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Abstract
A big, diverse and balanced training data is the key to the success of deep neural

network training. However, existing publicly available datasets used in facial landmark
localization are usually much smaller than those for other computer vision tasks. To
mitigate this issue, this paper presents a novel Separable Batch Normalization (SepBN)
method. Different from the classical BN layer, the proposed SepBN module learns
multiple sets of mapping parameters to adaptively scale and shift the normalized feature
maps via a feed-forward attention mechanism. The channels of an input tensor are divided
into several groups and the different mapping parameter combinations are calculated for
each group according to the attention weights to improve the parameter utilization. The
experimental results obtained on several well-known benchmarking datasets demonstrate
the effectiveness and merits of the proposed method.

1 Introduction
The task of facial landmark localization is to predict the position of a set of pre-defined facial
key points. It plays a crucial role in many automatic face analysis systems, including face
recognition [8, 21, 29], face morphing [12], expression recognition [18, 33, 44], 3D face
fitting [11, 47], etc. The rapid development of this research area in the recent years produced
a variety of effective neural network architectures [35, 41] and loss functions [9, 31, 34],
which have been instrumental in achieving impressive landmarking results. The reported per-
formance of these deep Convolutional Neural Network (CNN-) based methods demonstrates
their superiority over traditional approaches such as the Active Shape Model (ASM) [5],
Active Appearance Model (AAM) [6] and cascaded regression [37, 38], especially when
handling unconstrained faces in the wild.

In unconstrained scenarios, the key challenge for facial landmark localization is posed
by facial appearance variations, including pose, illumination, expression, occlusion, motion
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Figure 1: The proposed SepBN module with K sets of parameters. The input feature map X
is normalized like the classical BN layer to obtain X̂ that is then divided into G groups. The
multiple sets of mapping parameters are weighted and summed using the attention weights to
produce group-specific parameters for the final mapping operation from X̂ to Y . GAP stands
for the Global Adaptive Pooling operation.

blur, low image resolution, etc. All these influencing factors should be taken into account
but this is impeded by the difficulty of collecting samples with diverse appearance variations,
leading to a severe data imbalance distribution problem on specific attributes. In addition to
that, the datasets available for the facial landmarking research are usually much smaller than
those available for other mainstream computer vision tasks. A worse case is the COFW [3]
dataset that has only 1,345 training samples. Such a small dataset leads to the inevitable data
imbalance issue in landmark localization. As a result, the trained network may not be able to
generalize well for unseen samples whose types occur rarely in the training set.

Inspired by BRN [13], suggesting that the learned parameters of BN [14] reflect the
distribution domain of a dataset, we try to deal with the aforementioned issues by performing
a Separable Batch Normalization (SepBN). The classical BN layer treats all the samples of a
dataset equally, leading to a potential bias and overfitting of a trained network. The difference
between SepBN and BRN is that, instead of re-tuning the parameters in the validation phase,
SepBN directly learns multiple sets of parameters during network training.

The key innovation of the proposed SepBN module is to adaptively integrate K separable
BN branches in an efficient fashion to facilitate the joint learning of data from different
domains. These branches share the same normalization operation but maintain different
mapping parameters. In the inference stage, the input tensor will be normalized first. Then
the normalized tensor is divided into G groups across the channel dimension. The G groups
of mapping parameters are produced via a novel attention mechanism that only depends on
the input tensor to scale and shift the corresponding groups, as depicted in Figure 1. The
SepBN module endows the original BN layer with a non-linear mapping capability to map the
normalized feature map dynamically using the information obtained by the attention block.
More importantly, the proposed SepBN module implicitly learns the mapping function for
different types of samples and eases the small-sample-size problem posed by an unbalanced
training data, which is shown in the experimental section.

