
HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS 1

ECINN: Efficient Counterfactuals from
Invertible Neural Networks

Frederik Hvilshøj1,3

fhvilshoj@cs.au.dk

Alexandros Iosifidis2,3

ai@ece.au.dk

Ira Assent1,3

ira@cs.au.dk

1 Dept. of Computer Science
Aarhus University, Denmark

2 Dept. of Electrical and Computer
Engineering
Aarhus University, Denmark

3 DIGIT centre, Aarhus University

Abstract

Counterfactual examples identify how inputs can be altered to change the predicted
class of a classifier, thus opening up the black-box nature of, e.g., deep neural networks.
We propose a method, ECINN, that utilizes the generative capacities of invertible neu-
ral networks for image classification to generate counterfactual examples efficiently. In
contrast to competing methods that sometimes need a thousand evaluations or more of
the classifier, ECINN has a closed-form expression and generates a counterfactual in the
time of only two evaluations. Arguably, the main challenge of generating counterfactual
examples is to alter only input features that affect the predicted outcome, i.e., class-
dependent features. Our experiments demonstrate how ECINN alters class-dependent
image regions to change the perceptual and predicted class, producing more realistically
looking counterfactuals three orders of magnitude faster than competing methods.

1 Introduction

A great effort has been devoted to open up the black-box nature of deep neural networks
for computer vision. Among others, heatmaps [3], class-maximizing samples [29], and con-
trastive examples [9] have been proposed; we focus on the latter. Contrastive examples are
also known as counterfactual examples, even though models do not possess any causal struc-
ture as described in [26].1 We adopt the setting from [13] and consider the generic question,
“For situation X , why was the outcome Y and not Z?” We provide a counterfactual example
to give an explanation of the form “Had X been X̂ , then the outcome would have been Z.”

Being able to provide counterfactual examples for complex neural networks has an im-
mense potential to improve human-model-interactions. To name but a few, surveillance sys-
tems could be assessed for biases when picking out candidates for screening and self-driving
vehicles could be better diagnosed when misinterpreting their image feeds [13].

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Counterfactual examples as described in [26] are based on structured causal graphs relating inputs and outputs.
In the image domain, it is generally not known how to make such graphs and a causal analysis is thus not possible.

Citation
Citation
{Bach, Binder, Montavon, Klauschen, M{ü}ller, and Samek} 2015

Citation
Citation
{Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Dhurandhar, Chen, Luss, Tu, Ting, Shanmugam, and Das} 2018

Citation
Citation
{Pearl} 2015

Citation
Citation
{Goyal, Wu, Ernst, Batra, Parikh, and Lee} 2019

Citation
Citation
{Goyal, Wu, Ernst, Batra, Parikh, and Lee} 2019

Citation
Citation
{Pearl} 2015

2 HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS

f f 1

Input
Internal

Representation Counterfactual
Correction

Figure 1: f transforms image without
makeup (left) into internal representation
which is corrected with closed-form ex-
pression (center). f−1 generates counter-
factual example with makeup (right).

We propose Efficient Counterfactuals from
Invertible Neural Networks (ECINN), which uti-
lizes Invertible Neural Network (INN) classi-
fiers to generate counterfactual examples. Fig-
ure 1 depicts the high-level structure of ECINN.
An image of a woman without makeup (left) is
transformed by an INN denoted f into an inter-
nal representation (center). The internal repre-
sentation is corrected, as indicated by the green
arrow, before being reverted by f−1 to form a
counterfactual example with makeup (right).

The properties of INNs make a one-pass-solution possible. In contrast to usual discrimi-
native models, INNs are known to have semantically organized latent spaces where transla-
tions in specific directions result in semantic changes in the input space [11]. Importantly,
INNs even have full information-preservation between input and output layers in contrast to,
e.g., auto-encoders [5], which allows exact recovery of inputs from outputs. As such, it can
be argued that INNs are ideal for combining generative and discriminative capabilities [4].

Existing methods for generating counterfactual examples [1, 8, 9, 12, 13, 15, 25, 31, 32,
35] need to query the model under consideration many times due to various numerical opti-
mization algorithms, obtain non-unique counterfactual examples, and need hyperparameter
tuning. To the best of our knowledge, we introduce the first algorithm which uses only one
forward and reverse pass, produces unique counterfactual examples, and needs no hyperpa-
rameter tuning. ECINN is even fast enough to be used in an interactive setting [7].

Good counterfactual examples are broadly agreed to be realistic, minimal, and action-
able [12, 33]. In the image domain, however, minimal changes are hard to quantify in a
semantically meaningful way. As such, we argue that the main challenge is to generate
realistically looking images with perceptible changes only to class-relevant features.

