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Abstract

Classifying the sub-categories of an object from the same super-category (e.g., bird)
in a fine-grained visual classification (FGVC) task highly relies on mining multiple dis-
criminative features. Existing approaches tackle this problem mainly by introducing
attention mechanisms to locate the discriminative parts or feature encoding approaches
to extract the highly parameterized features in a weakly-supervised fashion. In this work,
we propose a lightweight yet effective regularization method named Channel DropBlock
(CDB), in combination with two alternative correlation metrics, to address this prob-
lem. The key idea is to randomly mask out a group of correlated channels during train-
ing to destruct features from co-adaptations, and thus enhance feature representations.
Extensive experiments on three benchmark FGVC datasets show that CDB effectively
improves the performance. Code available at https://github.com/PRIS-CV/
DropChannelBlock_Pytorch_master.

1 Introduction

Deep convolutional neural networks have achieved great progresses in many computer vision
tasks, especially in object recognition with sophisticated model design and abundant data
sets. By contrast, Fine-Grained Visual Classification (FGVC) remains very challenging,
mainly because of the high intra-class variance and low inter-class variance among fine-
grained categories (e.g., bird species, flower types, car models, etc.).
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The key in FGVC is to learn discriminative feature representations that can distinguish
the inter-class differences and align the intra-class variances. Early solutions [1, 2, 14, 17,
30] utilize additional bounding box/part annotations to locate discriminative parts. It later
becomes clear that such supervised approaches are hard to generalize because expert human
annotations can be cumbersome to obtain and are often error-prone [32]. More recent meth-
ods [7, 9, 11, 18, 29, 32, 33] address this issue in a weakly supervised manner. However,
these methods usually involve complicated network structure or highly parameterized fea-
ture representations, which is hardly applicable to other models and also introduces extra
computation overhead in both training and inference stages.

To address the aforementioned concerns, in this paper we propose a novel lightweight yet
powerful method, named Channel Dropblock (CDB), for weakly supervised FGVC. Since
the features in the convolutional layers are correlated, CDB aims at eliminating the effect of
co-adaptation among channels. This encourages the network to enhance feature representa-
tion and to find more discriminative visual evidence in a FGVC task. To this end, CDB is
designed to drop a group of correlated channels in one or several of convolutional layers to
motivate the network to distinguish more discriminative parts. Unlike most existing weakly
supervised FGVC networks, CDB is a light structure without additional parameters, making
it easy to integrate into existing networks.

To guide the channel selection, we propose two novel strategies to measure the chan-
nel correlation. One strategy is the max activation metric, inspired by MA-CNN [32], which
measures channel correlation by computing the distance between peak responses from differ-
ent channels. We suppose that the smaller the distance is, the closer the correlation between
two channels. In this occasion, the channels are clustered into discriminative local regions
with diverse activation centers. The other strategy is the bilinear pooling metric. It com-
putes the channel correlation matrix in which the cosine similarities between channels are
calculated pairwise. In the bilinear pooling metric, the larger the cosine similarity value is,
the more similar the two channels are. With this metric, the channels are clustered into spe-
cific visual patterns. During training, a channel of the feature map is selected randomly, and
then the correlated channels which share similar visual pattern are clustered and masked out
based on the correlation matrix.

Compared with existing FGVC networks, the proposed method is more efficient and
flexible. This is because it can erase a discriminative visual pattern to prevent the features
from co-adaptations by a single forward-backward propagation in a single block, which can
be easily applied to all kinds of networks. Moreover, it does not need extra part/object
annotation and introduces no computational overhead at inference time.

Our contributions can be summarized as follows:

1) We address the challenges of discriminative feature learning in FGVC tasks by propos-
ing a novel lightweight regularization structure, which drops a group of correlated channels
to enhance the network feature representations and hence extract more discriminative pat-
terns.

2) We propose two metrics to measure the pairwise correlation between different feature
channels, which can draw insights from feature channels.