A comprehensive validation of the proposed SepBN module on both simple and advanced
network architectures, including our Vanilla CNN, MobileNet [26] and ResNeXt [40], are con-
ducted. The results obtained on several benchmarking datasets demonstrate the effectiveness
of the proposed method in different settings.
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2 Related Work

Facial landmark localization has been studied for decades, resulting in a variety of well-
known approaches, from traditional methods like ASM [5], AAM [6] and cascaded regression,
to modern deep-learning-based methods [17, 34, 35, 41, 45].

Up to now, two main deep-learning-based methods have been developed: heatmap-
based [34, 35, 41] and coordinate-regression-based methods [9]. These approaches take a
facial image as input, and output the facial landmarks in two different ways. A heatmap-based
method outputs 2D heatmaps, in which the pair of coordinates with the highest response value
corresponds to the landmark position. In contrast, a coordinate-regression-based method
solves the landmarking problem by predicting the landmark coordinates directly.

The heatmap-based facial landmark localization methods exploit the beneficial properties
of the U-Net like networks [25], such as the Hourglass network [23] and densely connected
U-Nets (DU-Net) [30]. However, heatmap-based methods suffer from the problem of quanti-
zation errors. Additionally, the training of such a network involves more hyper-parameters
and its success often requires the use of special tricks.

In our work, we focus on the coordinate-regression-based method and propose a new
SepBN module to enhance the network learning capability. It should be highlighted that, to
the best of our knowledge, this is the first time that a new BN module has been developed for
the facial landmark localization task.

The well-known Batch Normalization method alleviates the convergence problems in
deep neural network training effectively [14].

In recent years, more advanced BN methods have been proposed, such as layer normaliza-
tion [1], instance normalization [32], group normalization [39], and others [24, 27, 42]. In
general, the existing normalization layers share the same processing pattern, i.e., normaliza-
tion and mapping. Our proposed SepBN module normalizes the features in the (N, H, W )
dimension just like the classical BN layer. The key difference between SepBN and other
normalization modules lies in the mapping operation, as shown in Figure 1. Compared to other
modules that apply parallelized BN layers such as DSBN [4], which requires an additional
effort to design each branch and lack flexibility, or such as SBN [43], which just involves a
normalization step, our SepBN module isolates the mapping operation and can therefore be
easily incorporated into any network to learn appropriate representations in an end-to-end
fashion. Recently, a new normalization method, namely Attentive Normalization (AN) [19]
(Instance Enhancement Batch Normalization [20] is also similar to AN), has been proposed
to integrate feature normalization and feature attention into a single process. However, as
will be shown in the experimental section, AN provides a limited performance boost in facial
landmark localization, while requiring significantly more computation. We have performed
many experiments to clarify the applicable scenarios of SepBN, compared to AN.

3 Separable Batch Normalization

3.1 Brute-Force SepBN

The classical BN layer consists of two key computational steps:

X̂c =
Xc−E(Xc)√

Var(Xc)
, Yc = γcX̂c +βc, (1)
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Figure 2: Mean cosine similarity of the running mean, running var, scale and shift learned by
the brute-force SepBN modules. Since we apply the brute-force SepBN modules with three
separate BN layers, the mean similarity is calculated as in Equation 2.

where Xc ∈ RN×H×W is one patch of the input tensor X ∈ RN×C×H×W , E() and Var() cal-
culates the mean and variance within the patch. The running mean and variance of the
corresponding patch will be updated in a moving average manner. In order to preserve the
linearity of BN, the normalized patch is scaled and shifted by γc and βc in the second equation.
Two key components are present in a BN layer: tracking parameters (running mean and
variance, updated in the forward phase) and mapping parameters (scale and shift, updated by
the network backward propagation).

We first delve into the key question, namely whether it is necessary to separate both
normalization and mapping operations as in DSBN [4]. To answer this question, we design a
brute-force SepBN module so as to deal with the data from different domains separately.