We demonstrate experimentally how ECINN produces counterfactual examples leaving
class-independent features largely untouched while class-dependent features are changed
successfully. Experiments also demonstrate that our theoretically derived one-pass-solution
yields running times more than three orders of magnitudes faster than competing methods.

2 Related Work
Counterfactual Examples. Many methods have been proposed for generating counterfac-
tual examples or identifying counterfactual features. To name but a few, [1, 13, 31, 32, 34]
operate on image data, [15, 16, 35] consider text, and yet other methods operate on relatively
low dimensional data compared to images and text [8, 12, 33].

Methods for generating counterfactual examples can be categorized by the insights needed
into the predictive model. Methods from the first category consider the predictive model as
opaque and need no insight. Methods from the second category utilize gradients of the pre-
dictive model, while methods from the last category use internal data representations of the
predictive model. All methods mentioned need to query the predictive model many times. In
contrast, after a preprocessing step that needs to be done only once, our method uses a single
forward and inverse pass through the model to generate a counterfactual example.

In the first category, methods operating on opaque models iteratively generate candidate
sets before querying the predictive model to test candidates. [12] utilizes a greedy heuristic

Citation
Citation
{Dinh, Sohl-Dickstein, and Bengio} 2019

Citation
Citation
{Bengio and LeCun} 2014

Citation
Citation
{Behrmann, Grathwohl, Chen, Duvenaud, and Jacobsen} 2019

Citation
Citation
{Akula, Wang, and Zhu} 2020

Citation
Citation
{Cheng, Ming, and Qu} 2021

Citation
Citation
{Dhurandhar, Chen, Luss, Tu, Ting, Shanmugam, and Das} 2018

Citation
Citation
{Gomez, Holter, Yuan, and Bertini} 2020

Citation
Citation
{Goyal, Wu, Ernst, Batra, Parikh, and Lee} 2019

Citation
Citation
{Jacovi, Swayamdipta, Ravfogel, Elazar, Choi, and Goldberg} 2021

Citation
Citation
{Pan, Goyal, and Lee} 2019

Citation
Citation
{{Van Looveren} and Klaise} 2019

Citation
Citation
{Vermeire and Martens} 2020

Citation
Citation
{Wu, Ribeiro, Heer, and Weld} 2021

Citation
Citation
{Card, Robertson, and Mackinlay} 1991

Citation
Citation
{Gomez, Holter, Yuan, and Bertini} 2020

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{Akula, Wang, and Zhu} 2020

Citation
Citation
{Goyal, Wu, Ernst, Batra, Parikh, and Lee} 2019

Citation
Citation
{{Van Looveren} and Klaise} 2019

Citation
Citation
{Vermeire and Martens} 2020

Citation
Citation
{Wang and Vasconcelos} 2020

Citation
Citation
{Jacovi, Swayamdipta, Ravfogel, Elazar, Choi, and Goldberg} 2021

Citation
Citation
{Kang, Jung, Won, and Lee} 2020

Citation
Citation
{Wu, Ribeiro, Heer, and Weld} 2021

Citation
Citation
{Cheng, Ming, and Qu} 2021

Citation
Citation
{Gomez, Holter, Yuan, and Bertini} 2020

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{Gomez, Holter, Yuan, and Bertini} 2020

HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS 3

from simple data statistics to determine what input features to perturb, while [28] uses a
genetic algorithm. [32] segments input images into super-pixels and use a greedy algorithm
to perturb super-pixels. On text data, [35] finetunes a GPT-2 model [27] to generate similar
sentences to the input sentence to generate new candidates. [34] identifies counterfactual
regions in input images but does not generate counterfactual examples.

The second category employs gradient optimization techniques to generate counterfac-
tual examples. Albeit from a different perspective, previous work has developed methods for
synthesizing inputs that maximize desired (output) neurons. For example, [29] uses gradient
descent with an L2-norm prior loss on a random input. [23] includes a local pixel varia-
tion prior to obtain more realistically looking features. [33] also proposed a different loss
based on the median absoute deviation. Even though the methods give insights into the inner
workings of the classifier, they suffer from generating unrealistic images. More recently, [25]
proposed to train a generative model to generate counterfactual examples. In a similar vein,
[9] utilizes a pretrained and fixed auto-encoder to identify latent codes that generate desired
outputs through gradient optimization. An extension of [9] is [31] which uses auto-encoders
or KD-trees to identify class prototypes which helps guide the gradient optimization. In
comparison to our one-pass-solution, the default maximum queries of the classifier in the
official code of [31] is 1000.2 Finally, [22] uses gradients of the classifier to train an external
variational auto-encoder to generate counterfactuals fast. In contrast to ECINN, the method
has a substantial pre-computation time due to training of the auto-encoder.