3) We conduct extensive experiments on three popular fine-grained benchmark datasets,
the results demonstrate that the proposed CDB significantly improves the FGVC perfor-
mance when applied to baseline networks or integrated into existing methods.
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2 Related Work
2.1 Dropout Mechanism

Dropping some units or patches in CNN has been proposed as a regularization method, such
as dropout [26], SpatialDropout [27], cutout [6] and DropBlock [12], among them dropout
is the inspiration of most other related regulation methods. Based on the way to drop, these
methods can be divided into two categories: one contains attention-based methods and the
other one drops object information randomly.

Dropout [26] is set to omit each neuron with a probability p during training time, provid-
ing a simple yet effective way to avoid overfitting. However, features are correlated spatially
that hinders dropout to work effectively when applied to convolutional layers. To solve the
problem, SpatialDropout [27], cutout [6] and DropBlock [12] were proposed later. Instead of
dropping several inconsecutive units in feature maps, in SpatialDropout [27], entire feature
maps are dropped with a probability p randomly, preventing nearby pixels from presenting
the same information as dropped neurons. Cutout [6] is applied on input images to erase
one part with a random square mask before training. Similarly, the key of DropBlock [12]
is set to drop contiguous regions of feature maps, declining the effect of spatial correlated
features. ADL [5] is one of the attention based regulation methods, in which drop masks
based on attention are applied to feature maps to hide most discriminative parts and activate
networks to learn other important features.

Different from dropping channels randomly of SpatialDropout [27] and erasing a patch
in input image randomly of Cutout [6], our method drops a group of related channels. In this
way, our method reduces the effect of co-adaptation among different channels, and thus can
locate more discriminative visual patterns and enhance the features representation in FGVC.

2.2 Fine-grained Classification

The key of fine-grained image classification is to find out the discriminative representations
of each class. To this end, a variety of methods have been proposed to increase the accuracy
of deep learning network for this task.

Bilinear CNN [18] consists of two extractors, capturing pairwise correlations between
the feature channels, to distinguish images from subtle differences, which is an efficient way
to obtain more representation of features. RA-CNN [9] is a reinforced attention proposal
network to obtain discriminating attention regions and region-based feature representation
of multiple scales. MA-CNN [32] was composed by three sub network to realise convolu-
tion, channel grouping and part classification respectively, which generates multiple object
parts by clustering channels of feature maps into different groups. NTS [29] enables a nav-
igator agent as the region proposal network to detect multiple informative regions under the
guidance from a teacher agent. PMG [8] adopts a progressive training strategy that fuses
multi-granularity features.

The most relevant work to ours is MA-CNN [32], which also highlights channel corre-
lations and clusters them into groups. However, the setting in MA-CNN restricts itself to
the last layer of the feature extractor, which ignores the low-level information in FGVC task.
Besides, it adjusts the original network structure by setting a fixed number of individual part
classifiers, which poses challenges to implement on other methods or tasks.

Compared with MA-CNN, the advantages of our work are two-folds. First, the proposed
CDB is more flexible to be applied to any convolutional feature maps of classification model,
and hence can make fully use of both high-level semantics and low-level details. Second, no
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adjustment to the original structure and no additional parameter/computation are involved
during inference, which makes the method flexible to be integrated into existing networks.

3 CDB: Channel DropBlock

In this section, we present details of Channel DropBlock (CDB). CDB is a dropout-based
regularization technique that can be easily applied to convolutional feature maps of a classi-
fication model to improve feature representations. We first describe the motivation together
with comparison with relevant methods (Section 3.1). We then describe the Channel Drop-
Block algorithm, which drops correlated channel groups based on channel correlation matrix
(Section 3.2 & Section 3.3).