In the brute-force SepBN module, several BN layers are linked to track the mean and
variance of the data from specific domains in parallel. Specifically, different types of data are
concatenated along the batch dimension. When passing through a brute-force SepBN module,
the feature maps from the same domain are gathered and directed to pass through a BN layer
specifically set up for this domain. Consequently, the running mean and variance values of
different domains can be tracked separately. Hence, potential unhelpful interactions among
data from different domains are prevented and inaccuracy of tracking parameter estimation is
mitigated. The mapping parameters are domain-specific as well.

We train a Vanilla CNN network (following [9]), equipped with the brute-force SepBN
module after each convolution layer, on the AFLW dataset [3]. The input is an RGB image
I of size 128×128×3. The Vanilla CNN predicts the landmark coordinate vector vpred =
[x1,y1,x2,y2, . . . ,xL,yL]

T ∈ R2L directly, where L is the number of landmarks. We apply
brute-force SepBN modules with three branches and split the AFLW training set into three
subsets: near-frontal, left profile and right profile, using the method mentioned in [9]. The
training samples of a specific subset will only go through the corresponding BN layer in
the brute-force SepBN. To determine whether it is necessary to separate the normalization
and mapping steps, we calculate the average similarity of the learned tracking and mapping
parameters of the three BN layers by:

S = [s(p1,p2)+ s(p1,p3)+ s(p2,p3)]/3 (2)

where s() is the cosine similarity of two given vectors, pk denotes the learned tracking
parameters (including running mean and variance) or mapping parameters (including scale
and shift) of the kth BN layer. Since we use 6 brute-force SepBN modules for the Vanilla
CNN (1 for each convolution block), 6×4 similarities are calculated as shown in Figure 2.
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Surprisingly, we can see that the tracking parameters of all the three BN branches in any
SepBN module are highly similar to each other throughout the whole network, indicating that
separating the normalization step is unnecessary. In contrast, the learned mapping parameters
differ more significantly. Based on the above observation, we conclude that the normalization
operations of different BN layers embedded in a brute-force SepBN module can be merged,
while different sets of mapping operations should be kept separately.

3.2 Automated SepBN with Group Attention
In this part, we focus on the automatic selection of SepBN branches and end-to-end network
training without a prior dataset partitioning. To be more specific, the proposed SepBN module
maintains K sets of mapping parameters γ ∈ RK×C and β ∈ RK×C. The purpose is to allow
the network to produce the most suitable mapping parameters for each sample adaptively.

The simplest choice is to use a squeeze-excite block like Attentive Normalization (AN) [19]
to generate attention weights λ ∈ RN×K×1×1 for the given K sets of mapping parameters:

softmax(Fex (Fsq (X ;θsq) ;θex)) = λ ∈ RN×K×1×1, (3)

where Fsq is the squeeze operation with the reduction rate r, involving a global average pooling
layer, a linear transformation layer and a non-linear activation function. Fex is the excitation
function including a linear transformation layer and a Sigmoid layer. The output of Fsq and
Fex is denoted as Xsq ∈ RN×C

r ×1×1 and Xex ∈ RN×K×1×1. θsq and θex are the corresponding
model parameters.

Next, the re-calibrated mapping parameters are calculated by:

γ̂n =
K

∑
k=1

λn,kγk, β̂n =
K

∑
k=1

λn,kβk, (4)

where λn,k is the attention weight of the kth mapping parameters, (i.e. γk and βk), of the nth
sample. γ̂n and β̂n are the instance-specific mapping parameters used for the nth sample. Note
that the attention block is used to estimate the probability of the feature X being mapped by
the kth mapping parameters rather than being applied directly to X .

However, the above method ignores two important facts. First, attention is just used to
assign different weights to different sets of parameters, which means that only by applying a
large enough K can the module learn diverse mapping parameters. Second, the above method
makes each attention weight to act on one entire set of mapping parameters. This often gives
rise to a sub-optimal situation, where some valuable mapping parameters are inactivated due
to the overall lower attention weight and vice versa.