The third category of methods contains two different strategies. First, [13] considers
convolutional neural networks as a composition of a (convolutional) feature extractor and a
classification network. They propose two algorithms for mixing feature fibers of the input
sample and a sample from the target class. Second, [1] similarly uses a part of the classify-
ing network as a feature extractor to cluster features, yielding an identification of semantic
features like stripes, wool, etc. A gradient descent algorithm successively adds or removes
features from the input to obtain a counterfactual example.

Although conceptually different, our work fits best into the third category. Instead of
generating counterfactual examples from an “arbitrary” neural network, we choose a specific
family of neural networks, INNs, to generate counterfactual examples efficiently without the
need for multiple queries of the model or memory consuming gradient computations.

INNs as generative classifiers. INNs have gained wide attention as unsupervised models
which allow generating realistically looking “fake” samples [10, 11, 19], typically referred
to as Normalizing Flows. Despite hidden in appendices, both [11] and [19] present sam-
ples generated from class-conditional INNs. Later, it was explicitly described how to com-
pose INNs with a Gaussian mixture model (GMM) to obtain a generative classifier [14, 24].
However, adding classification abilities comes at a price. As demonstrated in [2], there is a
trade-off between classification performance and the quality of the generated fake images.
The work introduces an information bottleneck loss, which explicitly trades off the classifi-
cation and generation performance through a hyperparameter β . [2] further introduces a new
invertible model architecture, which we refer to as IB-INN.

Regarding interpretability, [21] shows how conditional INNs can be trustworthy classi-
fiers by, e.g., visualizing decision spaces and computing posterior heatmaps. Here, we further
show conditional INNs to be trustworthy by using them for generating counterfactual.

2Official code: https://docs.seldon.io/projects/alibi/en/stable/api/alibi.
explainers.cfproto.html

Citation
Citation
{Sharma, Henderson, and Ghosh} 2019

Citation
Citation
{Vermeire and Martens} 2020

Citation
Citation
{Wu, Ribeiro, Heer, and Weld} 2021

Citation
Citation
{Radford, Wu, Child, Luan, Amodei, and Sutskever} 2019

Citation
Citation
{Wang and Vasconcelos} 2020

Citation
Citation
{Simonyan, Vedaldi, and Zisserman} 2014

Citation
Citation
{Nguyen, Yosinski, and Clune} 2015

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{Pan, Goyal, and Lee} 2019

Citation
Citation
{Dhurandhar, Chen, Luss, Tu, Ting, Shanmugam, and Das} 2018

Citation
Citation
{Dhurandhar, Chen, Luss, Tu, Ting, Shanmugam, and Das} 2018

Citation
Citation
{{Van Looveren} and Klaise} 2019

Citation
Citation
{{Van Looveren} and Klaise} 2019

Citation
Citation
{Mahajan, Tan, and Sharma} 2019

Citation
Citation
{Goyal, Wu, Ernst, Batra, Parikh, and Lee} 2019

Citation
Citation
{Akula, Wang, and Zhu} 2020

Citation
Citation
{Dinh, Krueger, and Bengio} 2015

Citation
Citation
{Dinh, Sohl-Dickstein, and Bengio} 2019

Citation
Citation
{Kingma and Dhariwal} 2018

Citation
Citation
{Dinh, Sohl-Dickstein, and Bengio} 2019

Citation
Citation
{Kingma and Dhariwal} 2018

Citation
Citation
{Izmailov, Kirichenko, Finzi, and Wilson} 2020

Citation
Citation
{Nguyen, Garg, Baraniuk, and Anandkumar} 2019

Citation
Citation
{Ardizzone, Mackowiak, Rother, and K{ö}the} 2020

Citation
Citation
{Ardizzone, Mackowiak, Rother, and K{ö}the} 2020

Citation
Citation
{Mackowiak, Ardizzone, K{ö}the, and Rother} 2020

https://docs.seldon.io/projects/alibi/en/stable/api/alibi.explainers.cfproto.html
https://docs.seldon.io/projects/alibi/en/stable/api/alibi.explainers.cfproto.html

4 HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS

3 Efficient Counterfactual Examples
This section constitutes our main contribution. We combine theoretical insights and practical
observations from INNs to generate unique counterfactual examples from just one forward
and inverse pass without the use of any numerical optimization techniques.