3.1 Motivation

As shown in previous works [24, 31, 32], each channel of the convolutional features cor-
responds to a visual pattern. However, only parts of patterns contribute to the final predic-
tion due to the co-adaptations between them, which will reduce inference accuracy espe-
cially when sub-categories are close and hard to distinguish (e.g., in FGVC tasks). While
dropout [26] is effective to destruct co-adaptations in features, it is less effective for convo-
lutional feature channels since such channels are pairwise correlated, and the pattern about
the input can still be sent to the next layer if we drop channels individually. This intuition
suggests us to mask out a correlated group of channels instead of a single channel to en-
courage the model to learn more discriminative parts. The main motivation for CDB is to
destruct the co-adaptations and induces the model to make full use of more discriminative
features. This is achieved by randomly masking out a whole correlated channel group which
only contributes to one visual evidence for the final prediction.

We initially developed CDB as an attention-based approach that specifically removes the
most important channel groups from the input feature. This attempt is similar to the idea in
ADL [5], in that we develop an importance branch and a dropout branch, which are selected
stochastically and work adversarially to highlight important channels and remove maximally
activated group. The attention-guided CDB achieves limited improvements compared with
random selection, because the random one may yield more occlusion combinations, and are
more likely to destruct co-adaptions between channels. We focus on Channel DropBlock
with random selection for all of our experiments.

Compared with MA-CNN [32] that clusters channels on the final feature map and settles
individual classifier for each cluster, the proposed CDB is designed as a regularization block
which is more flexible to be applied on any convolutional feature maps of classification
model.

Compared with SpatialDropout [27], CDB emphasizes that channels are correlated with
each other, visual evidence can still be sent to the next layer with individually dropout.

Compared with DropBlock [12] that drops correlated units spatially, the proposed CDB
calculates correlations channel-wise and can captures more precise visual evidences with
two unique correlation metrics we provide.

3.2 Channel DropBlock Algorithm

Algorithm | and Figure 1 show the main procedure of the Channel DropBlock. Specifically,
the input of CDB is a convolutional feature map F € RE*#*W where C is the number of
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Figure 1: [lustration of the CDB block. The channel correlation matrix is generated based on
different metrics. Then one channel and its corresponding visual group is randomly dropped
by applying the drop mask to the input feature map.

Algorithm 1 Training of Channel DropBlock.
Input: Input feature map F; Drop rate 7;
1: Calculate correlation matrix M
2: Randomly select a channel in M with equal probabilities and generate drop mask My
with top Y most correlated channels setting as zero
3: Apply the mask: F =F x M,
4: Normalize the features: F = ﬁ,F
5: return F;

channels, H and W denote to the height and width of F, respectively. We obtain the corre-
lation matrix M € RE*C by calculating pairwise similarities between each feature channel
(described in Section 3.3). To obtain the drop mask, CDB first randomly selects one line in
M, and produces the drop mask M, € R€ by setting top 7 most correlated elements as 0 and
other elements as 1. The drop mask is then applied to the input feature map by broadcast-
ing multiplication. In this way, features in a contiguous group are dropped together, which
hides one certain discriminative pattern and encourages the model to learn other discrimi-
native information that can also contribute to the final prediction. Similar to dropout, the
proposed CDB only works in the training stage with normalization, no additional parameters
and calculation costs are involved in the inference time.

CDB has two main hyperparameters: insert_pos and y. The parameter insert_pos in-

dicates where the CDB is applied, and Yy controls the number of channels in the dropped
group.
Influence of insert_pos. As the structure of CNN getting deeper, the neurons in high layers
are strongly respond to entire images and rich in semantics, but inevitably lose detailed
information from small discriminative regions. With different setting of insert_pos, the
information of the input feature map differs. In our experiments, we settle an ablation study
(described in Table 2) applying the proposed CDB block on varying layers in CNN.

Setting the value of y. Another hyperparameter involves when we aggregate correlated
channels into groups. Here we define Y as the percentage of channels in a dropped group
when conducting CDB. In practice, different correlation metrics will result in different clus-
ter numbers and the number of channels in each cluster, so the setting of ¥ is distinct from
the correlation metrics we choose.
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Figure 2: An illustration of channel correlation metrics: (a) max activation that groups chan-
nels into discriminative local region, and (b) bilinear pooling metric that groups channels
based on visual pattern.