To solve this problem, we introduce a channel grouping mechanism into our SepBN
module. By considering that the mapping parameters are used to scale and shift a tensor
along the channel dimension, each set of the mapping parameters is divided into G groups
(channels of the normalized tensor X̂ will also be grouped in the same way). Then the
attention block generates attention weights π ∈ RN×G×K for each group of channels in each
set of mapping parameters for each sample. To obtain such attention weights, a different
attention mechanism is developed as shown in Figure 1. To be specific, the input feature
X ∈ RN×C×H×W is adaptively pooled (max pooling) into Xamp ∈ RN×C×T×T . The global
average pooling is not chosen since we hope that more feature information can be retained by
setting T > 1. Afterwards, Xamp will pass through a 1×1 convolution layer and a new tensor
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Figure 3: The bottleneck block used in ResNeXt-50 (left) and MobileNetV2 (right). The
experimental results empirically show that replacing the BN3 (boxes with purple border) with
the proposed SepBN module maximises the performance.

is output in the shape of N×G×T ×T . Then the new tensor is flattened and used as the input
of a Multi-Layer Perceptron module, followed by a temperature-controlled softmax function.
At last, using the generated attention weights, the appropriate scale and shift parameters for
each group of channels of each sample can be obtained:

γ̂n,g =
K

∑
k=1

πn,g,kγk, β̂n,g =
K

∑
k=1

πn,g,kβk,

s.t. 0≤ πn,g,k ≤ 1,
K

∑
k=1

πn,g,k = 1

(5)

where πn,g,k is the attention weight indicating the probability that the gth channel group of the
nth sample using the kth set of mapping parameters (i.e. γk and βk), γ̂n,g ∈ RM and β̂n,g ∈ RM

are the instance-and-group-specific mapping parameters used for the gth group of channels
of the nth sample, and M is the number of channels for a group. The mapping operation
computes:

Yn,g = γ̂n,gX̂n,g + β̂n,g. (6)

Through group division, rich combinations of mapping parameters can be obtained even
when a smaller K is used, making the proposed SepBN module both lightweight and effective.

In contrast to the AN module equipped with group normalization, the proposed SepBN
layer learns adaptive weights for different groups of channels and shows more efficient
parameter utilization as shown in Table. 1 of the experimental section.

In fact, SepBN can be considered as an implicit model ensemble. By integrating multiple
sets of mapping parameters, and by decorrelating feature channels, the tendency of model
over-fitting can be diminished, especially when training a deep neural network on small-scale
data.

3.3 Integration with A Modern Network
As SepBN is designed as a generic module, we need to verify its compatibility with modern
network architectures, for example, ResNeXt-50 and MobileNetV2. We empirically apply
SepBN on ResNeXt-50 and MobileNetV2 by replacing the BN3 layer in the residual unit
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Table 1: A comparison of SepBN and AN on AFLW-Full using NME(%). K signifies the
number of branches. The lower right corner of the NME value indicates the number of
parameters of the corresponding model.

K 2 3 5 10 20

MobileNetV2 (AN [19]) 1.678.84M 1.658.84M 1.658.86M 1.618.89M 1.608.96M
MobileNetV2 (SepBN) 1.598.83M 1.578.84M 1.578.85M 1.588.87M 1.578.95M

Table 2: A comparison of SepBN and classical BN on AFLW-Full using NME (%). Different
proportions of training images are randomly selected and used for network training.

Method 100% 50% 20% 10% 5%

MobileNetV2 (BN) 1.66 1.79 1.86 1.98 2.13
MobileNetV2 (SepBN) 1.57 1.64 1.72 1.76 1.81

with the proposed SepBN module, as shown in Figure 3 (see the supplementary material
for related experiments). Since the convolution layer does not have a lot of parameters,
theoretically, we do not have to use the SepBN module after each convolution layer like
dropout [28]. Another reason is that SepBN is used to identify and remap the features from
different implicit domains, so it requires the network to extract useful semantic features by
traditional convolutional layers followed by BN. By the way, considering that not all the
original BNs are replaced by SepBN, the model size and computation complexity of the
modified network do not increase significantly.