3.1 Problem Statement
As mentioned, counterfactual examples indicate why an input was predicted to be one class
rather than another. Specifically, we adopt the definition from [33] which states that coun-
terfactual examples are statements taking the form: “Score p was returned because variables
V had values (v1,v2, . . .) associated with them. If V instead had values (v′1,v

′
2, . . .), and all

other variables had remained constant, score p′ would have been returned.” In the context
of image classification, counterfactual examples are visualizations showing how the input
image can be altered to change the predicted class.

Desiderata. In line with the desiderata of [12] and [33], we find that three properties are
critical for counterfactuals to be useful. i) Only semantically relevant features should be
changed. For example, facial features like lips and cheeks might change while the back-
ground should not when a counterfactual is generated for a face without makeup. ii) Coun-
terfactuals should look realistic. Unrealistic counterfactuals might have misplaced eyes,
extreme color values, or a “one-pixel-change” like the adversarial examples presented in
[30]. iii) Tipping-point counterfactuals and convincing counterfactuals should be priori-
tized. With tipping-point, we refer to counterfactuals on the decision boundary, just where
the prediction changes from the input to the target class and convincing counterfactuals are
samples beyond the decision boundary that gets high probabilities for the target class.

Definition 1. (tipping-point counterfactual) Given a classifier with posterior probabilities
p(y|x), an input x ∈ X , and a predicted class y = argmaxy p(y|x), a counterfactual x̂(q)

with target class q is a tipping-point counterfactual if there exists a path h : [0;1]→X and
constant C ∈]0;1[such that h(0) = x; h(C) = x̂(q); for c <C, y has higher probability than
q, i.e., p(y|h(c))> p(q|h(c)); for c =C, probabilities are equal, i.e., p(y|h(c)) = p(q|h(c));
and for c >C, q has higher probability than y, i.e., p(y|h(c))< p(q|h(c)).

Definition 2. (convincing counterfactual) given classifier p(y|x) for K classes and input x
as defined above, a counterfactual x̂(q) is a convincing counterfactual if

∀y′ : y′ ∈ {1, ...,K}\{q}∧ p(q|x̂(q))� p(y′|x̂(q)).

Tipping-point counterfactuals are essential because they represent minimal corrections
to the input. However, they might not always make sense due to visual class differences. For
example, when changing the predicted class of a cat to a dog, a tipping-point counterfactual
might mix pointy and hanging hears because it is situated at the decision boundary. On
the contrary, a convincing counterfactual would successfully show such transformation, but
potentially with overly pronounced changes. Providing both types of explanations thus give
a deeper insight into the decisions of the classifier.

In the supplementary material, we prove that ECINN produces valid tipping-point coun-
terfactuals according to Definition 1 and in the experiments (Section 4), we verify that
ECINN also complies with Definition 2 and the remaining desiderata.

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{Gomez, Holter, Yuan, and Bertini} 2020

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{Su, Vargas, and Sakurai} 2019

HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS 5

3.2 Conditional INNs
We find INNs to be well suited for the counterfactual problem because they are bijective,
i.e., every latent vector corresponds to exactly one input. In contrast, typical classification
models are inherently surjective, i.e., there potentially exist many inputs which produce each
output. In turn, INNs admits a single inverse pass to perfectly identify the right input while
surjective models must rely on approximate solutions from less efficient numerical methods.

It is known that well-trained INNs have semantically organized latent spaces [11]. We
believe that when many latent representations of samples from the same class are averaged,
then class-independent information like background and object orientation will cancel out
and leave just class-dependent information. ECINN isolates such latent class-dependent
information to correct embeddings for generating counterfactual examples.

A conditional INN f is typically trained by computing latent vectors z = f (x) from input
vectors x and using the latent vectors to fit a GMM to class labels y. However, to use z rather
than x in the GMM, one must use the change-of-variables formula, which states that

log pX (x|y) = log pZ(f (x)|y)+ log |det (J)| . (1)

That is, the class-conditional log density of an input x in the image space, pX (x|y), is equal
to the class-conditional log density of f (x) in the latent space pZ(f (x)|y), but with an addi-
tional Jacobian term, J = ∂ f (x)

∂x . We choose class-dependent latent densities to be Gaussians,
pZ(z|y) =N (µy,1). By Bayes’ rule, we notice that under a uniform prior distribution over
labels, p(y) = 1

K for K classes, the log posterior probability becomes

log pX (y|x) = log
pX (x|y)

∑y′ pX (x|y′)
∝−|| f (x)−µy||2. (2)

From Equation (2), we see that independent of the Jacobian determinant, latent vector z =
f (x) will be predicted to be from the class y with the closest model mean, µy. In turn, the
latent space of the classifier can be analyzed under L2-norms instead of less efficient and
complex densities pX (x|y), which depend on the Jacobian determinant. In the following, we
present how ECINN utilizes this insight to produce counterfactual examples efficiently.