3.3 Channel Correlation

Ideally, a correlation metric should be symmetric and can cluster feature channels into dif-
ferent visual pattern groups. In this paper we examine two candidate metrics to evaluate the
correlation between channels.

Max activation metric. In order to distribute feature channels into groups, an intuitive idea
is to divide them into different focused local regions. Inspired by MA-CNN [32], we treat
channels with close maximal activation position as a pattern group. We conduct 3 x 3 average
pooling to smooth feature maps and use the argmax(-) operation to get the coordinates of the
peak response in each feature channel, which turns the input feature map F into a position
matrix P € R*2 given by:

P:[(t)gvt;)v(t)%vtf)’"'v(tc t?)}, ()

where ., t}", are the coordinates of the peak response of the i channel. We then compute pair-
wise Euclidean distance between each activation position and obtain the correlation matrix
M:

M(i, j) = () — (1)) | @
In this metric, feature channels are grouped into discriminative local regions. Further more,
it is a parameter-free metric where no learnable parameters are involved. Figure 2 (a) shows
the procedure of the max activation metric.
Bilinear pooling metric. We also examine a correlation metric based on the bilinear pooling
operator [18], which calculates normalized cosine distance to measure channel similarities.
In this approach, the input feature map F is reshaped into a matrix with a shape of C x HW,
which is denoted as X € RE*#W Then the reshaped matrix is fed through a normalization
function followed by a bilinear pooling operator to get spatial relationship among channels:

M« NX)N(XT), 3)

where AV () indicates the L2 normalization function over the second dimension of the matrix.
XXT is the homogeneous bilinear feature. Compared with the max activation metric, each
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channel group in this metric indicates one specific visual pattern. Similarly, no trainable
parameters are involved in both the training phase and the inference phase. Figure 2 (b)
shows the procedure of the bilinear pooling metric.

4 Experimental Results and Discussions

Datasets. We evaluate the performance of the proposed method on three fine-grained bench-
mark datasets: CUB-200-2011 (CUB) [28], Stanford-Cars (CAR) [15], and FGVC-Aircraft
(AIR) [20], together with two classical image classification benchmark datasets: CIFAR-10
(C10) [16] and CIFAR-100 (C100) [16].

Implementation details. We use VGG19 [25] and ResNet50 [13] as backbone networks,
and replace the origin classifier with an average pooling layer followed by a fully connected
layer. We apply CDB with v set to 20% for the max activation metric and 5% for the bilinear
pooling metric. We use open-source PyTorch [21] as our code-base, and train all the models
on a single GTX 1080Ti GPU. Optimization is performed using Stochastic Gradient Descent
with momentum of 0.9 and weight decay of 5e-4.

For the FGVC datasets, the input images are resized to 448 x 448. All of the models are
pretrained on ImageNet and fine tuned for another 100 epochs with batches of 16 images.
The initial learning rate is set to 0.001 and drops to 0 using cosine anneal schedule [19]. For
the C10/C100 datasets, the input images are first zero-padded with 4 pixels on each side,
then randomly cropped into 32 x 32. Models are trained from scratch for 200 epochs with
each batch containing 128 images. The initial learning rate is set to 0.1 and drops to 0 using
cosine anneal schedule.

4.1 Fine-grained Image Classification

The comparisons of our method with other state-of-the-art methods on three benchmark
FGVC datasets are presented in Table 1. The first block lists recent works for weakly super-
vised FGVC.

Apply to baseline networks. The second block in Table 1 summarizes the performance of
CDB on two baseline networks and three benchmark FGVC datasets. For the CUB dataset
we follow the enhanced network setting and augmentation strategy in PMG [8], in which the
classifier is combined with two fully connected layers, the input images are resize to a size
of 550 x 550, and randomly cropped to 448 x 448 in the training time, centrally cropped to
448 x 448 in the inference time.