4 Experiments

4.1 Datasets and Implementation Details
We evaluated the proposed method on three datasets: COFW [3], AFLW [15] and WFLW [35].
The COFW dataset has 1,345 images for training and 507 images for test. COFW was
designed to test the robustness of a facial landmark localization algorithm for faces with
occlusions so most of the faces in COFW are occluded. AFLW consists of 24,386 faces with
large pose variations. The AFLW dataset has two benchmarking protocols: AFLW-Full and
AFLW-Frontal, both containing 20,000 training images. AFLW-Full uses all the remaining
4,386 images for test but AFLW-Frontal only uses 1,314 near-frontal faces for test. The
WFLW dataset is a newly collected dataset that contains 10,000 faces (7,500 for training and
2,500 for test) with 98 facial landmarks. The test set is divided into several subsets to verify
the robustness of an algorithm for specific appearance variation types.

We used the Normalized Mean Error (NME) and failure rate (%) as our evaluation
metric, which is calculated by NME = 1

L ∑
L
j=1
∥∥p j−g j

∥∥
2 /d, where p j and g j denote the jth

predicted and ground-truth landmarks, d is a normalization term. Failure rate is defined as
the proportion of test samples that have more than 0.1 landmark detection error in terms of
NME. For AFLW, we used the bounding box size as the normalization term. For COFW and
WFLW, we followed [35] and used the inter-ocular distance.

All the face images were cropped according to the official bounding box and resized to
128×128. The proposed SepBN module with K = 3 separate routes was used to replace the
classical BN layer. Additionally, T = 3 and G = 4 were found to be the most suitable setting
for our task. Due to space limitation, we report all the training details and experiment settings
in our supplementary material. The code will be made publicly available.
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Table 3: A comparison with the SOTA methods on COFW, in terms of NME and failure rate.
NME (×10−2) Failure Rate (×10−2)

RSR [7] 5.63 -
LAB [35] 3.92 0.39
ODN [46] 5.30 -
AWing [34] 5.30 0.99
RWing [10] 4.80 3.16
Vanilla CNN (SepBN) 4.03 0.39

Table 4: A comparison with the SOTA methods on AFLW, in terms of NME (×10−2).
AFLW-Full AFLW-Frontal

LAB [35] 1.85 1.62
ODN [46] 1.63 1.38
SA [22] 1.60 -
LUVLi [17] 2.30 -
3FabRec [2] 1.84 1.59
Vanilla CNN (SepBN) 1.55 1.39

4.2 Effect of SepBN

We performed a number of experiments on AFLW to validate the proposed method and
to optimize the configuration. For all the experiments, we use the same hyper-parameters
mentioned earlier, except for those explicitely aimed at the settings’ optimization.

SepBN vs. AN: SepBN shares similar structure with AN, while SepBN is more general
and efficient. We compare the performance of SepBN and AN on AFLW using MobileNetV2
in Table 1. Once the branch number K of AN reaches 20, the performance of AN becomes
comparable with the performance of SepBN (K = 2). This demonstrates the advantage of the
SepBN module, namely its more efficient parameter utilization achieved by channel grouping.

Few-Shot Training: SepBN is designed to alleviate the problems in the face alignment
task caused by small datasets. In order to demonstrate this point, we use part of the AFLW
training set for network training and verify its performance on the complete test set. The
results are shown in Table 2. As the number of training images decreases, the performance of
the network equipped with SepBN is always better than the network using BN. This illustrates
the ability of SepBN to maintain the network performance when the number of training
samples is small.

Due to page limitation, more experimental results are reported in the supplementary
material.

4.3 Comparison to The State of The Art

In this section, we first compare our Vanilla CNN equipped with a SepBN module to the
state-of-the-art algorithms. After that, we gauge the performance improvement achieved by
SepBN for datasets of different sizes and networks of different complexity. In this way, we
can delineate the applicability of the SepBN module.