3.3 ECINN
At a high level, ECINN transforms images into a latent space through an INN f . In the latent
space, a closed-form expression changes the predicted class by correcting the embedding.
From the corrected embedding, a counterfactual is generated by the inverse INN f−1.

As a preprocessing step that needs to be done only once and takes just five seconds on
MNIST, we group the training samples by their classified output, G j = {x|C(x) = j}, where
C(x) = argmaxy pX (y|x) is the predicted class. Afterwards, we compute mean latent vectors
µ̄ j =

1
|G j | ∑x∈G j f (x) for each class j and define the vector from µ̄p to µ̄q as ∆p,q = µ̄q− µ̄p.

Given a target class q and an input x, a counterfactual example x̂(q) is produced from the
predicted class C(x) = p by adding a scaled version of ∆p,q to the latent space embedding
z = f (x) and inverting it through the INN,

x̂(q) = f−1(f (x)+α∆p,q). (3)

It follows that a counterfactual example requires just one evaluation of f and f−1.

Citation
Citation
{Dinh, Sohl-Dickstein, and Bengio} 2019

6 HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS

To follow our third desideratum and provide both tipping-point and convincing counter-
factuals, we compute two counterfactuals for each input with different values of α . First, we
choose α0 to produce a tipping-point counterfactual. Due to Equation (2), α0 is identified
analytically such that ||z+α0∆p,q−µp||= ||z+α0∆p,q−µq||, which moves the latent vector
to the decision boundary between the input and target class. The closed-form expression
for α0 is derived in the appendix (Section A), along with a proof that it complies with Def-
inition 1 (Section B). Second, we choose α1 such that the target class q is predicted with
high confidence to produce a convincing counterfactual. α1 is chosen heuristically to be
α1 = α0 +

4
5 (1−α0) (see supplementary material for details). Although not guaranteed that

C(x̂(q)) = q, we observe that the relation holds in practice.

µ̄p

z

z + α1∆p,q

µ̄q

∆p,q

z + α0∆p,q

Figure 2: Latent space corrections by ECINN.

In Figure 2, we illustrate the intuition
of ECINN. The figure shows two isotropic
Gaussians in the latent space with a blue de-
cision boundary. With green empty squares,
we indicate the two computed means µ̄p
and µ̄q, connected by ∆p,q (green arrow).
The orange line passes through z in direc-
tion ∆p,q. The two points of interest are the
blue square on the intersection of the blue
and the orange line and the black square to
the right. According to the model, the blue square constitutes a tipping-point counterfactual,
and the black square is very likely to stem from class q, i.e., a convincing counterfactual.

In conclusion, we introduce ECINN which allows computing counterfactuals efficiently
by utilizing theoretical and observational properties of INNs. ECINN complies with our
first two desiderata by generating counterfactuals which represent class-dependents changes
while leaving out most class-independent information. By providing both tipping-point and
convincing counterfactuals, it also follow the third desideratum.

4 Experiments

In this section, we evaluate how our counterfactual examples perform. Our experiments
show how ECINN produces meaningful counterfactual examples across three different im-
age datasets, changes class-dependent features while maintaining class-independent features,
and outperforms competing methods.

Experimental Details. We evaluate ECINN on a synthetic FakeMNIST dataset, the MNIST
dataset [20], and the CelebA-HQ dataset [17]. On all three datasets, classification errors of
the IB-INN models are comparable to those of a standard classification network (see Table 2
in the appendix). For all our experiments, we have trained IB-INN models “as-is.”3 We
found that β -values for IB-INN close to one strike a good balance between classification
accuracy and generative performance (see appendix). We also provide an overview of hard-
ware, all models used, hyperparameters, and the model performances in the appendix along
with additional samples of all plots in the supplementary material. Results presented are all
with samples from the test sets and were found to be consistent across samples.

3We adopted models and training code from https://github.com/VLL-HD/IB-INN.

Citation
Citation
{LeCun and Cortes} 2010

Citation
Citation
{Karras, Aila, Laine, and Lehtinen} 2018

https://github.com/VLL-HD/IB-INN

HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS 7

(a) Random samples.

y=0 y=1 y=2 y=3 y=4

y=5 y=6 y=7 y=8 y=9

(b) Counterfactual examples.

x
0

1

p(q|x) 1.000

q=1

1.000

q=2

1.000

q=3

1.000

q=4

1.000

q=5

1.000

q=6

1.000

q=7

1.000

q=8

1.000

q=9

Figure 3: FakeMNIST dataset. For improved readability, smaller rectangles to the left of
images magnify the top left 10×2 pixels, indicating the class.

