare the absolute positional encodings with relative [55] and Fourier

feature positional encodings [28].

Transformer and classifier. We use a transformer encoder f (·) to process sequential audio-

visual inputs, Z = f (Xe). We share the weights of the transformer encoder layer-wise. In

appendix E, we compare this to a version without weight sharing. Weight sharing uses 2.7×
less parameters with comparable results. A two-head classifier h(·) for verbs and nouns

then predicts the sequence of w actions from both the transformed visual and audio tokens

Ŷ = h(Z1:2w), and the action bi from the summary embeddings ŷ = h(Z2w:2w+2).

Loss function. Recall that our goal is to classify bi, the action localised at the centre of our

temporal context. Nevertheless, we can leverage the ground-truth of neighbouring actions

within w for additional supervision to train the audio-visual transformer. Our loss is com-

posed of two terms, the main loss for training the model to classify the action at the centre

of our temporal context i = w
2

, and an auxiliary loss to predict all actions in the sequence:

Lm =CE(Y V
i , ŷV)+CE(Y N

i , ŷN) (3)

La =
w

∑
j=1

(

CE(Y V
j ,Ŷ

V
j )+CE(Y V

j ,Ŷ
V
|w|+ j)+CE(Y N

j ,Ŷ
N
j )+CE(Y N

j ,Ŷ
N
|w|+ j)

)

(4)

loss = βLm +(1−β )La, (5)

where CE() is a cross-entropy loss, and Y = (Y1, ...,Yw) is the ground-truth of the sequence,

while Ŷ1, ...,Ŷw and Ŷw+1, ...,Ŷ2w correspond to predictions from the transformed visual and

auditory inputs respectively. We use β to weight the importance of the auxiliary loss.

3.2 Language Model

In addition to input context from the visual and audio domains, we introduce output context

using a language model. Language modelling, commonly applied to predict the probability

of a sequence of words, is a fundamental task in NLP research [8, 13, 52, 69]. Our language

model predicts the probability of a sequence of actions. We use the language model to im-

prove the predictions of the audio-visual transformer by filtering out improbable sequences.

We adopt the popular Masked Language Model (MLM), introduced in BERT [13]. We

train this model independently from the audio-visual transformer. Specifically, given a se-

quence of actions Y = (Y
i−w−1

2
, ...,Y

i+w−1
2
), we randomly mask any action Yj and train the

model to predict it. For example, an input sequence to the model (for w = 5) would be:

(‘turn on tap’, ‘wash hands’, <MASK>, ‘pick up towel’, ‘dry hands’). Without any visual

or audio input, the language model is tasked to learn a high prior probability for ‘turn off

tap’, which is masked. Note that the model is trained using the ground-truth sequence of

actions. For input representation, we split the action into verb and noun tokens (e.g. ‘dry

hands’ → ‘dry’ and ‘hand’), convert them to one-hot vectors and input them into separate

word-embedding layers3. MLM takes as input the concatenation of verb and noun embed-

dings. The outputs are scores for verb and noun classes using a two-head classifier, and the

model is trained with a cross-entropy loss per output.

3Learning a word embedding outperforms pretrained embeddings.
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3.3 Inference

Given the the scores of the sequence, Ŝ = (ŷ
i−w−1

2
, ..., ŷ

i+w−1
2
), from the audio-visual model4,

we apply a beam-search of size K to find the K most probable action sequences Ŝb. Therefore,

Ŝb is of size K×w. In inference, the trained language model takes as input Ŝb, i.e. it operates

on sequences predicted from the audio-visual transformer.

For each sequence l, we calculate the probability of the sequence pLM(Ŝl
b) from the

language model by utilising the method introduced in [56]. We mask actions, one at a

time, and predict their probability. pLM(Ŝl
b) is the sum of log probabilities of all actions in l.