COFW: We compare our method with the state-of-the-art algorithms on COFW using
NME and the failure rate in Table 3. ‘Vanilla CNN (SepBN)’ replaces the BN layer in Vanilla
CNN with the proposed SepBN module except the last one. It clearly outperform other
methods. The failure rate is greatly reduced.

AFLW: Table 4 reports the evaluation results obtained on the AFLW dataset. ‘Vanilla
CNN (SepBN)’ achieves a lower error rate than other methods. The improvement on

Citation
Citation
{Cui, Xiao, Niu, Yan, and Zheng} 2018

Citation
Citation
{Wu, Qian, Yang, Wang, Cai, and Zhou} 2018

Citation
Citation
{Zhu, Shi, Zheng, and Sadiq} 2019

Citation
Citation
{Wang, Bo, and Li} 2019

Citation
Citation
{Feng, Kittler, Awais, and Wu} 2019

Citation
Citation
{Wu, Qian, Yang, Wang, Cai, and Zhou} 2018

Citation
Citation
{Zhu, Shi, Zheng, and Sadiq} 2019

Citation
Citation
{Liu, Zhu, Hu, Guo, Tang, Lei, Robertson, and Wang} 2019

Citation
Citation
{Kumar, Marks, Mou, Wang, Jones, Cherian, Koike-Akino, Liu, and Feng} 2020

Citation
Citation
{Browatzki and Wallraven} 2020



SHUANGPING, ZHENHUA, WANKOU, JOSEF: SEPARABLE BATCH NORMALIZATION 9

Table 5: A comparison with the SOTA methods on WFLW, in terms of NME (×10−2).
All Pose Expr. Illu. Mu. Occu. Blur

DVLN [36] 6.08 11.54 6.78 5.73 5.98 7.33 6.88
LAB [35] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
RWing [10] 5.60 9.79 6.16 5.54 6.65 7.05 6.41
3FabRec [2] 5.62 10.23 6.09 5.55 5.68 6.92 6.38
LUVLi [17] 4.36 - - - - - -
Vanilla CNN (SepBN) 5.48 9.97 5.89 5.36 5.55 6.83 6.25

Table 6: The results obtained on COFW, AFLW-Full and WFLW using different configurations.
↓ indicate the change of NME (×10−2) compared with the corresponding baseline network.

COFW WFLW-test AFLW-Full

Vanilla CNN (BN) 4.07 5.70 1.65
Vanilla CNN (SepBN) 4.03↓0.04 5.48↓0.22 1.55↓0.10

MobileNetV2 (BN) 5.07 6.18 1.66
MobileNetV2 (SepBN) 3.96↓1.11 5.31↓0.87 1.57↓0.09

ResNeXt-50 (BN) 3.95 4.90 1.50
ResNeXt-50 (SepBN) 3.51↓0.44 4.85↓0.05 1.46↓0.04

AFLW_Full is more obvious than that on AFLW_Frontal, which proves that the network
using SepBN gains higher localization accuracy for non-frontal images than before.

WFLW: The evaluation results obtained on the full test set and each subset are shown
in Table 5. Although the backbone network architecture (Vanilla CNN) is very simple, after
applying the SepBN module, ‘Vanilla CNN (SepBN)’ achieves a performance comparable to
most advanced methods.

Applicable Scenarios: We evaluate our Vanilla CNN, MobileNetV2 and ResNeXt-50
equipped with BN and SepBN on COFW, WFLW and AFLW in Table 6. The layout of the
table is carefully designed. The size of the three datasets COFW, AFLW, and WFLW increase
sequentially (1345→ 7500→ 20000). The complexity of the three networks Vanilla CNN,
MobileNetV2, and ResNeXt-50 is also different. In particular, Vanilla CNN is simple and
straightforward, but it is large. MobileNetV2 is lightweight, yet compact. ResNeXt-50 is
large and well-designed. Compared with our Vanilla CNN, MobileNetV2 and ResNeXt-50
are generally more powerful.