We provide code for training IB+INN models and and explaining them with ECINN at
https://github.com/fhvilshoj/ECINN.

4.1 FakeMNIST

To verify ECINN in a controlled setting, we carefully design a dataset such that less than two
percent of the pixels in each image are class-dependent. As argued, a proper counterfactual
example for a well-trained model should alter only the class-dependent pixels and if no class-
dependent information is present, each class should be equally likely.

The dataset is generated by randomly reassigning labels to images. We alter images only
by injecting the information of the new labels in the top-left 10× 1 pixels; the ith top-left
pixel will be white if the images is labeled i. For example, if an image gets label “5,” the
sixth pixel in the left column is white. Figure 3a shows a sample from each of the ten classes.
Only the top-left pixels depends on the labels; the depicted digits do not.

Figure 3b shows random sample from the class y = 0 (first row) and tipping-point coun-
terfactuals (α0) in the second row. The third row includes convincing counterfactual exam-
ples (α1). Each column corresponds to a different target class q. Figure 3b shows that the
dot in the top left corner of the input does change position, while the class-independent digit
remains unchanged as expected. Specifically, the third row from left to right reveals how the
dot in the top left corner travels downwards to end in the tenth pixel. The second row has no
dot, which aligns well with the interpretation about equally likely class probabilities above.

4.2 MNIST

Next, we apply ECINN to the MNIST dataset. First, we verify our second desideratum, i.e.,
that ECINN produces realistic counterfactual examples. Second, we investigate how well
class-independent features like font-weight and tilt are maintained by ECINN, i.e., our first
desideratum. Finally, we compare ECINN to two competing methods.

x
0

1

p(q|x) 1.000

q=0

1.000

q=1

1.000

q=2

1.000

q=4

1.000

q=5

1.000

q=6

1.000

q=7

1.000

q=8

1.000

q=9

Figure 4: Same input, different targets.

Realistic Counterfactuals. In Figure 4,
we depict counterfactual examples in the
same fasion as Figure 3b. The figure
shows how an image of a three is properly
transformed into any of the remaining nine
classes. Note that in the second row, the
counterfactual examples are in many cases

https://github.com/fhvilshoj/ECINN

8 HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS

such that even a human might mistake the image for both the input and target class. By con-
trast, the third row contains samples where the three has successfully transformed into the tar-
get class. This experiment demonstrates that ECINN complies with Definition 2 (p(q|x) = 1
for all samples) and our second desideratum by generating realistic counterfactuals.

x
0

1

p(q|x) 1.000

q=0

1.000

q=0

1.000

q=0

1.000

q=0

1.000

q=0

1.000

q=0

1.000

q=0

1.000

q=0

1.000

q=0

(a) Different inputs, same target.

x
0

1

p(q|x)

q=9

1.000

q=9

1.000

q=9

1.000

q=9

1.000

q=9

1.000

q=9

1.000

q=9

1.000

q=9

1.000

q=9

0.999

(b) Same input and target class.

In
pu

t

q=9 q=4 q=2 q=5 q=3

[3
3]

[3
1]

EC
IN

N

(c) Comparison to [33] and [31].
Figure 5: Counterfactuals for MNIST.

Class-Independent Properties. In Fig-
ure 5a and 5b, we demonstrate how class-
independent properties like font-weight,
tilt, and size are preserved during coun-
terfactual generation. First, Figure 5a in-
cludes nine different inputs (first row), each
from a different class, that are all trans-
lated to the target class, q = 0. We ob-
serve that the nine outcomes (row three)
are perceptually different while resembling
the target class. Each counterfactual exam-
ple maintains class-independent properties
from the input while resembling the target
class. For example, the narrow and tilted
one (first column) becomes a narrow and
tilted zero. The observation suggests that
ECINN maintains properties that are not di-
rectly dependent on the label.

In Figure 5b, we investigate how class-
independent properties are maintained. We
sample nine different images from the class
y = 4 and compute their counterfactual ex-
amples for the target class q = 9. We ob-
serve how bold inputs yield bold counter-
factuals; likewise, slim inputs yield slim
counterfactuals. Similar observations can
be made for, e.g., tilt, size, and shape.