We also calculate the probability pAV (Ŝ
l
b) by summing the log probabilities of all predicted

actions in l by the audio-visual model. Then, we combine the probabilities of sequences of

the audio-visual and language models:

p(Ŝl
b) = λ pLM(Ŝl

b)+(1−λ )pAV (Ŝ
l
b). (6)

Sequences are then sorted in descending order by p(Ŝl
b). The score of the centre action

from the sequence with the highest probability, is used as the final prediction.

4 Experiments

4.1 Implementation Details

Datasets. EPIC-KITCHENS-100 [12] is the largest egocentric audio-visual dataset, con-

taining unscripted daily activities, thus offering naturally variable sequences of actions.

There are on average 129 actions per video (std 163 actions/video and maximum of 940

actions/video). This makes the dataset ideal for exploring temporal context. The length of

sequences of w = 9 actions (this is our default window length) is 34.4 seconds of video on

average with an std of 27.8 seconds5. EGTEA [40] is another video-only egocentric dataset.

There are 28 hours of untrimmed cooking activities with 10K annotated action segments.

Although the dataset does not contain audio, it has sequential actions annotated within long

videos, and we use it to train part of our approach (vision and language).

Visual features. For EPIC-KITCHENS, we extract visual features with SlowFast [17], us-

ing the public model and code from [12]. We first train the model with slightly different

hyperparameters, where we sample a clip of 2s from an action segment, do not freeze batch

normalisation layers, and warm-up training during the first epoch starting from a learning

rate of 0.001. We note that this gave us better performance. All unspecified hyperparameters

remain unchanged. For feature extraction, 10 clips of 1s each are uniformly sampled for each

action segment, with a center crop per clip. The resulting features have a dimensionality of

dv = 2304. The SlowFast visual features are used for all the results in this paper, apart for

the comparison with the state of the art in Table 3 where we additionally experiment with

features from Mformer-HR [51]. These are extracted from the EPIC-KITCHENS pretrained

model using a single crop per clip. The resulting features have a dimensionality of dv=768.

For EGTEA, see appendix F.

Auditory features. We use Auditory SlowFast [32] for audio feature extraction when present.

Similarly to the visual features, we extract 10 clips of 1s each uniformly spaced for each ac-

tion segment, with average pooling and concatenation of the features from the Slow and Fast

streams, and the resulting features have the same dimensionality, da = 2304.

4These are temporally ordered predictions from the summary embeddings, and thus different from Ŷ .
5minimum of 3.4 seconds to a maximum of 720.2 seconds.
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

w Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

1 67.93 52.29 41.30 90.53 76.47 61.52 61.13 44.60 32.58 42.05 27.42 21.48

3 69.80 55.24 43.52 91.30 79.04 63.25 61.41 46.48 33.71 39.09 32.58 23.06

5 70.38 56.16 45.13 91.67 79.47 64.14 61.97 46.95 34.74 43.12 32.53 24.54

7 70.43 56.19 45.01 91.23 79.13 63.52 62.63 47.14 34.84 41.31 32.79 24.12

9 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70

11 70.55 55.74 44.68 91.18 79.23 63.02 62.91 46.57 34.74 41.82 33.58 24.44

Table 1: Analysis of temporal context extent for MTCN on EPIC-KITCHENS.

Architectural details. Both the audio-visual transformer encoder and the language model

consist of 4 layers with shared weights, 8 attention heads and a hidden unit dimension of 512.

In the audio-visual transformer, positional/modality encodings as well as verb/noun tokens

have also dimensionality D = 512 and are initialised to N (0,0.001). The layers gv(·) and

ga(·) reduce the features to the common dimension D = 512. In the encoding layer, dropout

is applied at the inputs of gv(·) and ga(·) as well as at Xe. In the language model, both verb

and noun word-embedding layers have a dimension of 256, and positional encodings have a

dimension of 512, while dropout is applied to its inputs.

Scheduled sampling. We modify the scheduled sampling from [4] to train the language

model. At each training iteration, we randomly mask an action, predict it, and replace the

corresponding ground-truth with the prediction.