We find that CDB with two correlation metrics outperforms the baselines on all FGVC

datasets by a clear margin. Since FGVC focuses on differentiating sub-categories that share
close similarities, it requires much more fine-grained visual evidence for prediction. The
CDB block drops one entire visual group each iteration that induces model to distil other
discriminative parts, thus being extremely suitable for this task.
Apply to SOTA methods. The third block in Table 1 shows the results applying CDB on
existing FGVC methods. We choose BCNN and PMG as benchmark models, the former one
is a classical feature encoding-based approach which encode higher order information on
features, the latter one is a SOTA approach which adopt a progressive training strategy that
fuses multi-granularity features. CDB further improves the accuracies for a relative margin
of 0.5%, 0.6% ,1.4% on BCNN, and 0.3%, 0.3%, 0.4% on PMG.
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Method Backbone CUB (%) CAR (%) AIR (%)
FT VGGNet [25] VGG19 85.8 84.6 85.8
FT ResNet [13] ResNet50 86.6 92.3 90.8
BCNN [18] VGG16 84.1 91.3 89.0
MA-CNN [32] VGGI19 86.5 92.8 89.9
MC-Loss [3] ResNet50 87.3 93.7 92.6
CIN [10] ResNet50 87.5 94.1 92.8
API-Net [33] ResNet50 87.7 94.8 93.0
DCL [4] ResNet50 87.8 94.5 93.0
PMG [8] ResNet50 89.6 95.1 93.4
CDB-MA (VGGNet) VGG19 86.2 87.0 87.8
CDB-BP (VGGNet) VGG19 86.1 86.6 85.9
CDB-MA (ResNet) ResNet50 86.9 93.5 91.9
CDB-BP (ResNet) ResNet50 87.2 93.2 91.5
CDB-MA (BCNN) VGG16 84.6 91.9 90.4
CDB-BP (BCNN) VGGI16 84.5 91.7 90.0
CDB-MA (PMG) ResNet50 89.9 95.4 93.7
CDB-BP (PMG) ResNet50 89.7 95.4 93.8

Table 1: Comparison results on CUB-200-2011, Stanford Cars, and FGVC-Aircraft datasets.
CDB is applied on features from conv2 and conv3, with 7y set to 20% for the max activation
metric and 5% for the bilinear pooling metric. CDB-MA and CDB-BP indicate CDB with
the max activation metric and the bilinear pooling metric, respectively. The best and second-
best results are marked respectively in bold and underlined fonts.

4.2 Ablation study

We conduct ablation studies to analyze the influence of insert position, and compare CDB
with other regularization techniques. We also settle experiments analyzing the performance
of CDB on traditional image classification tasks. The following experiments are all con-
ducted on the Stanford-Cars dataset with ResNet50 as backbone if not particularly men-
tioned.

Where to apply CDB. In order to judge the influence of insert_pos, we apply CDB on vari-
ant layers in CNN. Specifically, we define v1 to v5 indicating the last layer of convl1 to conv5
in ResNet50, and pooll to pool5 in VGG19, indicating feature positions with multi-level
information from low-level details to high-level semantics, and apply CDB with different
insert_pos alone or their combinations. The experimental results in Table 2 suggest that
with the insert_pos on both v2&v3 gives the best results. This is because the middle fea-
tures in v2 and v3 contains both high-level semantics and low-level details, which contributes
to the FGVC task.

Metric vl (%) Vv2(%) V3 (%) v4(%) V5(%) v2&v3 (%)
MA 929 93.2 93.2 92.6 93.0 93.5
BP 93.1 92.7 93.0 92.8 929 93.2

Table 2: Ablation study on insert position.
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Comparison with other regularization techniques. We compare the proposed CDB with
different dropout based regularization techniques including dropout [26], cutout [6], Spa-
tialDropout [27], and DropBlock [12]. We conduct experiments on the FGVC datasets with
ResNet50 as backbone, and train the model with different settings and report the best results.
As shown in Table 3, CDB achieves the best accuracy of 87.2%, 93.5%, and 91.9% on three
FGVC benchmark datasets, respectively, which confirms its significance.