Mehod Mean (std) n

[33] 21.64 (7.99) 100
[31] 16.85 (0.35) 100

ECINN 0.0025 (0.0002) 104

Table 1: MNIST Computation times.

Comparison. In Figure 5c, we compare counter-
factual examples generated with the algorithms pro-
posed in [33] and [31] with our method.4 Rows cor-
respond to counterfactual methods and columns rep-
resents five different inputs. The figure shows that
both competing methods generate more artificially
looking counterfactual examples than ECINN. As the
figure also shows, we found across many samples that counterfactuals generated by [33] and
[31] generally look more artificial by having disconnected white pixels and being blurred,
respectively. See supplementary material for additional samples.

In Table 1, we compare computation time on a single GPU, similar to [6]. For a fair
comparison, we do not batch samples, as the framework for the competing methods does not
support batching. The table shows how ECINN is more than 6000× faster than competing

4Implementations found at https://github.com/SeldonIO/alibi; applied with default parameters.

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{{Van Looveren} and Klaise} 2019

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{{Van Looveren} and Klaise} 2019

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{{Van Looveren} and Klaise} 2019

Citation
Citation
{Wachter, Mittelstadt, and Russell} 2017

Citation
Citation
{{Van Looveren} and Klaise} 2019

Citation
Citation
{Bodria, Giannotti, Guidotti, Naretto, Pedreschi, and Rinzivillo} 2021

https://github.com/SeldonIO/alibi

HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS 9

methods. As it takes significaltly less time than 0.1 second, ECINN can even be used in an
interactive setting [7], which is not possible with these competing methods.

In conclusion, we find that ECINN outperforms competing methods on both quality and
speed and comply with our desiderata by realistically changing the predicted and the per-
ceived class while maintaining class-independent features such as font-weight and tilt.

4.3 CelebA-HQ.
To evaluate ECINN on a more diverse and complex dataset, we extend our experiments to
the CelebA-HQ dataset. We train IB-INNs to predict various binary labels, where each class
is represented by at least 45% of the dataset.

In Figure 6, we show counterfactual examples for the smile versus frown label. The first
five columns depict how ECINN turns frowning people into smiling ones, while the last five
columns make smiling people frown. First, we observe that class irrelevant features such
as hair, skin color, and backgrounds remain perceptually unchanged as desired. Second,
we notice that some counterfactual examples in the last row look unrealistic. In particular,
it seems hard for the method to open and close mouths. In some cases, we also observe
small artifacts like the ones in the left-most pixels of the second column. Based on our
MNIST experiments, which did not suffer from computational limitations, we believe that
scaling from the roughly 40 million parameters used to around 200 million (as is common
with previous work [19]) can remove the artifacts and generate higher quality counterfactual
examples. Furthermore, the low-resolution version of CelebA-HQ that we use due to limited
resources is arguably harder to synthesize than higher resolutions. For further verification of
our findings, we include plots for models trained on other labels in Section E of the appendix.

5 Conclusion
We introduce ECINN as an efficient method for computing counterfactual examples. Our
method is derived from theoretical and practical properties of a particular type of classifiers,
namely conditional INNs. While being three orders of magnitude faster than competing
methods, ECINN requires only one forward and one inverse pass, it generates a unique solu-
tion, and it requires no numerical optimization. In compliance with our desiderata, ECINN
generates counterfactual explanations that i) change only class-dependent features, ii) are
realistic, and iii) can represent both tipping-point and convincing counterfactuals.

x
0

1

Figure 6: Counterfactual examples for frowning and smiling faces. First five columns have
target q = smile and last five columns q = frown. p(q|x)> 1−10−4 for all samples.

Citation
Citation
{Card, Robertson, and Mackinlay} 1991

Citation
Citation
{Kingma and Dhariwal} 2018

10 HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS

References
[1] Arjun Akula, Shuai Wang, and Song-Chun Zhu. CoCoX: Generating Conceptual and

Counterfactual Explanations via Fault-Lines. Proceedings of the AAAI Conference on
Artificial Intelligence, 2020.

[2] Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe. Training
normalizing flows with the information bottleneck for competitive generative classifi-
cation. NeurIPS, 2020.

[3] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation. PLoS ONE, 2015.

[4] Jens Behrmann, Will Grathwohl, Ricky T.Q. Chen, David Duvenaud, and Jörn Henrik
Jacobsen. Invertible residual networks. In ICML, 2019.

[5] Yoshua Bengio and Yann LeCun. Auto-Encoding Variational Bayes. In ICLR, 2014.

[6] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pe-
dreschi, and Salvatore Rinzivillo. Benchmarking and survey of explanation methods
for black box models. arXiv preprint arXiv:2102.13076, 2021.