Train / Val details. For EPIC-KITCHENS, the audio-visual transformer is trained using

SGD, a batch size of 32 and a learning rate of 0.01 for 100 epochs. Learning rate is decayed

by a factor of 0.1 at epochs 50 and 75. In the loss function, we set β = 0.9. For regularisation,

a weight decay of 0.0005 is used and a dropout 0.5 and 0.1 for the encoding layers and

transformer layers respectively. We use mixup data augmentation [72] with α = 0.2. The

language model is trained for the same number of epochs with a batch size of 64, Adam

optimiser with initial learning rate of 0.001 and the learning rate is decreased by a factor of

0.1 when validation accuracy saturates for over 10 epochs. The values of dropout and weight

decay are the same as those of the audio-visual model. For inference, we tune λ in Equation 6

on the validation set with grid-search from the set {0,0.05,0.1,0.15,0.2,0.25,0.3}, and we

use a beam size of K = 10. For training the audio-visual transformer, we randomly sample 1

out of 10 features per action. For testing, we feed all 10 features per action to the transformer

and we share the positional encoding corresponding to an action with all 10 features. We

also tried single feature per action followed by averaging 10 predictions but observed no

difference in performance. For the train/val details in EGTEA, please see appendix F.

Evaluation metrics. For EPIC-KITCHENS-100, we follow [12] and report top-1 and top-

5 accuracy for the validation and test sets separately (Test results and results on EPIC-

KITCHENS-55 in appendix A an B). We also follow [12] and report results for two subsets

within val/test: unseen participants and tail classes. For EGTEA, we follow [29, 44, 46] and

report top-1 accuracy and mean class accuracy using the first train/test split.

4.2 Analysis of temporal context length

We first analyse the importance of the temporal context extent by varying the size of w, i.e.

the length of window of actions that our model observes. We use the validation set of EPIC-

KITCHENS for this analysis as well as for the ablations in Sec. 4.3, and report EGTEA

analysis in appendix G. We perform this analysis both for MTCN containing all modalities
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Overall

Top-1 Accuracy (%)

w Verb Noun Action

1 19.32 3.74 0.82

3 38.08 45.56 23.85

5 42.15 50.36 29.48

7 42.93 50.35 29.91

9 43.06 50.22 29.41

11 41.89 49.96 29.14

Table 2: Analysis of the

temporal context on LM.
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Figure 3: Effect of temporal context on verb (left) and noun

(right) accuracy of individual modalities and for MTCN on

EPIC-KITCHENS. Y-axis cut to emphasise details.

as shown in Table 1, as well as for the language model as shown in Table 2. Varying the

length of the window has a big impact on the model’s accuracy showcasing that MTCN

successfully utilises temporal context. Using temporal context outperforms w = 1, i.e. no

temporal context. As the window length increases the performance also increases. Overall

top-1 accuracy increases up to w = 9 while top-5 up to a window w = 5. Performance on

unseen participants and tail classes also increases up to w = 9.

In Table 2, experiments are conducted by masking the centre action and measuring how

well the model predicts it. We use ground-truth for the other actions, as in this experiment we

are interested in the maximum possible performance of the language model, i.e. assuming

correct predictions from the audio-visual model. Here w = 1 corresponds to a language

model that randomly guesses the masked action without any context. When varying the

length of the window for the language model, verb performance increases when enlarging

the temporal context from w = 3 to w = 9 while for nouns optimal temporal context is w = 5,

and w = 7 for actions. Interestingly, the language model is performing particularly well for

nouns, since the same object is often used for the entire sequence.

Finally, Fig. 3 shows the effect of temporal context extent on verb and noun accuracy

of the individual modalities as well as of MTCN. For verbs, visual modality performance

increases up to 7 actions and then decreases while for nouns, it steadily increases up to 11

actions, possibly because larger context is able to resolve ambiguities due to occlusion. Au-

dio can better capture temporal context for verbs than the language model, showcasing that

the progression of sounds conveys more useful information about the action. For nouns, the

language model outperforms audio. Moreover, the language model performs better on nouns

because of repetitions of the same object in the sequence. MTCN utilising all modalities

(A-V-LM) benefits the most from larger temporal context, particularly for verbs. With this

analysis completed, we fix w to 9 in all subsequent experiments.