The results are shown in Table 6. ‘Vanilla CNN (BN)’, ‘MobileNetV2 (BN)’ and
‘ResNeXt-50 (BN)’ are the baseline networks equipped with classical BN layers. Then
the SepBN modules are used to replace the original BN3 in all the Bottleneck blocks, forming
‘MobileNetV2 (SepBN)’ and ‘ResNeXt-50 (SepBN)’.

We first examine the performance of our Vanilla CNN. As the size of dataset continues
to grow, the performance improvement brought by SepBN is more significant (COFW: 0.04
< 0.44 < 1.11, WFLW: 0.05 < 0.22 < 0.87, AFLW: 0.04 < 0.09 < 0.10). This shows that
even for a network with a simple design, a performance improvement is achievable by using
our SepBN module. Note, the improvement will become more prominent when more data
becomes available. It is clear that, compared with classic BN layer, our SepBN module can
make better use of big data in the case of simple network.

For advanced neural networks, the proposed SepBN module improves the performance
of both ‘MobileNetV2 (BN)’ and ‘ResNeXt-50 (BN)’ on different datasets. The rate of
improvement slows down as the dataset grows larger. The reduced error rate exhibited by the
lightweight MobileNetV2 network equipped with SepBN is quite significant. The test set
results achieved by ‘MobileNetV2 (SepBN)’ are even better than those achieved by the Vanilla
CNN in the same configuration on COFW and WFLW. Even the most powerful network,
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Table 7: A comparison of SepBN, AN and classical BN on CIFAR-100. Different proportions
of training images are randomly selected for network training.

Method 100% 50% 25% 20%

MobileNetV2 (BN) 67.7 61.49 52.95 47.54
MobileNetV2 (AN) 68.21 61.79 53.05 47.41

MobileNetV2 (SepBN) 68.44 62.22 53.20 47.73

ResNeXt-50, can benefit from the SepBN module, especially on a small dataset, while the
improvement becomes negligible on larger datasets.

The above experiments indicate two clean use cases for SepBN. One scenario is when the
network is weak but the data is sufficient, e.g., ‘Vanilla CNN (SepBN)’ on AFLW. The other
one is when the network is powerful (like ‘MobileNetV2’ and ‘ResNeXt-50’) but the dataset
size is small, e.g., ‘MobileNetV2 (SepBN)’ on COFW. This reveals the dependence of the
SepBN module on feature diversity.

4.4 Results on CIFAR-100

In order to further demonstrate the versatility and effectiveness of the proposed SepBN
module for other computer vision tasks, we evaluate the performance of SepBN on the
CIFAR-100 [16] dataset for image classification. We also compare the proposed SepBN
module with the classical BN and the state-of-the-art AN layers.

We first constructed different small and unevenly distributed training subsets by randomly
sampling the original training set. The test set remains the same as the original test set. All
the models were trained from scratch and we did not use any pre-training methods. The
experimental results are shown in Table 7. The results demonstrate that SepBN can improve
model capacity even when the training dataset is very small. Note that when using 20% of the
data for training, the accuracy after using AN is even lower than the original network. The
demonstrates that, as compared with AN, the design of SepBN can deal with the overfitting
problem more effectively when training a deep network on a small dataset.

5 Conclusion

We presented a Separable Batch Normalization (SepBN) module for robust facial landmark
localization. The aim is to deal with the small-sample-size problem and data imbalance for
deep network training. The new module combines BN, attention mechanism and channel
grouping in a novel manner to map the normalized features adaptively and efficiently. Com-
pared with the existing BN variants, the method of modifying the mapping operation of BN
by SepBN helps to achieve a consistent performance improvement. A comprehensive set of
experiments verified the merits of our SepBN module and identified its use scenarios.
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