[7] Stuart K Card, George G Robertson, and Jock D Mackinlay. The information visual-
izer, an information workspace. In Proceedings of the SIGCHI Conference on Human
factors in computing systems, pages 181–186, 1991.

[8] Furui Cheng, Yao Ming, and Huamin Qu. DECE: decision explorer with counterfactual
explanations for machine learning models. IEEE Transactions on Visualization and
Computer Graphics, 27(2):1438–1447, 2021.

[9] Amit Dhurandhar, Pin Yu Chen, Ronny Luss, Chun Chen Tu, Paishun Ting,
Karthikeyan Shanmugam, and Payel Das. Explanations based on the Missing: Towards
Contrastive Explanations with Pertinent Negatives. In NeurIPS, 2018.

[10] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-Linear Independent
Components Estimation. In ICLR (Workshop), 2015.

[11] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real
NVP. In ICLR, 2019.

[12] Oscar Gomez, Steffen Holter, Jun Yuan, and Enrico Bertini. ViCE: Visual Counterfac-
tual Explanations for Machine Learning Models. International Conference on Intelli-
gent User Interfaces, Proceedings IUI, pages 531–535, 2020.

[13] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counter-
factual Visual Explanations. In ICML, 2019.

[14] Pavel Izmailov, Polina Kirichenko, Marc Finzi, and Andrew Gordon Wilson. Semi-
supervised learning with normalizing flows. In ICML, 2020.

[15] Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel, Yanai Elazar, Yejin Choi, and
Yoav Goldberg. Contrastive Explanations for Model Interpretability. arXiv preprint
arXiv:2103.01378, 2021.

HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS 11

[16] Sin-Han Kang, Honggyu Jung, Dong-Ok Won, and Seong-Whan Lee. Counterfac-
tual explanation based on gradual construction for deep networks. arXiv preprint
arXiv:2008.01897, 2020.

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive Growing of
GANs for Improved Quality, Stability, and Variation. In ICLR, 2018.

[18] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980, 2014.

[19] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1
Convolutions. In NeurIPS, 2018.

[20] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL
http://yann.lecun.com/exdb/mnist/.

[21] Radek Mackowiak, Lynton Ardizzone, Ullrich Köthe, and Carsten Rother. Generative
classifiers as a basis for trustworthy computer vision. arXiv preprint arXiv:2007.15036,
2020.

[22] Divyat Mahajan, Chenhao Tan, and Amit Sharma. Preserving causal constraints in
counterfactual explanations for machine learning classifiers. In CausalML: Machine
Learning and Causal Inference for Improved Decision Making Workshop, NeurIPS
2019, December 2019.

[23] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In CVPR, 2015.

[24] Tan M. Nguyen, Animesh Garg, Richard G. Baraniuk, and Anima Anandkumar. In-
foCNF: Efficient conditional continuous normalizing flow using adaptive solvers. arXiv
preprint arXiv:1912.03978, 2019.

[25] Jingjing Pan, Yash Goyal, and Stefan Lee. Question-conditioned counterfactual image
generation for VQA. arXiv preprint arXiv:1911.06352, 2019.

[26] Judea Pearl. Causes of effects and effects of causes. Sociological Methods & Research,
44(1):149–164, 2015.

[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1
(8):9, 2019.

[28] Shubham Sharma, Jette Henderson, and Joydeep Ghosh. CERTIFAI: Counterfactual
Explanations for Robustness, Transparency, Interpretability, and Fairness of Artifi-
cial Intelligence models. CoRR, 2019. URL http://arxiv.org/abs/1905.
07857.

[29] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In ICLR, 2014.

[30] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for
fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 23
(5):828–841, 2019.

http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1905.07857
http://arxiv.org/abs/1905.07857

12 HVILSHØJ, IOSIFIDIS, ASSENT: ECINN: EFFICIENT COUNTERFACTUALS FROM INNS

[31] Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations
guided by prototypes. arXiv preprint arXiv:1907.02584, 2019.

[32] Tom Vermeire and David Martens. Explainable image classification with evidence
counterfactual. arXiv preprint arXiv:2004.07511, 2020.

[33] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations
without opening the black box: Automated decisions and the GDPR. Harv. JL & Tech.,
31:841, 2017.

[34] Pei Wang and Nuno Vasconcelos. SCOUT: Self-aware Discriminant Counterfactual
Explanations. In CVPR, 2020.

[35] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S. Weld.
Polyjuice: Automated, General-purpose Counterfactual Generation. arXiv preprint
arXiv:2101.00288, 2021.