4.3 Results and Ablations

We compare our approach with the state-of-the-art (SOTA) approaches on EPIC-KITCHENS-

100 as shown in Table 3. MTCN significantly outperforms convolutional approaches [17,

31, 41, 63]. We outperform the audio-visual TBN [31] by 8% on top-1 actions, and Slow-

Fast [17] by 6% (using the same visual features). We also outperform very recent transformer-

based approaches [1, 9, 48, 51], reporting published results (only top-1 accuracy). Note, that

MTCN consists of a lightweight transformer that operates on pre-extracted features, while

[1, 9, 48, 51] are high-capacity models trained end-to-end.

Additionally, when we employ visual features from Mformer-HR [51], MTCN improves

over all transformer-based approaches, including audio-visual fusion [48], by 3.5% on top-1
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Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

Model Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

TSN [63] 60.2 46.0 33.2 89.6 72.9 55.1 47.4 38.0 23.5 30.5 19.4 13.9

TBN [31] 66.0 47.2 36.7 90.5 73.8 57.7 59.4 38.2 29.5 39.1 24.8 19.1

TSM [41] 67.9 49.0 38.3 91.0 75.0 60.4 58.7 39.6 29.5 36.6 23.4 17.6

SlowFast [17] 65.6 50.0 38.5 90.0 75.6 58.6 56.4 41.5 29.7 36.2 23.3 18.8

ViViT-L/16x2 [1] 66.4 56.8 44.0 - - - - - - - - -

X-ViT (16x) [9] 68.7 56.4 44.3 - - - - - - - - -

Mformer-HR [51] 67.0 58.5 44.5 - - - - - - - - -

MBT [48] 64.8 58.0 43.4 - - - - - - - - -

MTCN - v.f. SlowFast [17] 70.6 56.3 45.5 91.1 79.1 63.1 63.8 47.1 35.9 41.4 32.8 24.7

MTCN - v.f. Mformer-HR [51] 70.7 62.1 49.6 90.7 83.1 68.6 63.7 50.9 38.9 41.9 39.2 27.7

Table 3: Comparison with SOTA on EPIC-KITCHENS-100 using two visual features (‘v.f.’)

Overall Unseen Participants Tail-classes

Top-1 Accuracy (%) Top-5 Accuracy (%) Top-1 Accuracy (%) Top-1 Accuracy (%)

V A LM Aux Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

✓ ✗ ✗ ✓ 67.10 53.54 41.49 90.62 78.22 62.32 58.87 43.29 30.99 40.97 30.47 22.35

✓ ✗ ✓ ✓ 67.84 54.08 42.05 90.63 78.20 60.68 59.06 44.23 31.36 39.77 31.32 22.38

✓ ✓ ✗ ✓ 70.23 55.82 45.00 91.13 79.06 64.58 63.29 46.38 35.02 41.76 32.26 24.41

✓ ✓ ✓ ✗ 69.31 55.46 43.81 91.19 79.76 62.35 61.13 46.01 33.90 39.55 30.74 22.74

✓ ✓ ✓ ✓ 70.60 56.26 45.48 91.14 79.06 63.06 63.76 47.14 35.87 41.36 32.84 24.70

✓ ✓ † ✓ 71.33 63.56 50.32 92.05 83.16 67.85 62.25 52.68 37.56 41.53 44.16 29.89

Table 4: Ablation on multimodal temporal context and auxiliary loss in EPIC-KITCHENS.

†: upper bound using ground-truth knowledge as input to the language model.

nouns and 5% on actions. We attribute the boost on nouns to the enhanced object recognition

performance of the ViT backbone [14] in Mformer-HR and its large-scale pretraining. These

results, however, further demonstrate the potential to boost other methods and features by

utilising multimodal temporal context.