Method insert_pos CUB (%) CAR (%) AIR (%)
Baseline — 86.6 92.3 90.9
Dropout (p=0.2) [26] v2 86.9 92.7 91.7
SpatialDropout (p=0.1) [27] v2 86.9 92.8 91.5
Cutout [6] — 87.1 92.7 90.9
DropBlock (p=0.25) [12] v2&v3 86.8 93.1 90.9
CDB-MA v2&v3 86.9 93.5 91.9
CDB-BP v2&v3 87.2 93.2 91.5

Table 3: Comparison results with different regularization techniques. p indicates the drop
probability of each method.

Comparison between different correlation metrics. It can be found that both the proposed
max activation metric and the bilinear pooling metric outperform the baseline settings. How-
ever, it is not consistent on different datasets. To give more quantitative insight into this
trend, we take all the experimental results of each metric as trails and use the non-parametric
Wilcoxon Signed-Rank Test [23] to quantify their differences. The returned p-values equals
0.025 demonstrates a clear distribution difference between them. To this end, we give both
the two metrics as candidates to better deal with varying real-world cases.

Traditional Image Classification. We conduct identical experiments on CIFAR-10 and
CIFAR-100 dataset to evaluate the performance of CDB on traditional image classification
task. CIFAR-10 has 10 distinct classes, such as cat, dog, car, and boat. CIFAR-100 contains
100 classes, but requires much more fine-grained recognition compared to CIFAR-10 as
some classes are very visually similar. For example, it contains five different classes of trees:
maple, oak, palm, pine, and willow.

Method C10 (%) C100 (%)
ResNet50 95.1 78.1
ResNet50 + CDB-MA 954 79.4
ResNet50 + CDB-BP 95.5 78.5
VGG19 93.7 71.8
VGG19 + CDB-MA 93.7 72.5
VGG19 + CDB-BP 93.9 73.4

Table 4: Comparison results on CIFAR-10 and CIFAR-100 datasets.

Table 4 summarize the performance on traditional image classification. It can be ob-
served that the improvement in C10 is limited while in C100 significant. As C100 requires
much more fine-grained recognition compared to C10, it demonstrate that CDB is more ef-
fective in fine-grained tasks.
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Input image

Baseline method

cbB
(Max activation)

CDB
(Bilinear pooling)

Figure 3: Visualization of the Gradient-weighted Class Activation Map (Grad-CAM) [22] on
FGVC samples with ResNet50 as the backbone model. The model trained with CDB tends
to focus on multiple discriminative patterns.

4.3 Visualization

In order to draw insights of the proposed method, we apply Grad-CAM [22] to visualize
class activations of fine-grained samples on ResNet50 trained with and without CDB. We
select test images from CUB-200-2011, Stanford-Cars, and FGVC-Aircraft, respectively.
The second row of Figure 3 shows the class activations of the baseline model and the third
and fourth rows are visualization of the proposed method with two proposed correlation
metrics. Consistent observations demonstrate that models trained with CDB not only dilate
activations of the baseline model, but also distil other visual patterns to improve feature
representations.

5 Conclusion

In this paper we introduce a novel regularization technique, Channel DropBlock (CDB),
which destructs feature channels from co-adaptation by clustering channels with correlation
metrics and dropping a correlated channel group randomly during training. We demonstrate
that CDB is more lightweight and effective to enhance feature representations and distill
multiple discriminative patterns than existing FGVC methods. We conduct experiments on
three widely tested fine-grained datasets, which confirm the superiority of our method. Two
particularly interesting directions for future work include exploring the method that group
channels with adaptive size, and measuring channel correlations with integrated metrics.
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