Method Top-1 (%) MC(%)

Li et al. [39] - 53.30

Ego-RNN [57] 62.17 -

Kapidis et al. [29] 68.99 61.40

Lu et al. [44] 68.60 60.54

SlowFast [17] 70.43 61.92

MCN [26] 55.63 -

Min et al. [46] 69.58 62.84

MTCN (V) (Ours) 72.55 64.86

MTCN (V+LM) (Ours) 73.59 65.87

Table 5: Comparative results on

EGTEA. MC: Mean Class

We compare MTCN without audio with the state-

of-the-art on EGTEA, in Table 5. This model uses

w = 3. Our model improves over previous ap-

proaches by 3% in both top-1 and mean class accu-

racy. Note that MTCN outperforms SlowFast [17]

which we used to extract features. In appendix G,

we ablate the temporal context and language model,

where we showcase that the language model provides

a bigger boost in performance, possibly due to the ab-

sence of the audio modality (also shown in Table 5:

‘V’ vs ‘V+LM’).

Multimodality Ablation. We offer an ablation to identify the performance impact of the

components of our MTCN. Results are shown in Table 4. We remove audio and language

modalities from our model’s input and output respectively to assess their importance. Mul-

timodal context is important, as our proposed model enjoys considerable margins compared

with the model trained only with visual context (line 1 in Table 4). Audio is beneficial,

confirming the finding of prior works.

Although the language model provides smaller boost in performance than audio, it show-

cases that it is useful to model prior temporal context at the output level, and that its ben-

efits are complementary to audio. We also include upper bound performance improvement
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Figure 4: Qualitative results of attention weights along with the predictions of our model in

EPIC-KITCHENS. Green and purple edges represent attention from the noun embedding to

visual and auditory tokens, respectively. Thickness indicates attention weights magnitude to

centre (bordered) and temporal context actions.

from the addition of the language model, where it takes as input the ground-truth preced-

ing/succeeding actions rather than the predictions from the audio-visual transformer (last

line in Table 4), effectively a language infilling problem. These results demonstrate the po-

tential margin for improvement, particularly for nouns and accordingly action accuracy as

well as tail classes. In appendix C, we report statistical significance over multiple runs for

the language model, and compare it to alternative baselines.

Auxiliary loss. Also from Table 4, training MTCN with auxiliary loss boosts its performance

almost in all metrics, confirming that utilising supervision from neighbouring actions can

improve the performance of the action of interest, i.e. the action at the centre of the window.

While we focus on offline action recognition, we can evaluate our model for online recog-

nition by predicting the last action in the sequence instead of the centre one. Results are

included in appendix D for different values of w, where w = 7 provided best results for

EPIC-KITCHENS. Best top-1 action performance using past context solely is 42.96% com-

pared to 45.48% using surrounding context. However, we demonstrate that our model can

leverage multimodal temporal context in this setting.

In Fig. 4, we visualise the auditory and visual temporal context attention on a correctly

recognised sequence (left) – where subsequent actions of pouring and closing are particularly

informative, and an incorrectly (right) predicted sequence – where both attention weights are

high on actions containing the egg, causing the model to incorrectly predict the noun as egg.

More qualitative examples are included in appendix H.

5 Conclusion

We formulate temporal context as a sequence of actions, and utilise past and future context

to enhance the prediction of the centre action in the sequence. We propose MTCN, a model

that attends to vision and audio as input modality context, and language as output modality

context. We train MTCN with additional supervision from neighbouring actions. Our results

showcase the importance of audio and language as additional modality context. We report

SOTA results on two egocentric video datasets: EPIC-KITCHENS and EGTEA. An exten-

sion to MTCN would incorporate an actionness score of neighbouring frames, to distinguish

background frames and learn from action sequences in untrimmed videos without temporal

bounds during testing. This would bridge the problems of recognition and detection, utilising

multimodality and temporal context. We will be exploring this in future work.
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